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Abstract. The existence of primality criteria for generic pairs n and
n + d is investigated. A congruence (mod n(n + d)) is found, that holds if
and only if (n, n+d) is a prime pair, except for a finite number of exceptions
that appear when n is lower than a fixed quantity only depending on d.
Explicit primality criteria for d = 2, 4, 6, 8, 10, 12 are given and a formula
predicting the number of exceptions is conjectured.

In 1949 using Wilson’s theorem (n is a prime if and only if (n−1)! ≡ −1
(mod n)), Clement [1] proved that p and p + 2 are twin primes if and only
if 4[(p − 1)! + 1] + p ≡ 0 (mod p(p + 2)).

In 1995 Dence and Dence [2] improved Clement’s result and proved
that p and p + 2 are twin primes if and only if 2[(p − 1)/2]!2 ≡ ±(5p + 2)
(mod p(p+2)), the sign being “+” when p = 4k− 1, “−” when p = 4k +1.

This kind of result is not restricted to only twin primes, although the
cited papers focused on this topic. Dence and Dence [2] noticed that a
similar formula holds for prime pairs p and p + 4. We investigate how to
extend their work to generic prime pairs p and p + d. Furthermore, using
elementary methods, we prove the following theorem.

Theorem 1. Let A be the square product of the odd numbers from 1
to d − 1, namely A =

∏

(i=1,3,... ,d−3,d−1) i2. When n > A, (n, n + d) is a
prime pair if and only if

Ad[(n−1)/2]!2 ≡ (−1)(n+1)/2A(n+d)−(−1)(n+d+1)/22dn (mod n(n+d)).

Proof. The basic tool of our proof is the following result that gives the
necessary and sufficient condition for an integer n to be a prime. That is,
n is a prime if and only if

[(n − 1)/2]!2 ≡

{

−1 (mod n) if n = 4k + 1;

+1 (mod n) if n = 4k − 1.
(1)

According to Dickson [3], Lagrange [4] proved this result in 1771, the
same paper where he published the first proof of Wilson’s theorem.

Dealing with generic prime pairs n and n+d four cases arise, depending
on the combination of numbers of the form 4k + 1 and 4k − 1. We prove
in detail one of the four cases, choosing n ≡ 1 (mod 4) and n + d ≡ −1
(mod 4). The proofs of the other cases may be easily obtained using the
same scheme.
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From (1), it follows that (n, n + d) is a prime pair if and only if the
following congruences simultaneously hold:

(

n − 1

2

)

!2 ≡ −1 (mod n) and

(

n + d − 1

2

)

!2 ≡ 1 (mod n + d).

First, note that we can multiply both sides of the previous congruences
by d without losing the combined necessary and sufficient condition for
(n, n + d) to be a prime pair. Hence,

d

(

n − 1

2

)

!2 ≡ −d (mod n) and (2)

d

(

n + d − 1

2

)

!2 ≡ d (mod n + d). (3)

If n + d is prime then congruence (3) continues to hold as a necessary
and sufficient condition for the primality of n + d; when n + d is composite
(and hence, its factors are < (n + d− 1)/2), the left-hand side of (3) is ≡ 0
(mod n + d) but the right-hand side is not, because d is never divisible by
n + d.

Congruence (2) may also hold for a composite n, when d is a multiple
of n, but in this case n + d is forced to be composite; this assures that
both (2) and (3) cannot jointly hold and hence, the necessary and sufficient
condition for the simultaneous primality of n and n + d is maintained.

Next, we change (3) to an equivalent but more suitable form. Observe
that

(

n + d − 1

2

)

!

=

(

n − 1

2

)

!

(

n + 1

2

) (

n + 3

2

)

. . .

(

n + d − 3

2

) (

n + d − 1

2

)

=

(

n − 1

2

)

!
∏

(i=1,3,... ,d−3,d−1)

(

n + i

2

)

so that congruence (3) can now be written as

d

(

n − 1

2

)

!2
∏

(i=1,3,... ,d−3,d−1)

(

n + i

2

)2

≡ d (mod n + d).

Multiplying both sides of the previous congruence by 4d/2, we obtain

d

(

n − 1

2

)

!24d/2
∏

(i=1,3,... ,d−3,d−1)

(

n + i

2

)2

≡ 4d/2d (mod n + d)
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or

d

(

n − 1

2

)

!2
∏

(i=1,3,... ,d−3,d−1)

4

(

n + i

2

)2

≡ 4d/2d (mod n + d). (4)

We now observe that

4

(

n + i

2

)2

≡ (d − i)2 (mod n + d).

Hence, each term of the product in the left-hand side of (4) is ≡ (d−i)2

(mod n + d) so that

d

(

n − 1

2

)

!2
∏

(i=1,3,... ,d−3,d−1)

(d − i)2 ≡ 4d/2d (mod n + d)

or

Ad

(

n − 1

2

)

!2 ≡ 2dd (mod n + d). (5)

In order to get a congruence (mod n) whose left-hand side equals that
of (5), we now multiply both sides of (2) by A, obtaining:

Ad

(

n − 1

2

)

!2 ≡ −Ad (mod n). (6)

Since n > A congruence (6) continues to be a necessary and sufficient
condition for the primality of n, because A is never divisible by n. Then
(n, n+d) is a prime pair if and only if congruences (5) and (6) simultaneously
hold.

It remains only to combine congruences (5) and (6) into a single con-
gruence (mod n(n + d)). Rewriting (5) as an equation, we get

Ad

(

n − 1

2

)

!2 − 2dd = r(n + d)

or

Ad

(

n − 1

2

)

!2 + A(n + d) − 2dd + 2d(n + d) = r′(n + d)

or

Ad

(

n − 1

2

)

!2 + A(n + d) + 2dn = r′(n + d) (7)

for some r, r′ ∈ N. Similarly from (6), we get

Ad

(

n − 1

2

)

!2 + Ad = sn
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or

Ad

(

n − 1

2

)

!2 + An + Ad + 2dn = s′n

or

Ad

(

n − 1

2

)

!2 + A(n + d) + 2dn = s′n (8)

for some s, s′ ∈ N. Thus, it is clear that the quantity on the left-hand side
of (7) and (8) is divisible by the product of n and n + d. Hence,

Ad

(

n − 1

2

)

!2 ≡ −A(n + d) − 2dn (mod n(n + d))

≡ (−1)(n+1)/2A(n + d) − (−1)(n+d+1)/22dn (mod n(n + d)),

as was to be shown.

Theorem 2. Let B be the greatest divisor of A satisfying gcd(B, d) = 1.
When n > B, (n, n + d) is a prime pair if and only if

Ad[(n−1)/2]!2 ≡ (−1)(n+1)/2A(n+d)−(−1)(n+d+1)/22dn (mod n(n+d)).

Proof. Proceed as in the proof of Theorem 1 obtaining congruences
(5) and (6). Next observe that when n ≤ A, congruence (6) may hold
for a composite n whose prime factors are < d, namely for a composite
divisor of A. In this case, since n > B, n and d are not relatively prime and
consequently n+d is forced to be composite. This assures that both (5) and
(6) cannot jointly hold and hence, the necessary and sufficient condition for
the simultaneous primality of n and n + d is maintained. To complete the
proof, combine (5) and (6) into a single congruence (mod n(n + d)), as in
the proof of Theorem 1, and then Theorem 2 follows.

Note that Theorem 2 is equivalent to Theorem 1 when d is an exact
power of 2, because in this case, gcd(A, d) = 1 and then B = A. In any
other case, B < A and Theorem 2 improves on the previous result.

To compute B one may apply recursively the relation x → x/ gcd(x, d)
until gcd(x, d) = 1, starting from the initial value x = A.

Theorem 3. Except for a finite number of pairs where n is a composite
divisor of B and n + d is prime, (n, n + d) is a prime pair if and only if

Ad[(n−1)/2]!2 ≡ (−1)(n+1)/2A(n+d)−(−1)(n+d+1)/22dn (mod n(n+d)).

Proof. As a consequence of Theorem 2, it suffices to cover the case
when n ≤ B. Proceed as in the previous proof obtaining (5) and (6). Next,
observe that congruences (5) and (6) both hold when n is a composite
divisor of B and n + d is prime. To complete the proof, combine (5) and
(6) into a single congruence (mod n(n + d)). Theorem 3 follows.
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The explicit primality criteria for d = 2, 4, 6, 8, 10, 12 are listed below.
These are obtained using Theorem 3 and identifying the exceptions that
appear when n ≤ B. Note that for d = 4, we found the exception, not
listed in [2], for n = 9.

Corollary 1. (n, n + 2) is a prime pair if and only if

2[(n − 1)/2]!
2
≡ (−1)(n+1)/2(5n + 2) (mod n(n + 2)).

Corollary 2. Except for n = 9, (n, n + 4) is a prime pair if and only if

36[(n − 1)/2]!
2
≡ (−1)(n+1)/2(−7n + 36) (mod n(n + 4)).

Corollary 3. Except for n = 25, (n, n + 6) is a prime pair if and only if

1350[(n− 1)/2]!2 ≡ (−1)(n+1)/2(289n + 1350) (mod n(n + 6)).

Corollary 4. Except for n = 9, 15, 21, 35, 45, 63, 75, 105, 225, 441, 735,
1575, 2205, (n, n + 8) is a prime pair if and only if

88200[(n− 1)/2]!2 ≡ (−1)(n+1)/2(10769n + 88200) (mod n(n + 8)).

Corollary 5. Except for n = 9, 21, 27, 49, 63, 147, 189, 567, 729, 5103,
35721, (n, n + 10) is a prime pair if and only if

8930250[(n− 1)/2]!2 ≡ (−1)(n+1)/2(894049n+8930250) (mod n(n+10)).

Corollary 6. Except for n = 25, 35, 49, 55, 77, 245, 385, 605, 847, 1225,
2695, 3025, 13475, 21175, (n, n + 12) is a prime pair if and only if

1296672300[(n− 1)/2]!2

≡ (−1)(n+1)/2(108051929n + 1296672300) (mod n(n + 12)).

To identify the exceptions appearing in the above corollaries we wrote
a program in Pari-GP that checks the numbers b + d for primality when b
is any composite divisor of B.

The same program was used to count the total number of exceptions,
E(d), for any value of d from d = 4 up to d = 42. The results of this
program can be found in Table 1.

Pari-GP does not allow one to count E(d) for d > 42 because the set of
composite divisors of the corresponding B grows too fast. Indeed, writing
B in terms of its prime factorization,

B = pα1
1 pα2

2 . . . p
αω(B)
ω(B)

, (9)
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we see that the total number of divisors ν(B) of B is given by

ν(B) =

ω(B)
∏

i=1

(αi + 1),

where ω(B) is the number of distinct prime factors of B.
Hence, the number of composite divisors of B amounts to ν(B)−ω(B)−

1. For d = 44, this quantity exceeds 53 × 106.
In order to find a formula which approximates the total number of

exceptions, we apply heuristic reasoning based on the probability that the
numbers b + d are prime.

By the Prime Number Theorem, the probability that a random number
x is prime is asymptotically 1/ logx. Hence, we can roughly estimate the
number of primes over a set of randomly selected numbers by computing
the integral of their associated probabilities.

Applying this method to the set of numbers b + d, we need to take
into account the fact that such numbers do not behave like random and
independent variables.

Indeed, each prime p dividing b, divides 1/pth of a random set of inte-
gers but cannot divide b+ d, because d is relatively prime to b. To attempt
to adjust for this, we can then multiply the probability of b+d being prime
by the correction term p/(p − 1), for each prime p dividing b.

Thus, we count the integral of probabilities as

∑

b|B





1

log(b + d)

∏

p|b

p

p − 1



 . (10)

Expression (10), involving a sum extended over the set of composite
divisors of B, is inadequate for a rapid computation.

We proceed therefore, assuming

ν(B)

log(B0,5 + d)
(11)

is a rough approximation of
∑

b|B log(b + d)−1.
The approximation of the inner product of the corrective terms has to

be a little more accurate; correction terms pi/(pi−1) do not apply uniformly
to the whole set of composite divisors of B, but only to a proportion almost
equal to (1− 1

αi+1 ) of them, where pi , αi are respectively, the prime factors
and their exponents appearing in the prime factorization (9) of B. Thus, we
get the following simplified expression for the product of corrective terms

ω(B)
∏

i=1

αi

(

pi

pi−1

)

+ 1

αi + 1
. (12)

6



Combining (11) and (12), we obtain

1

log(B0,5 + d)

ω(B)
∏

i=1

(

piαi

pi − 1
+ 1

)

.

We still have to consider that primes q dividing d divide 1/qth of a
random set of integers, but cannot divide b + d because d (and therefore
any q) is relatively prime to B (and therefore relatively prime to any of its
divisors b). But again, this requires us to adjust our estimate by further
correction terms q/(q − 1), for each prime q dividing d.

Finally we can formulate the following conjecture.

Conjecture 1. The expected number E ′
(d) of exceptions in Theorem 3

(or equivalently, the number of primes over the set of numbers b + d, with
b being any divisor of B) is

E′
(d) =

1

log(B0,5 + d)

ω(B)
∏

i=1

(

piαi

pi − 1
+ 1

)

∏

q|d

q

q − 1
,

where pi and αi are respectively, the prime factors and their exponents
appearing in the prime factorization of B.

The number of exceptions E ′
(d) resulting from Conjecture 1, for any

value of d from d = 4 up to d = 42, are listed in Table 1. The comparison
with the known data E(d) seems to support the conjecture quite well.

d E(d) E′
(d)

4 1 4
6 1 4
8 13 20

10 11 16
12 14 19
14 92 84
16 388 363
18 155 147
20 636 625
22 1,832 1,759

Table 1. Actual E(d) and conjectured E′
(d) exceptions in Theorem 3
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d E(d) E′
(d)

24 1,529 1,480
26 7,897 7,658
28 7,051 6,714
30 1,004 940
32 225,790 224,628
34 143,735 141,980
36 43,899 42,429
38 646,692 638,705
40 343,513 335,173
42 90,739 87,525

Table 1. (cont.)
Actual E(d) and conjectured E′

(d) exceptions in Theorem 3
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