SQUEEZING POLYNOMIAL ROOTS
 A NONUNIFORM DISTANCE

CHRISTOPHER FRAYER

Abstract

Given a polynomial with all real roots, the Polynomial Root Squeezing Theorem states that moving two roots an equal distance toward each other, without passing other roots, will cause each critical point to move toward $\left(r_{i}+r_{j}\right) / 2$, or remain fixed. In this note, we extend the Polynomial Root Squeezing Theorem to the case where two roots are squeezed together a nonuniform distance.

1. Introduction

Given a polynomial $p(x)$, all of whose roots are real, the Polynomial Root Dragging Theorem [1, 4] states that moving one or more roots of the polynomial to the right will cause every critical point to move to the right, or stay fixed. Moreover, no critical point moves as far as the root that is moved the farthest. But what happens to the position of a critical point when some of the roots are dragged in opposing directions?

The Polynomial Root Squeezing Theorem $[2,3]$ begins the analysis of this problem. Let $r_{1} \leq \cdots \leq r_{n}$ be the n real roots of $p(x)$ with $r_{i} \neq r_{j}$ interior roots. We say that a critical point is stubborn if it is a repeated root of $\frac{p(x)}{\left(x-r_{i}\right)\left(x-r_{j}\right)}$, and ordinary otherwise. Then the assertion of the Polynomial Root Squeezing Theorem is that if r_{i} and r_{j} move equal distances toward each other, without passing other roots, then each stubborn critical point which is not located at r_{i} or r_{j} will stay fixed, and each ordinary critical point moves toward $\left(r_{i}+r_{j}\right) / 2$. If r_{i} or r_{j} is a repeated root of multiplicity greater than two, one of the repeated critical points will move toward $\left(r_{i}+\right.$ $\left.r_{j}\right) / 2$, while the others will remain fixed. In this case, the moving root which is closest to a given critical point has the most pull on that critical point. Unfortunately, this intuition does not allow us to see what happens when two distinct roots are squeezed together a nonuniform distance.

Throughout the paper we will let $p(x)$ be a polynomial of degree n with n real roots $r_{1} \leq r_{2} \leq \cdots \leq r_{n}$ and critical points $c_{1} \leq c_{2} \leq \cdots \leq c_{n-1}$. Consider two distinct roots $r_{i}<r_{j}$ and c_{k} any ordinary critical point. If we drag r_{i} to the right, the Polynomial Root Dragging Theorem tells us that c_{k} will also move to the right. If we then drag r_{j} to the left, the critical
point c_{k} moves back to the left. But how far must we drag r_{j} to the left in order for c_{k} to return to its original position? We call this distance the threshold value. For moving r_{j} back any smaller distance will leave c_{k} to the right of its original position, and moving r_{j} any larger distance leaves c_{k} to the left of its original position. In what follows we present a formula for the threshold value.

2. Squeezing Roots a Nonuniform Distance

The threshold value determines exactly what happens to the position of c_{k} when two roots are squeezed together a nonuniform distance.

Theorem 2.1 (Threshold Value). Let $p(x)$ be a monic polynomial of degree n with $r_{i}<r_{j}, d \leq r_{i+1}-r_{i}$, and $0<h<d$. Let c_{k} be any ordinary critical point,

$$
\tilde{p}(x)=\left(x-r_{i}-h\right)\left(x-r_{j}+h+\alpha_{k}\right) q(x)
$$

with

$$
q(x)=\prod_{k \neq i, j}\left(x-r_{k}\right)
$$

and

$$
\begin{equation*}
\alpha_{k}=\frac{-h\left(r_{j}-\left(r_{i}+h\right)\right) q^{\prime}\left(c_{k}\right)}{q\left(c_{k}\right)+\left(c_{k}-\left(r_{i}+h\right)\right) q^{\prime}\left(c_{k}\right)} \tag{2.1}
\end{equation*}
$$

Then $\tilde{p}^{\prime}\left(c_{k}\right)=0$.
We let $d \leq \min \left\{r_{i+1}-r_{i}, r_{j}-r_{i}\right\}$, so that we study the case where two roots are squeezed together without passing other roots. However, when finding the threshold value, r_{j} may have to pass other roots. In fact, it may even pass through $r_{i}+h$. Let's consider such an example. If $p(x)=x(x-1)(x-4)$ and we drag $r_{2}=1$ to the right $\frac{1}{2}$ units, the threshold value for c_{1}, when we drag $r_{3}=4$ to the left, is 2.691569405 . That is, $p(x)$ and $\tilde{p}(x)=x(x-1.5)(x-1.308430595)$ have the same first critical point where we have moved $r_{2}=1$ to $r_{2}+h=1.5$ and $r_{3}=4$ to $r_{3}-\left(h+\alpha_{k}\right)=1.308430595$.

The hypothesis that c_{k} is an ordinary critical point does not need to be weakened to include stubborn critical points. If c_{k} is a stubborn critical point it does not move in response to r_{i} and r_{j} being squeezed. In this case $q\left(c_{k}\right)=q^{\prime}\left(c_{k}\right)=0$ and equation (2.1) is undefined, as it should be, since any value of α_{k} will leave the critical point c_{k} fixed. However, when c_{k} is an ordinary critical point the value of α_{k} is unique.

Proof. Let $r_{i}<r_{j}$ be two distinct roots of p and c_{k} any ordinary critical point. Since

$$
p^{\prime}(x)=\left(x-r_{i}+x-r_{j}\right) q(x)+\left(x-r_{i}\right)\left(x-r_{j}\right) q^{\prime}(x)
$$

and

$$
\begin{aligned}
\tilde{p}^{\prime}(x) & =\left(x-r_{i}+x-r_{j}+\alpha_{k}\right) q(x) \\
& +\left(x^{2}-\left(r_{i}+r_{j}\right) x+r_{i} r_{j}+h\left(r_{j}-r_{i}-h\right)-\alpha_{k}\left(h+r_{i}-x\right)\right) q^{\prime}(x),
\end{aligned}
$$

it follows that

$$
\tilde{p}^{\prime}(x)-p^{\prime}(x)=\alpha_{k} q(x)+\left(h\left(r_{j}-r_{i}-h\right)-\alpha_{k}\left(h+r_{i}-x\right)\right) q^{\prime}(x)
$$

As c_{k} is a critical point of $p(x)$,

$$
\tilde{p}^{\prime}\left(c_{k}\right)=\alpha_{k} q\left(c_{k}\right)+\left(h\left(r_{j}-\left(r_{i}+h\right)\right)-\alpha_{k}\left(h+r_{i}-c_{k}\right)\right) q^{\prime}\left(c_{k}\right)
$$

Setting $\tilde{p}^{\prime}\left(c_{k}\right)=0$ yields

$$
\begin{equation*}
\left(q\left(c_{k}\right)+\left(c_{k}-\left(r_{i}+h\right)\right) q^{\prime}\left(c_{k}\right)\right) \alpha_{k}=-h\left(r_{j}-\left(r_{i}+h\right)\right) q^{\prime}\left(c_{k}\right) \tag{2.2}
\end{equation*}
$$

In order to solve for α_{k}, we must show that

$$
q\left(c_{k}\right)+\left(c_{k}-\left(r_{i}+h\right)\right) q^{\prime}\left(c_{k}\right)
$$

is not zero for h satisfying $0<h<r_{j}-r_{i}$. By shifting $p(x)$ we can assume that $c_{k}=0$, so we need to show that

$$
\begin{equation*}
q(0)-\left(r_{i}+h\right) q^{\prime}(0) \tag{2.3}
\end{equation*}
$$

is not zero for $0<h<r_{j}-r_{i}$. If $q^{\prime}(0)=0$, then (since c_{k} is an ordinary critical point) $q(0) \neq 0$ and (2.3) is not zero. Therefore, we can assume that $q^{\prime}(0) \neq 0$ in what follows.

By differentiating $p(x)=\left(x-r_{i}\right)\left(x-r_{j}\right) q(x)$ at $x=0$, we get

$$
\begin{equation*}
\left(r_{i}+r_{j}\right) q(0)=r_{i} r_{j} q^{\prime}(0) \tag{2.4}
\end{equation*}
$$

Multiplying (2.3) by $r_{i}+r_{j}$ and substituting the value of $\left(r_{i}+r_{j}\right) q(0)$ from the last equation, it suffices to show

$$
r_{i} r_{j} q^{\prime}(0)-\left(r_{i}+r_{j}\right)\left(r_{i}+h\right) q^{\prime}(0) \neq 0
$$

Since $q^{\prime}(0) \neq 0$, we can factor out $-q^{\prime}(0)$ and show that

$$
-r_{i} r_{j}+\left(r_{i}+r_{j}\right)\left(r_{i}+h\right)=r_{i}^{2}+h\left(r_{i}+r_{j}\right)
$$

is not zero in the range $0<h<r_{j}-r_{i}$. At $h=0$ the expression's value is r_{i}^{2} and at $h=r_{j}-r_{i}$ its value is r_{j}^{2}. Because $r_{i}<r_{j}$, at least one of r_{i}^{2} and r_{j}^{2} is positive, and the other is non-negative. Because the expression is a linear function of $h, r_{i}^{2}+h\left(r_{i}+r_{j}\right)$ and hence $q\left(c_{k}\right)+\left(c_{k}-\left(r_{i}+h\right)\right) q^{\prime}\left(c_{k}\right)$ is non-zero throughout the range $0<h<r_{j}-r_{i}$. Therefore,

$$
\alpha_{k}=\frac{-h\left(r_{j}-\left(r_{i}+h\right)\right) q^{\prime}\left(c_{k}\right)}{q\left(c_{k}\right)+\left(c_{k}-\left(r_{i}+h\right)\right) q^{\prime}\left(c_{k}\right)}
$$

is defined, and for this value of $\alpha_{k}, \tilde{p}^{\prime}\left(c_{k}\right)=0$.

The cases where $r_{i}=c_{k}$ or $r_{j}=c_{k}$ are trivial. As intuition suggests, if $r_{i}=c_{k}$, then

$$
h+\alpha_{k}=h+\frac{-h\left(r_{j}-\left(r_{i}+h\right)\right) q^{\prime}\left(c_{k}\right)}{\left(r_{i}-\left(r_{i}+h\right)\right) q^{\prime}\left(c_{k}\right)}=h+\frac{-h\left(r_{j}-\left(r_{i}+h\right)\right)}{(-h)}=r_{j}-r_{i}
$$

Likewise, if $r_{j}=c_{k}$, then $h+\alpha_{k}=0$.
The Polynomial Root Dragging Theorem suggests that $0 \leq h+\alpha_{k} \leq$ $r_{j}-r_{i}$. This is in fact true.

Lemma 2.2. Under the hypothesis of Theorem 2.1,

$$
h+\alpha_{k}=\frac{h r_{j}^{2}}{r_{i}^{2}+h\left(r_{i}+r_{j}\right)}
$$

with $0 \leq h+\alpha_{k} \leq r_{j}-r_{i}$.
Proof. By shifting $p(x)$, we can assume that $c_{k}=0$.
(More generally, one can show that

$$
h+\alpha_{k}=\frac{h\left(r_{j}-c_{k}\right)^{2}}{\left(r_{i}-c_{k}\right)^{2}+h\left(r_{i}+r_{j}-2 c_{k}\right)} .
$$

However, the starting point for this formula is to consider an ordinary critical point c_{k}. So for simplicity we shift the polynomial making $c_{k}=0$.) Therefore,

$$
\begin{aligned}
h+\alpha_{k} & =h+\frac{-h\left(r_{j}-\left(r_{i}+h\right)\right) q^{\prime}(0)}{q(0)-\left(r_{i}+h\right) q^{\prime}(0)} \\
& =\frac{h q(0)-h r_{j} q^{\prime}(0)}{q(0)-\left(r_{i}+h\right) q^{\prime}(0)}
\end{aligned}
$$

If $r_{i} r_{j} \neq 0$, equation (2.4) implies that

$$
\begin{aligned}
h+\alpha_{k} & =\frac{h q(0)-h r_{j} \frac{\left(r_{i}+r_{j}\right)}{r_{i} r_{j}} q(0)}{q(0)-\left(r_{i}+h\right) \frac{\left(r_{i}+r_{j}\right)}{r_{i} r_{j}} q(0)} \\
& =\frac{h r_{j}^{2}}{r_{i}^{2}+h\left(r_{i}+r_{j}\right)}
\end{aligned}
$$

If $r_{i} r_{j}=0$, then either $r_{i}=0$ or $r_{j}=0$. If $r_{i}=0\left(\right.$ since $\left.r_{i} \neq r_{j}, r_{j} \neq 0\right)$, Equation (2.4) implies that $q(0)=0$. In this case

$$
\begin{aligned}
h+\alpha_{k} & =\frac{h r_{j} q^{\prime}(0)}{h q^{\prime}(0)} \\
& =r_{j}
\end{aligned}
$$

If $r_{j}=0$, similar work shows that $h+\alpha_{k}=0$. So when $r_{i} r_{j}=0$, the formula

$$
h+\alpha_{k}=\frac{h r_{j}^{2}}{r_{i}^{2}+h\left(r_{i}+r_{j}\right)}
$$

still holds.
Since,

$$
\frac{d}{d h}\left(\frac{h r_{j}^{2}}{r_{i}^{2}+h\left(r_{i}+r_{j}\right)}\right)=\frac{r_{i}^{2} r_{j}^{2}}{\left(r_{i}^{2}+h\left(r_{i}+r_{j}\right)\right)^{2}} \geq 0
$$

and $0<h<r_{j}-r_{i}$, we have that

$$
0 \leq h+\alpha_{k} \leq \frac{\left(r_{j}-r_{i}\right) r_{j}^{2}}{r_{i}^{2}+\left(r_{j}-r_{i}\right)\left(r_{i}+r_{j}\right)}=r_{j}-r_{i}
$$

We now are ready to show that c_{k} is the k th critical point of $\tilde{p}(x)$.
Theorem 2.3. Under the hypothesis of Theorem 2.1, denote $\tilde{r}_{i}=r_{i}+h$, $\tilde{r}_{j}=r_{j}-h-\alpha_{k}$ and the critical points of $\tilde{p}(x)$ by $\tilde{c}_{1} \leq \tilde{c}_{2} \leq \cdots \leq \tilde{c}_{n-1}$. Then $c_{k}=\tilde{c}_{k}$.

Proof. We will show that c_{k} is the k th critical point of $\tilde{p}(x)$. Since $0 \leq$ $h+\alpha_{k} \leq r_{j}-r_{i}$, it follows that if $c_{k} \leq r_{i}$ or $r_{j} \leq c_{k}$, then neither root crosses c_{k}. Therefore c_{k} will be the k th critical point of $\tilde{p}(x)$.

When $r_{i}<c_{k}<r_{j}$, we show that there are exactly three possibilities:

$$
\begin{aligned}
& \tilde{r}_{i}<c_{k}<\tilde{r}_{j}, \\
& \tilde{r}_{j}<c_{k}<\tilde{r}_{i}, \\
& \tilde{r}_{i}=c_{k}=\tilde{r}_{j} .
\end{aligned}
$$

By shifting $p(x)$, we can assume $c_{k}=0$, so that $r_{i}<0<r_{j}$. We first show that if $h<\left|r_{i}\right|=-r_{i}$, then $h+\alpha_{k}<r_{j}$. The proof of Lemma 2.2 implies that $h+\alpha_{k}=\frac{h r_{j}^{2}}{r_{i}^{2}+h\left(r_{i}+r_{j}\right)}$ is a nondecreasing function of h. Since $0<h<-r_{i}$,

$$
h+\alpha_{k}<\frac{-r_{i} r_{j}^{2}}{r_{i}^{2}-r_{i}\left(r_{i}+r_{j}\right)}=r_{j}
$$

Therefore, if $\tilde{r}_{i}<c_{k}$, then $c_{k}<\tilde{r}_{j}$. A similar argument shows that if $\tilde{r}_{i}>c_{k}$, then $c_{k}<\tilde{r}_{j}$.

We now show that if $h=-r_{i}$, then $h+\alpha_{k}=r_{j}$. In this case,

$$
\begin{aligned}
h+\alpha_{k} & =h+\frac{-h\left(r_{j}-\left(r_{i}+h\right)\right) q^{\prime}(0)}{q(0)-\left(r_{i}+h\right) q^{\prime}(0)} \\
& =-r_{i}+\frac{r_{i} r_{j} q^{\prime}(0)}{q(0)} \\
& =\frac{-r_{i} q(0)+\left(r_{i}+r_{j}\right) q(0)}{q(0)} \\
& =r_{j}
\end{aligned}
$$

Therefore, if $\tilde{r}_{i}=c_{k}$, then $c_{k}=\tilde{r}_{j}$.
When $r_{i}<c_{k}<r_{j}$, it is now easy to see that c_{k} will be the k th critical point of $\tilde{p}(x)$, we simply count the number of roots to the left of c_{k}. However, in each case, since r_{i} and r_{j} are the only moved roots, it is clear that c_{k} is the k th critical point of $\tilde{p}(x)$.

In general, it seems unrealistic to know what happens to a given critical point, when squeezing roots a nonuniform distance, without accounting for the distances between the critical point and each moving root which is done in Lemma 2.2. It remains an open question to find similar estimates when more than two roots are moved in opposing directions (a uniform or nonuniform distance). This could prompt some interesting undergraduate research.

Acknowledgment. The author wishes to express his gratitude to James Swenson and Tony Thomas for helpful conversations and to the anonymous referees for some excellent suggestions.

References

[1] B. Anderson, Polynomial root dragging, American Mathematical Monthly, 100 (1993), 864-866.
[2] M. Boelkins, J. From, and S. Kolins, Polynomial root squeezing, Mathematics Magazine, 81 (2008), 39-44.
[3] C. Frayer, More polynomial root squeezing, Mathematics Magazine (to appear).
[4] G. Peyser, On the roots of the derivative of a polynomial with real roots, American Mathematical Monthly, 74 (1967), 1102-1104.

MSC2010: 30C15
University of Wisconsin-Platteville, Math Department, 1 University Plaza, Platteville, WI 53818

E-mail address: frayerc@uwplatt.edu

