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AN n-CELL IN R
n+1 THAT IS NOT THE ATTRACTOR

OF ANY IFS ON R
n+1

Manuel J. Sanders

Abstract. Crovisier and Rams [2] recently constructed an embedded
Cantor set in R and showed that it could not be realized as an attractor
of any iterated function system (IFS) using measure-theoretic properties.
Also, an example of a locally connected continuum in R

2 which is not
the attractor of any IFS on R

2 is constructed in a work of Kwieciński [6].
Kwieciński points out that a variation on his main construction provides
an arc in R

2 which is not the attractor of any IFS either. In this work, for
each n ≥ 1, we construct an n-cell in R

n+1 and show that this n-cell cannot
be the attractor of any IFS on R

n+1. The n = 1 case reaffirms the result
observed by Kwieciński.

1. Introduction. If X = Xd is a metric space, a contraction map on
X is a function f : X → X with the feature that d(f(x), f(y)) ≤ r · d(x, y)
for each x, y ∈ X , where 0 ≤ r < 1. It is easily verified that such a function
is necessarily continuous, so that the word map is used in the usual way.
A (hyperbolic) iterated function system (IFS) on X consists of a complete
metric space X together with a finite set of contraction maps on X . There
is a unique compact subset of X associated with a given IFS called the
attractor of the IFS. Barnsley [1] popularized the notion of an iterated
function system by revealing its ability to encode a subset of the ambient
space in the contraction maps of the IFS.

Mathematically, there remain open questions about IFSs and their
attractors. While it is possible to approximate any compact subset in the
space X by an attractor of some IFS [1], the question as to which compacta
can be realized as attractors of IFSs remains elusive. Earlier works include
[3, 6]. Kwieciński [6] gives an example of a locally connected continuum
which cannot be realized as an attractor of any IFS in R

2. A variation on
his main argument provides an example of an arc which is not an attractor
of any IFS as well. While Hata [5] showed that a connected attractor must
be locally connected, he went on to pose the question of whether or not
each locally connected continuum in R

n could be realized as the fixed point
set of a finite collection of weak contractions. Kwieciński’s result relates to
this question by showing that, indeed, there are locally connected continua
which are not realizable as attractors of IFSs.

In this work, we shall develop techniques to point out that many arcs
in R

n are not attractors of any IFS (n ≥ 2) by exploiting a characteristic
pertaining to a particular embedding of [0, 1] into R

n. Kwieciński’s example
will be reaffirmed by this characteristic. More to the point, we will be able
to produce many arcs that cannot be realized as attractors, each leading
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to embedded n-cells that also cannot be realized as attractors. On a side
note, we shall also state a sufficient condition for an arc to be realizable as
an attractor of some IFS.

Throughout, we will write {X ; f1, f2, . . . fk}, where X is a complete
metric space and fi is a contraction map on X to denote an iterated function
system. The unique attractor A ⊂ X associated with this IFS is invariant
in the sense that

A = f1(A) ∪ f2(A) ∪ · · · ∪ fk(A)

and, indeed, is uniquely characterized by this equation [1].

2. Length of an Arc and Preliminary Matters. We shall let I
denote the interval [0, 1] from here forward. If e: I → R

n is an embedding,
e(I) is called a curve (or more usually here, an arc) [4]. The length of the

arc e(I) is defined as follows: Let P = {x0 = 0 < x1 < x2 < · · · < xk = 1}

be a partition of I . Let Le(P ) =
∑k

i=1 |e(xi) − e(xi−1)|, where |a − b|
denotes the usual Euclidean distance from a to b in R

n.
Then, Le = sup{Le(P ) : P is a partition of I} is called the variation

of e on I . Note that the variation of e on I has only to do with the image
of I under e, that is on the arc itself as a point set. Therefore, if e′ is any
other embedding of I so that e(I) = e′(I), Le = Le′ . The length of the arc
e(I) is defined to be the variation of e on I unambiguously in this manner.
For a given arc A in R

n, it is meant to be understood that the arc arises
from some embedding e: I → R

n. We mention this embedding only if it
is necessary or convenient. Because of this arrangement, we may consider
an arc A to be ordered naturally (in one of two manners) and speak of an
ordered arc. Moreover, we shall frequently make reference to the endpoints
of an arc in the natural way. Thus, if A is an arc with endpoints a < b, we
freely talk about a point c of A satisfying a < c < b. Notationally, we will
write L(A) = Lb

a to denote the length of an arc A with endpoints a, b ∈ R
n.

(So, Lb
a = La

b .) Related to this convention, we will define La
a = 0 so that

the length of a point is zero.

Elementary Properties Involving the Length of an Arc The following
several observations are easy to check: Let A be an arc in R

n with endpoints
a < b. Then,

• L(A) > 0,
• If a < c < b, then Lc

a + Lb
c = Lb

a,
• If C is a subarc of A, then L(C) ≤ L(A), and
• If L(A) < ∞, the function v: A → [0,∞) defined by v(x) = Lx

a is
strictly increasing.

Along the same lines, we state the following propositions whose proofs are
omitted as well.
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Proposition 2.1. For n ≥ 1, let A ⊂ R
n be an ordered arc with end-

points a < b. Suppose Lb
a = L(A) < ∞. Then v: A → [0,∞) defined by

v(x) = Lx
a is continuous.

Comment. If X, Y are metric spaces with metrics dX and dY , respec-
tively, a map f : X → Y is said to be a Lipschitz map provided there is a
k ∈ R so that dY (f(x), f(y)) ≤ k ·dX (x, y) for all x, y ∈ X . Here, k is called
a Lipschitz constant for f . It follows readily that every Lipschitz map is
necessarily (uniformly) continuous. In this terminology, a contraction is a
Lipschitz map with a Lipschitz constant less than 1.

3. Arcs of Finite Length are Attractors. The following theorem
and corollary are proved in [9].

Theorem 3.1. For n ≥ 1, let A be an arc in R
n and suppose L(A) < ∞.

Then A is the attractor of an IFS on R
n.

Corollary 3.1. Let A1, A2, A3, . . . , Am be arcs in R
n, each with finite

variation. Then
⋃m

i=1 Ai is the attractor of an IFS on R
n.

4. Working with Arc Length. To begin to establish the main ideas
in this work, namely, constructing n-cells which are not attractors of any
IFS on R

n+1, we use the following several propositions, the proofs of which
are left to the reader.

Proposition 4.1. Let A, C be arcs in R
n. If f : Rn → R

n is Lipschitz
with Lipschitz constant k so that f(C) ⊂ A, then L(f(C)) ≤ k · L(C).

Comment. While there are no restrictions on the map f above such as
requiring f to embed C in A, we note that L(f(C)) still makes sense; f(C)
is compact and connected in A and thus is either a point or a subarc of A.
The length of either is defined.

Proposition 4.2. Let A be an arc in R
n with endpoints a < b. Suppose

{cm} is a sequence of points of A satisfying

1. c0 = a
2. cm → b as m → ∞.

Then for j ∈ N, if Bj denotes the possibly degenerate subarc of A with
endpoints cj−1 and cj , then Lb

a = L(A) ≤
∑∞

j=1 L(Bj).

With the above notions in place, we are ready to present a theorem which,
for each n ≥ 2, provides an arc embedded in R

n which is the attractor of
no IFS. While the same result is contained in the more general Theorem
5.1, the proof is prototypical of the arguments used in the more general
setting of the proof of Theorem 5.1. The theorem will be stated first, then
an example of an arc in R

2 meeting the hypotheses of the theorem will be
identified. The proof will follow the example.
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Theorem 4.1. Let A be an arc in R
n with endpoints a < b. Suppose

1. Ly
x < ∞ for all x, y ∈ A with x, y 6= b, and

2. Lb
x = ∞ for all x ∈ A with x 6= b.

Then for any finite set of contractions {w1, w2, . . . , wN} on R
n, A is not

the attractor of the IFS {R
n; w1, w2, . . . , wN}.

Example 1. A Harmonic Spiral. The construction of this arc is based
on the divergent harmonic series. We’ll use the descriptive terms north,
south, east, and west to label directions that correspond to directions in
the plane in order to describe the arc. Start at the origin. Proceed 1
unit east. Turn north and proceed 1/2 unit. Turn west and proceed 1/3
unit. Turn south and proceed 1/4 unit. Turn east and proceed 1/5 unit.
Continue on in this fashion. The desired arc spirals endlessly around a
point that is related to the harmonic series.

Proof of Theorem 4.1. (By contradiction.) Assume that A is the at-
tractor of some IFS {R

n; w1, w2, . . . , wN}. The first claim is that there
exists a contraction wJ which is nonconstant on A so that b ∈ wJ (A). To
see this, note that there exists a contraction wJ such that b ∈ wJ(A) and
therefore, wJ (A) must be the singleton {b} if the claim is false. So, if the
claim is false, we may assume without loss of generality that b /∈ wi(A) if
i 6= J (else we have two functions that map A constantly to b and A would
still be the attractor of the IFS obtained by removing one of these functions
from the list of contractions). But then, A could be written as a union of
two nonempty, disjoint closed sets, namely {b}∪

⋃
i6=J wi(A). This violates

the fact that A is connected and establishes the claim. (Thus in fact, we
can assume that none of the contractions are constant on A, although we
will not need this assumption again.) Relabel wJ as f for convenience.

Now, the claim is that b must be a fixed point of f . To see this, note
that if x 6= b, then f(x) 6= b; there exists y 6= b such that f(y) 6= b as f is
nonconstant on A and contains b in its image. If f(x) = b, the length of the
arc with endpoints f(x) and f(y) would be infinite, whereas the length of
the arc with endpoints x and y would be finite, contradicting Proposition
4.1. As b lies in the image of A under f , it must be that f(b) = b.

Let k denote the contractivity factor of f . The next claim is that
fm(a) 6= b for any m ∈ N. By definition, let f 0(a) = a. Note that
a 6= b. Suppose f(a) = b. Then because f is nonconstant on A, there
exists c ∈ A so that f(c) 6= b. Note that c 6= b. Then by assumption,

Lc
a < ∞. But, L

f(c)6=b

f(a)=b
= ∞. This contradicts Proposition 4.1. Hence,

f(a) 6= b. Inductively, assume that for some positive integer r, f j(a) 6= b

for every nonnegative integer j ≤ r. If f r+1(a) = b, then, L
fr+1(a)=b

fr(a) = ∞

but L
fr(a)
fr−1(a) < ∞. This leads to a contradiction with Proposition 4.1 again.

Hence, it must be that fm(a) 6= b for every m ∈ N as desired.
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Recapping,

1) fm(a) ∈ A since f : A → A, and
2) fm(a) → b as m → ∞ (since |fm(a) − b)| ≤ km · |a − b| using the

contractivity of f applied m times and the fact 0 ≤ k < 1, together
with the result that b is a fixed-point of f .)

Now for j ∈ N, let Bj denote the, possibly degenerate, subarc of A

with endpoints f j−1(a) and f j(a). Then L(B1) = L
f(a)
a = L < ∞ because

B1 has endpoints a and f(a). Hence, L(B2) = L
f2(a)
f(a) ≤ k ·L(B1) = k ·L by

Proposition 4.1. Furthermore, for any positive integer j, we may inductively
determine that L(Bj) ≤ kj−1 ·L. Then in Proposition 4.2, take the sequence
{cm} to be {fm(a)}. The hypotheses of Proposition 4.2 are satisfied by 1)
and 2) above so that L(A) ≤

∑∞
i=1 L(Bi). But then

L(A) ≤

∞∑

i=1

L(Bi) ≤ L + kL + k2L + · · · = L ·

∞∑

i=1

ki.

This last infinite series converges as k < 1. Hence, A is an arc of finite
variation. This is a contradiction and it follows that A must not be the
attractor of this IFS after all.

5. Producing n-cells in R
n+1 that are not Attractors of any

IFS on R
n+1. The argument for producing n-cells that are not attractors

in R
n+1 is very similar to the proof for arcs given above.

Theorem 5.1. For each n ≥ 1, there exists an n-cell in R
n+1 which is

not the attractor of any IFS on R
n+1.

Proof. Theorem 4.1 verifies the n = 1 case. For n > 1, the proof
will follow by contradiction. For n > 1, we consider the n-cell in R

n+1

constructed as follows. Choose an arc A in R
2 that meets the hypotheses

of Theorem 4.1. Let e: I → R
2 be an embedding of A with the feature that

e(0) = a and e(1) = b. In R
n+1, consider the subset {x× [0, 1−e−1(x)]n−1 :

x ∈ A} of A × In−1. Label this set X . The homeomorphism e−1 : A → I
extends to a homeomorphism of X to {t× [0, (1− t)]n−1 : t ∈ I} exhibiting
X as an n-cell embedded in R

n+1. Let a0 denote a×{0}n−1 and b0 denote
b × {0}n−1.

Let ρ: Rn+1 → R
n+1 denote projection onto R

2 ⊂ R
n+1. That is, let ρ

be defined by ρ(x1, x2, x3, . . . , xn+1) = (x1, x2, 0, 0, . . . , 0). Then ρ(X) = A
and we have

1. for x ∈ X , ρ(x) = b0 ⇒ x = b0, and
2. for any x, y ∈ X with x, y 6= b0, there exists a possibly degenerate arc

with endpoints x, y so that Ly
x < ∞.
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Suppose X is the attractor of some IFS {R
n+1; w1, w2, w3, . . . wN}.

Then, X is uniquely characterized by the equation

X =
⋃

i=1,2,... ,N

wi(X). (1)

We claim that there exists a contraction wJ which is nonconstant on
X so that b0 ∈ wJ (X). To see this, note that there exists a contraction
wJ such that b0 ∈ wJ (X) and therefore, wJ must be constant on X if
the claim is false. So, if the claim is false, we may assume without loss of
generality that b0 /∈ wi(X), if i 6= J (else we have two contractions with
the same image in X and (by (1)) we may remove one of these from the
list of contractions to obtain an IFS with the same attractor X). But if
so, then X could be written as a union of two nonempty, disjoint closed
sets, namely {b0} ∪

⋃
i6=J wi(X). This violates the connectedness of X and

the claim is verified. Relabel wJ as f for convenience. Let k denote the
contractivity factor of f . Then the contractivity factor of ρf is less than or
equal to k as well since ρ is a projection.

Now, the next claim is that b0 must be a fixed point of f . To see this,
note that if x ∈ X with x 6= b0, then f(x) 6= b0; there exists y 6= b0 such that
f(y) 6= b0 as f is nonconstant on X and contains b0 in its image. Choose
an arc C in X with endpoints x and y so that Ly

x < ∞ by 2. above. Then
as ρf is a contraction on R

n+1 and maps C into the arc A and Ly
x < ∞ and

yet L
ρf(x)=b0
ρf(y)6=b0

= ∞, we have a contradiction to Proposition 4.1. As f(b0)

lies in the image of X under f , it must be that f(b0) = b0.
The next claim is that fm(a0) 6= b0 for any m ∈ N. By definition, let

f0(a0) = a0. Note that a0 6= b0. Suppose f(a0) = b0. Then because f is
nonconstant on X , there exists c ∈ X so that f(c) 6= b0. Note that c 6= b0.
Choose an arc C1 in X with endpoints a0 and c so that Lc

a0
< ∞ by 2.

above. Then Lc
a0

< ∞, but L
ρf(c)6=b0
ρf(a0)=b0

= ∞. This contradicts Proposition

4.1. Hence, f(a0) 6= b0. Inductively, assume that for some positive integer
r, f j(a0) 6= b0 for every nonnegative integer j ≤ r. Choose an arc Cr in

X with endpoints f r−1(a0) and fr(a0) so that L
fr(a0)
fr−1(a0) < ∞ by 2. above

again. If f r+1(a0) = b0, then L
ρfr+1(a0)=b0
ρfr(a0)

= ∞, but L
fr(a0)
fr−1(a0) < ∞. This

leads to a contradiction with Proposition 4.1 again. Hence, it must be that
fm(a0) 6= b0 for every m ∈ N as desired.

Recapping, we have

1. fm(a0) ∈ X ⇒ ρfm(a0) ∈ A as ρfm(X) ⊂ A
2. ρfm(a0) → b0 as m → ∞ since |ρfm(a0) − b0| ≤ km · |a0 − b0| (using

the contractivity factor of ρf applied m times and the fact 0 ≤ k < 1,
together with the result that b0 is a fixed-point of f and hence, ρf .)

Now for j ∈ N, let Bj denote the possibly degenerate subarc of A
with endpoints (ρf)j−1(a0) and (ρf)j(a0). (So, the endpoints of B1 are a0
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and ρf(a0), the endpoints of B2 are ρf(a0) and ρfρf(a0), the endpoints
of B3 are ρfρf(a0) and ρfρfρf(a0), etc.) Note that (ρf)j has contrac-

tivity factor kj . Then L(B1) = L
ρf(a0)
a0

= L < ∞ because a0, ρf(a0) ∈ A

and a0, ρf(a0) 6= b0. Hence, L(B2) = L
(ρf)2(a0)
ρf(a0) ≤ k · L(B1) = k · L by

Proposition 4.1. Furthermore, for any positive integer j, we may induc-
tively determine that L(Bj) ≤ kj−1 · L. Then in Proposition 4.2, take the
sequence {cm} to be {(ρf)m(a0)}. The hypotheses of Proposition 4.2 are
satisfied by the bulleted items above so that L(A) ≤

∑∞
i=1 L(Bi). But

then,

L(A) ≤

∞∑

i=1

L(Bi) ≤ L + kL + k2L + · · · = L ·

∞∑

i=1

ki.

This last infinite series converges as k < 1. Hence, A is an arc of
finite variation. From this contradiction, it follows that X must not be the
attractor of the given IFS after all.

6. Open Questions. Upon these developments, several natural ques-
tions arise.

• What if the hypotheses of Theorem 5.1 are modified so that a single
“bad” point occurs as an interior point of the n-cell? Could this n-cell
be an attractor of some IFS in R

n+1?
• Could an n-cell with a finite number of “bad” points be an attractor?
• Since an arc with infinite variation between each pair of distinct points

(i.e., where all points are “bad”) can be realized as an attractor of
an IFS (consider the von Koch arc for instance), is it possible to con-
struct an arc with this type of feature that must be an attractor of no
IFS? Suggestion from the referee: The contraction cannot increase box
dimension/Hausdorff dimension/packing dimension of the set. Con-
struction of a von Koch-type curve with some sort of dimension mono-
tonically increasing ‘from left to right’ would produce a similar kind
of curve as that in Theorem 4.1 which would contain an exceptional
point.

• If a set X ⊂ R
n is the attractor of an IFS on R

n, then it follows that
X × I is an attractor of an IFS on R

n+1. If X is not an attractor
of any IFS on R

n, is it possible that X × I could be an attractor on
R

n+1?
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