SOLUTION

No problem is ever permanently closed. Any comments, new solutions, or new insights on old problems are always welcomed by the problem editor.
153. [2005, 52; 2006, 149-150] Proposed by Joe Howard, Portales, New Mexico.

Let $n \geq 2$ be an integer. Prove that

$$
n^{n}>(n+1)^{n-1}+\frac{n}{n+1}
$$

Solution by Joe Dence, St. Louis, Missouri. Upon division of both sides of the alleged inequality by $(n+1)^{n-1}$, it follows that the original inequality holds if and only if

$$
\begin{equation*}
n\left[1-\frac{1}{n+1}\right]^{n-1}>1+\frac{n}{(n+1)^{n}} \tag{*}
\end{equation*}
$$

By Bernoulli's Inequality we have

$$
\text { LHS }>n\left[1-\frac{n-1}{n+1}\right]=\frac{2 n}{n+1} \geq \frac{12}{9} \text { for } n \geq 2
$$

Additionally,

$$
\text { RHS } \leq 1+\frac{2}{3^{2}}=\frac{11}{9} \text { for } n \geq 2
$$

Hence, $(*)$ holds and so does the original inequality.

