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Abstract. An alternative (hitherto unknown) representation is de-
rived for Jacobi polynomials.

1. Introduction. Jacobi polynomials are some of the most funda-
mental tools in algebra. They have applications in almost every branch of
mathematics. The usual definition is given by
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where P, (-) denotes the Jacobi polynomial of order n. Several representa-
tions are available [1] in the mathematics literature for computing (1). In
this note, we derive an alternative formula for (1) based on the concept of
expectations. To the best of our knowledge, this formula does not appear
to have been noticed before.

2. Main Result.

Theorem. If X; and X5 are independent gamma random variables
specified by the probability density functions
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Proof. Using the definition in (1), one can write
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where we have used the facts Elexp(sX1)] = (1 — s)* and Elexp(sX3)] =
(1 — 5)%. The result of the theorem follows.
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