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Abstract. Questions concerning the factorizations of escalator num-
bers are considered. Specifically, we determine exactly when escalator num-
bers are nontrivial integral powers of rational numbers. We further bound
the number of primes and thus the size of the largest prime dividing the
numerator and denominator of an escalator number in terms of its position
in an escalator number sequence.

1. Introduction. A sequence a1, a2, . . . of rational numbers is called
an escalator sequence if, for each n ∈ Z+,

n∑

i=1

ai =
n∏

i=1

ai.

An escalator number is a partial sum of an escalator sequence

An =
n∑

i=1

ai,

with n ≥ 2. The sequence A2, A3, . . . of escalator numbers is an escalator

number sequence. For basic results on escalator numbers and sequences,
see works by Pizá [6] and by Grundman [3,4].

Note that for n ≥ 2, An−1 + an = anAn−1 and therefore, assuming
that An−1 6= 1,

an =
An−1

An−1 − 1
.

Hence,

An = anAn−1 =
A2

n−1

An−1 − 1
. (1)

Since A1 = a1, it follows that if a1 6= 1, then both an and An are uniquely
determined in terms of a1, called the base of the resulting escalator sequence.
Equation (1) also demonstrates that for each n, An 6= 1 since otherwise x =
An−1 would be a rational solution to x2/(x − 1) = 1, which is impossible.

To fix notation, given a base a1 6= 1, for each n ∈ Z+, let un ∈ Z and
vn ∈ Z+ with gcd(un, vn) = 1 such that

An =
un

vn

.
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Using (1),

An+1 =
A2

n

An − 1
=

u2
n

vn(un − vn)
, (2)

with gcd(u2
n, vn(un − vn)) = 1. Therefore,

un+1 = ±u2
n and vn+1 = vn|un − vn|. (3)

Escalator numbers are characterized in the following theorem, which
is proved in [4].

Theorem 1. A rational number A is an escalator number if and only if
A2 − 4A is a square in Q.

2. Power Escalator Numbers. In this section, we consider the
existence of nontrivial integral powers in the sequence of nonzero escalator
numbers A2, A3, . . . determined by a base a1 6= 0, 1. We start with the
squares. Note that by choosing a1 6= 0, 1 such that a1−1 is a perfect square,
then A2 = a2

1/(a1 − 1) is a square escalator number. We ask whether there
exist examples of square escalator numbers An with n ≥ 3. Our first result
shows that the answer is no.

Theorem 2. If a nonzero escalator number An is a square, then n = 2.

Proof. Suppose that An is a square with n ≥ 3. By equation (1),
An−1 − 1 is then also a square. Further, since n ≥ 3, An−1 is also an
escalator number and therefore, by Theorem 1, A2

n−1 − 4An−1 is a square.
Combining these, (An−1 − 1)(A2

n−1 − 4An−1) is the square of a rational
number, say y. Letting x = An−1 − 2, we get that y2 = (x + 1)(x +
2)(x− 2) = x3 +x2 − 4x− 4. This is an elliptic curve of conductor 48, with
[a1, a2, a3, a4, a6] = [0, 1, 0,−4,−4] in the Weierstrass form y2+a1xy+a3y =
x3 + a2x

2 + a4x + a6. Using Cremona’s tables [1], the group of rational
points on this curve is finite of order 4. Thus, the rational points on this
curve are (x, y) = (−2, 0), (−1, 0), (2, 0) and the point at infinity. Hence,
An−1 ∈ {0, 1, 4}. Since An is a nonzero escalator number, An−1 is neither
0 nor 1. But if An−1 = 4, then An−1 − 1 = 3 which is not a square. Hence,
if An is a square escalator number, then n = 2.

We next look at higher powers. We first consider whether a nonzero
escalator number can be a fourth power.

Theorem 3. Let x ∈ Q − {0}, then x4 is not an escalator number.

Proof. Suppose x4 is a nonzero escalator number. Using equation (2),
there exist distinct relatively prime integers, u, v with v > 0 such that

x4 =
u2

v(u − v)
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with gcd(u2, v(u−v)) = 1. Thus, there are positive integers a, b, and c such
that u = a2, v = b4, and u − v = c4. But this yields a nontrivial integral
solution to a2 = b4 + c4, which is known not to exist (for example, see [5]).

Next, we consider odd powers.

Theorem 4. Let m be an odd integer and x ∈ Q−{0}, then xm is not
an escalator number.

Proof. Suppose that An = xm with n ≥ 2 and write An−1 = u/v with

u and v relatively prime. Then since xm = An = u
2

v(u−v) , with gcd(u2, v(u−

v)) = 1, both u2 and v(u− v) are mth powers. Since m is odd, we get that
u = xm

1 for some positive integer x1. Further, since v and u−v are relatively
prime, we get that v = xm

2 , u−v = xm
3 for some integers x2 and x3. Hence,

xm
1 = u = v + (u − v) = xm

2 + xm
3 , which, by Fermat’s Last Theorem, has

no nontrivial integral solution.

The following corollary is immediate.

Corollary 5. Let m > 2 and x ∈ Q − {0}, then xm is not an escalator
number.

Thus, the only nontrivial integral power escalator numbers are squares.
How common are square escalator numbers? Our next result characterizes
the square escalator number and we end the section with a proof that square
escalator numbers are dense in the interval [4,∞).

We will need the following theorem from [4].

Theorem 6. The set of escalator numbers is dense in the set

(−∞, 0] ∪ [4,∞).

Theorem 7. The assignment x 7→ (x − 2)2 defines a two-to-one cor-
respondence between the set of escalator numbers and the set of nonzero
square escalator numbers.

Proof. Let A be an escalator number. Then, by Theorem 1, A2 − 4A
is a square. Let y = (A− 2)2. Then y2 − 4y = (A− 2)2(A2 − 4A), which is
a square. Hence, again by Theorem 1, y = (A−2)2 is an escalator number.

To see that the assignment is surjective, let B = z2 6= 0 be a square
escalator number, with z ∈ Q. Then B(B − 4) = B2 − 4B is a square and
thus, so is B − 4. Then (z + 2)2 − 4(z + 2) = z2 − 4 = B − 4 is a square
and thus, z + 2 is an escalator number.

Note that Theorem 7 shows that all nonzero square escalator numbers
are greater than or equal to 4. Hence, the following theorem is optimal, in
that the square escalator numbers are not dense in any larger interval.

Theorem 8. The set of nonzero square escalator numbers is dense in
the set [4,∞).
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Proof. By Theorem 6, the set E of escalator numbers is dense in
(−∞, 0]∪ [4,∞). Thus, E − 2 is dense in (−∞,−2]∪ [2,∞) and so the set
(E − 2)2 is dense in [4,∞). Theorem 7 completes the proof.

3. Prime Factors. Finally, we look at the prime factors of escalator
numbers. Again, for n ∈ Z+, let An = un/vn with un ∈ Z, vn ∈ Z+,
and gcd(un, vn) = 1. For an integer m let ω(m) be the number of distinct
prime factors of m and let P (m) be the largest prime factor of m with the
convention that P (±1) = P (0) = 1. This section concerns establishing a
lower bound for ω(unvn) and thus for P (unvn).

We begin with a lemma.

Lemma 9. Let An = un/vn be a nonzero escalator number, as above.
Then

ω(unvn) < ω(un+1vn+1).

Proof. By equation (3), un|un+1 and vn|vn+1. This proves that
ω(unvn) ≤ ω(un+1vn+1).

Suppose ω(unvn) = ω(un+1vn+1). Then ω(unvn) = ω(u2
nvn(un −

vn)) = ω(unvn(un − vn)). Since un, vn, and un − vn are pairwise rel-
atively prime, this implies that un − vn = ±1. We consider two cases,
recalling that An−1 6= 0 or 1. If un−1 > 0, then

|un−vn| = |u2
n−1−vn−1(un−1−vn−1)| = |(un−1−vn−1)

2 +un−1vn−1| ≥ 2.

If un−1 < 0, then

|un − vn| = |u2
n−1 − vn−1(un−1 − vn−1)| = |u2

n−1 − un−1vn−1 + v2
n−1| ≥ 3.

Hence, ω(unvn) < ω(un+1vn+1).

Theorem 10. Let An = un/vn be a nonzero escalator number, as above.
Then ω(unvn) ≥ n− 1 and so P (unvn) ≥ pn−1, the n− 1st prime. Further,
for n ≥ 11, P (unvn) > n logn.

Proof. By Lemma 9 and induction, for the first statement, it suffices
to prove that for each escalator number A2, ω(u2v2) ≥ 2 − 1 = 1. But
by equation (3), ω(u2v2) = ω(u2

1v1(u1 − v1)) ≥ 1, since one of u1, v1, and
u1 − v1 must be even.

The final statement follows from the bound pk > k log k+k log log k−k,
which holds for k ≥ 2 [2].

Finally, we note that for all n, P (un) = P (u1), so the above also implies
that for sufficiently large n, P (vn) > n log n.
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