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Abstract. The estimation of ruin probability has been the central
topic in insurance risk theory. In this paper we study the asymptotic be-
havior of the probability of ruin and the probability that ruin occurs before
the end of planning years in the compound Poisson model. The exponential
bounds for both probabilities are found to be functions of the rate function
in traditional large deviation theory.

1. Introduction In classical risk theory, extensive studies have been
done on the aggregate insurance claim amount, the amount of an insurer’s
surplus at time t and the probability of eventual ruin [2, 5, 6]. In this
paper, we study the asymptotic behavior of the claim amount and surplus
processes over an extended period of time using large deviation techniques.
Let us start with the definitions of three important terms in risk theory.

a) Aggregate Claim Process
Let X1, X2, . . . denote a sequence of identically and independently dis-
tributed insurance claim amount random variables with common distribu-
tion function F (x) and mean µ. Let N(t) be a homogenous Poisson claim
number process with constant intensity λ and be independent of all Xi’s.
For any t ≥ 0, define the aggregate claims paid up to time t to be

St = X1 +X2 + · · · +XN(t).

St is said to be a compound Poisson Process.
The following Lemma for St is trivial from fundamental probability

theory.

Lemma 1.1. Let m(θ) be the moment generating function of X1. Then
i) E[St] = λµt and ii) the moment generating function of St is given by

MSt
(θ) = eλ(m(θ)−1)t.

b) Insurer’s Surplus Process
The insurer’s surplus at time t > 0, denoted by U(t), is defined as the
excess of the initial fund plus premiums collected over claims paid through
time t. For simplicity, we only consider the case that premiums are col-
lected continuously at a constant rate c and the time value of money is not
recognized. Then the insurer’s surplus process is written as

U(t) = u+ ct− St,
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where u is the initial surplus.

c) Probability of Ruin
We say that ruin occurs when St > ct + u for the first time. The time of
ruin is denoted by T (u) and

T (u) = inf{t : St > ct+ u}.

An example of surplus process and the time of ruin is illustrated below.

The probability of eventual ruin is defined to be

ψ(u) = P (T (u) <∞).

It is well-known [2] that when c ≤ λµ, ψ(u) = 1 for any u ≥ 0 and when
c > λµ, 0 < ψ(u) < 1 for u ≥ 0.

In this paper we are concerned with the probability that ruin occurs
at the end of a particular planning year, i.e.

P{St > u+ ct} (1)

and the probability that ruin has already occurred before the end of the
planning year, i.e.

P{T (u) < tu} (2)

for positive t and for c > λµ.
It is shown that when t is large, both probabilities are approximately

equal to er(c)t, where r(c) < 0 and depends only on c and the original pro-
cess. The r(a) is the so-called exponential rate function for this stochastic
process in large deviation theory. It is also shown that two probabilities
are related in a natural way.
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2. Preliminaries. For the compound Poisson process {St}, assume
that the moment generating function m(θ) of X1 exists on some open in-
terval Dm containing origin. Define h(θ) to be a function which is equal
to

h(θ) = λ[m(θ) − 1].

In Dm, h(θ) is infinitely differentiable and convex with h(0) = 0. Let
function r(a) be the convex conjugate (Legendre transform) of h(θ), i.e.

r(a) = inf
θ
{h(θ) − aθ}. (3)

Note that r(a), the rate function of the compound Poisson process, is de-
termined parametrically for each fixed a by the equations

h′(θ) = a and r(a) = h(θ) − aθ. (4)

The following lemma summarizes the properties of r(a).

Lemma 2.1. Assume that m(θ) < ∞ for θ in some open interval Dm

containing origin and assume that for each a, the solution θa to equation
a = h′(θ) exists and lies in the interior of Dm. Then
i) r(a) = λ(m(θa)−1)−aθa, where θa is the unique solution to the equation

a = λm′(θ);

ii) r(a) is strictly concave down and infinitely differentiable with maximum
0 attained at a = λµ;
iii) For any a ≥ λµ,

inf
θ
{h(θ) − aθ} = inf

θ≥0
{h(θ) − aθ}.

Proof. i) Since m(θ) is finite in an open interval around origin, m(θ)
is infinitely differentiable in Dm. Furthermore,

h′′(θ) = λm′′(θ) > 0. (5)

This implies that h(θ) is strictly concave up and that a = h′(θ) defines a
one-to-one strictly increasing and infinitely differentiable mapping. There-
fore, the infθ{h(θ)−aθ} is obtained when λm′(θ) = a and for each a, there
exists a unique solution θa. Plugging into the definition of r(a), we have
Part i).

For Part ii), we use the fact that h(θ) is strictly concave up and that
a = h′(θ) defines a one-to-one strictly increasing and infinitely differentiable
mapping along with the following relations:

r(a) = h(θa) − θaa, when a = h′(θa).
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The inverse mapping is actually given by

θ = −r′(a).

Consequently,

r′′(a) = −
dθ

da
= −

1

h′′(θ)
< 0,

which implies that r(a) is a concave down function.

The proof of Part iii) could be easily obtained from the following pic-
ture about the relation between functions y = h(θ) and y = aθ with a > λµ.

3. Main Results. Our first result is an upper bound for the proba-
bility P{St > u+ ct}.

Theorem 2.1. Assume that m(θ) <∞ for θ in some open interval Dm

containing origin. Then for any t ≥ 0,

P (St > ct+ u) ≤ er(c)t.
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Proof. For any θ > 0,

P [St > ct+ u] ≤ P [St > ct]

= P
[

eθSt > eθct
]

≤ e−θctE(eθSt)

= e[−θc+λ(m(θ)−1)]t. (6)

Here, the inequality is Chebycheff’s. Taking the infimum for all θ > 0 on
the right hand side, by Lemma 2.1 iii) we recognize that the exponent is
simply r(c)t. This proves the upper bound.

As to the lower bound, we consider the special case when t is a positive
integer. Note that by Lemma 1.1,

MSt
(θ) = (eλ(m(θ)−1))t.

Due to the uniqueness of the moment generating function, there exists
a sequence of i.i.d. random variables Y1, . . . , Yt with E(Y1) = λµ and
MY1(θ) = eλ(m(θ)−1) such that St = Y1 + · · · + Yt. By the Law of Large
Numbers,

lim
t→∞

P

(

St

t
→ λµ

)

= 1.

The event {St > u+ ct} with c > λµ is an event for St to be away from its
central mean λµt on a large scale (scale of t). Consequently the probability
is very small. Furthermore since u is a fixed constant, the change in u is
relatively small (scale of constant) compared with the change in c. There-
fore, the asymptotic expression for the probability P (St > ct + u) in the
case of u = 0 is almost the same as in the case of u > 0. We will provide a
proof of the lower bound for the case that u = 0.

Theorem 2.2. Assume that m(θ) < ∞ for θ in some open interval
Dm containing origin and assume that the solution θc to the equation c =
λm′(θ) exists and lies in the interior of Dm. Then for every 0 < ε < c and
any 0 < δ < 1, there exists a number t0 > 0 such that for every t ≥ t0,

P [St > (c− ε)t] ≥ (1 − δ)e(r(c)−εθc)t.

Proof. The main idea to prove the lower bound is first to shift the
center of the process to ct using Esscher transform and then to use the Law
of Large Numbers to estimate the transformed probability.

Let Y1, Y2, . . . be a sequence of i.i.d. random variables whose common
moment generating function is equal to eλ(m(θ)−1) and whose distribution
function is denoted by F ∗(y). Then we have

P [St > (c− ε)t] = P [Y1 + · · · + Yt > (c− ε)t]

=

∫

· · ·

∫

y1+···+yt>(c−ε)t

dF ∗(y1) · · · dF
∗(yt).
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Define the Esscher transform of F ∗(y) by

dG(y) =
eθcydF ∗(y)

eλ(m(θc)−1)
,

where θc satisfies Equation: c = λm′(θ). We claim that under this new
distribution G(y), the center of Yi is shifted to c, i.e. EG(Y1) = c. This is
true because

EG(Y1) =

∫ ∞

0
yeθcydF ∗(y)

eλ(m(θc)−1)

=
m′

F∗(θ)

mF∗(θ)

= λm′(θc)

= c.

Applying the Law of Large Numbers to {Yi}, we conclude that for any
ε > 0,

PG

[

c− ε <
Y1 + · · · + Yt

t
< c+ ε

]

→ 1 as t→ ∞.

Hence, for any ε > 0 and any δ > 0, there exists a t0 > 0 such that for
t ≥ t0 we have

∫

· · ·

∫

c−ε<
y1+···+yt

t
<c+ε

dG(y1) · · · dG(yt) ≥ 1 − δ.

So

P [St > (c− ε)t]

= eλ(m(θc)−1)t

∫

· · ·

∫

y1+···+yt>(c−ε)t

e−θc(y1+···+yt)dG(y1) · · · dG(yt)

≥ eλ(m(θc)−1)t

∫

· · ·

∫

c−ε<
y1+···+yt

t
<c+ε

e−θc(y1+···+yt)dG(y1) · · · dG(yt)

≥ eλ(m(θc)−1)te−θc(c+ε)t

∫

· · ·

∫

c−ε<
y1+···+yt

t
<c+ε

dG(y1) · · · dG(yt)

≥ (1 − δ)e[r(c)−εθc]t,

which implies the lower bound.

Combining Theorems 2.1 and 2.2 and letting ε→ 0 and δ → 0, we conclude
that P [St > ct+ u] ≈ er(c)t.

The next theorem estimates the probability of ruin occurring before a
certain time.

Theorem 2.3. Suppose that the equation h(θ) = cθ has a positive root
R for every c > h′(0) = λµ. Then we have
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i) −R = supy>0 Λ(y), where Λ(y) = yr(c+ 1/y) and the supremum is
achieved at Y , i.e. −R = Λ(Y ).
ii) R and Y are determined by the equations h(R) = cR and 1/Y = h′(R)−
c.
iii)

P (T (u) ≤ uy) ≤

{

euyr(c+1/y) if y < Y

e−uR if y ≥ Y ;
(7)

and

P (uy ≤ T (u) <∞) ≤

{

euyr(c+1/y) if y > Y

e−uR if y ≤ Y .
(8)

Proof. Using Equations (4) along with the facts that r′(c) = −θc and
r′′(c) = −1/h′′(θc), it is not hard to see that

Λ(y) = y

[

h(θ) − θ

(

c+
1

y

)]

= y(h(θ) − θc) − θ,

Λ′(y) = r

(

c+
1

y

)

−
1

y
r′

(

c+
1

y

)

= h(θ) − θc,

and

Λ′′(y) =
1

y3
r′′

(

c+
1

y

)

= −
1

y3h′′(θ)
< 0,

with θ given by the solution of h′(θ) = c+ 1/y.
So Λ(y) is strictly concave down and h(R) = cR with θ = R determined by
h′(R) = c+ 1/Y and Λ(Y ) = −R.

In order to prove Equations (7) and (8), we note that

E
(

eθSt−th(θ)
)

= 1 (9)

for any fixed t > 0.
Wald’s relation states that Equation (9) is also valid for any random stop-
ping time such as T (u) if h′(θ) > c, so that

E
(

eθST(u)−T (u)h(θ), T (u) <∞
)

= 1.

Since S(T (u)) ≥ u+ cT (u), we have

1 ≥ E
(

eθu−T (u)(h(θ)−cθ), T (u) ≤ uy
)

≥ eθu−uy(h(θ)−cθ)P (T (u) ≤ uy).

To minimize the exponent in the above line we would like to put h′(θ) =
c + 1/y to obtain uyr(c + 1/y). Since h′(R) = c + 1/Y , we have θ ≥ R
when y ≤ Y , and hence, h(θ) ≥ cθ as required.
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When y ≥ Y we take θ = R and get the second part of (7). The proof of
(8) is quite similar.

4. Examples. The large deviation rate function is usually very diffi-
cult to find. Here, we give two examples where the rate functions could be
explicitly calculated.

Example 1. Consider a portfolio of life insurance policies with the
same unit amount death benefit. Assume that the number of death claims
received by the insurance company in a year is distributed according to a
Poisson distribution with mean λ. Let Xi be the amount of the ith death
claim. Then we have Xi = 1 with probability 1,

mX(θ) = eθ and E(eθSt) = eλt(eθ−1).

This implies that St is a Poisson Process at rate λ. The rate function is
calculated by equations:

λeθa = a and r(a) = λ(eθa − 1) − θaa.

Hence,

r(c) = (c− λ) − c ln

(

c

λ

)

.

Let c = (1 + α)λ with α > 0 the security loading. Then

r(c) = αλ− (1 + α)λ ln(1 + α).

By Taylor expansion, the right hand side is approximately equal to −α2

2 λ
(assuming α < 1).

Example 2. Consider a portfolio of auto insurance policies with claim
frequency distribution to be Poisson at a rate of λ per year and severity
distribution to be exponential of mean µ. We have m(θ) = 1

1−µθ and

h(θ) = λµθ
1−µθ .

A simple calculation gives

θc =
1

µ
−

√

λ

µc

and

r(c) = −
c

µ
+ 2

√

λc

µ
− λ.

Let c = (1 + α)λµ with 0 < α < 1 the security loading. Then

r(c) = −(1 + α)λ + 2
√

(1 + α)λ− λ.
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Again using Taylor expansion, we can see that

P (St > (1 + α)λµt) ≈ ke−
α2

4 λt.

5. Conclusion. Estimating the probability of insurance loss has
been a big challenge to researchers in risk theory. This paper provided an
approach to analyze the probabilities of insurance losses on a large scale
using traditional large deviation techniques.
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