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Abstract. Given a polynomial with all real roots, the Polynomial
Root Squeezing Theorem states that moving two roots an equal dis-
tance toward each other, without passing other roots, will cause each
critical point to move toward (ri + rj)/2, or remain fixed. In this
note, we extend the Polynomial Root Squeezing Theorem to the case
where two roots are squeezed together a nonuniform distance.

1. Introduction

Given a polynomial p(x), all of whose roots are real, the Polynomial
Root Dragging Theorem [1, 4] states that moving one or more roots of the
polynomial to the right will cause every critical point to move to the right,
or stay fixed. Moreover, no critical point moves as far as the root that is
moved the farthest. But what happens to the position of a critical point
when some of the roots are dragged in opposing directions?

The Polynomial Root Squeezing Theorem [2, 3] begins the analysis of this
problem. Let r1 ≤ · · · ≤ rn be the n real roots of p(x) with ri 6= rj interior
roots. We say that a critical point is stubborn if it is a repeated root of

p(x)
(x−ri)(x−rj)

, and ordinary otherwise. Then the assertion of the Polynomial

Root Squeezing Theorem is that if ri and rj move equal distances toward
each other, without passing other roots, then each stubborn critical point
which is not located at ri or rj will stay fixed, and each ordinary critical
point moves toward (ri + rj)/2. If ri or rj is a repeated root of multiplicity
greater than two, one of the repeated critical points will move toward (ri +
rj)/2, while the others will remain fixed. In this case, the moving root
which is closest to a given critical point has the most pull on that critical
point. Unfortunately, this intuition does not allow us to see what happens
when two distinct roots are squeezed together a nonuniform distance.

Throughout the paper we will let p(x) be a polynomial of degree n with
n real roots r1 ≤ r2 ≤ · · · ≤ rn and critical points c1 ≤ c2 ≤ · · · ≤ cn−1.
Consider two distinct roots ri < rj and ck any ordinary critical point. If we
drag ri to the right, the Polynomial Root Dragging Theorem tells us that
ck will also move to the right. If we then drag rj to the left, the critical
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point ck moves back to the left. But how far must we drag rj to the left
in order for ck to return to its original position? We call this distance the
threshold value. For moving rj back any smaller distance will leave ck to
the right of its original position, and moving rj any larger distance leaves
ck to the left of its original position. In what follows we present a formula
for the threshold value.

2. Squeezing Roots a Nonuniform Distance

The threshold value determines exactly what happens to the position of
ck when two roots are squeezed together a nonuniform distance.

Theorem 2.1 (Threshold Value). Let p(x) be a monic polynomial of degree

n with ri < rj , d ≤ ri+1−ri, and 0 < h < d. Let ck be any ordinary critical

point,

p̃(x) = (x − ri − h)(x − rj + h + αk)q(x)

with

q(x) =
∏

k 6=i,j

(x − rk)

and

αk =
−h(rj − (ri + h))q′(ck)

q(ck) + (ck − (ri + h))q′(ck)
. (2.1)

Then p̃′(ck) = 0.

We let d ≤ min{ri+1 − ri, rj − ri}, so that we study the case where
two roots are squeezed together without passing other roots. However,
when finding the threshold value, rj may have to pass other roots. In
fact, it may even pass through ri + h. Let’s consider such an example.
If p(x) = x(x − 1)(x − 4) and we drag r2 = 1 to the right 1

2 units, the
threshold value for c1, when we drag r3 = 4 to the left, is 2.691569405.
That is, p(x) and p̃(x) = x(x − 1.5)(x − 1.308430595) have the same first
critical point where we have moved r2 = 1 to r2 + h = 1.5 and r3 = 4 to
r3 − (h + αk) = 1.308430595.

The hypothesis that ck is an ordinary critical point does not need to be
weakened to include stubborn critical points. If ck is a stubborn critical
point it does not move in response to ri and rj being squeezed. In this case
q(ck) = q′(ck) = 0 and equation (2.1) is undefined, as it should be, since
any value of αk will leave the critical point ck fixed. However, when ck is
an ordinary critical point the value of αk is unique.

Proof. Let ri < rj be two distinct roots of p and ck any ordinary critical
point. Since

p′(x) = (x − ri + x − rj)q(x) + (x − ri)(x − rj)q
′(x)
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and

p̃′(x) = (x − ri + x − rj + αk)q(x)

+ (x2 − (ri + rj)x + rirj + h(rj − ri − h) − αk(h + ri − x))q′(x),

it follows that

p̃′(x) − p′(x) = αkq(x) + (h(rj − ri − h) − αk(h + ri − x))q′(x).

As ck is a critical point of p(x),

p̃′(ck) = αkq(ck) + (h(rj − (ri + h)) − αk(h + ri − ck))q′(ck).

Setting p̃′(ck) = 0 yields

(q(ck) + (ck − (ri + h))q′(ck)) αk = −h(rj − (ri + h))q′(ck). (2.2)

In order to solve for αk, we must show that

q(ck) + (ck − (ri + h))q′(ck)

is not zero for h satisfying 0 < h < rj − ri. By shifting p(x) we can assume
that ck = 0, so we need to show that

q(0) − (ri + h)q′(0) (2.3)

is not zero for 0 < h < rj − ri. If q′(0) = 0, then (since ck is an ordinary
critical point) q(0) 6= 0 and (2.3) is not zero. Therefore, we can assume
that q′(0) 6= 0 in what follows.

By differentiating p(x) = (x − ri)(x − rj)q(x) at x = 0, we get

(ri + rj)q(0) = rirjq
′(0). (2.4)

Multiplying (2.3) by ri + rj and substituting the value of (ri + rj)q(0) from
the last equation, it suffices to show

rirjq
′(0) − (ri + rj)(ri + h)q′(0) 6= 0.

Since q′(0) 6= 0, we can factor out −q′(0) and show that

−rirj + (ri + rj)(ri + h) = r2
i + h(ri + rj)

is not zero in the range 0 < h < rj − ri. At h = 0 the expression’s value is
r2
i and at h = rj − ri its value is r2

j . Because ri < rj , at least one of r2
i and

r2
j is positive, and the other is non-negative. Because the expression is a

linear function of h, r2
i + h(ri + rj) and hence q(ck) + (ck − (ri + h))q′(ck)

is non-zero throughout the range 0 < h < rj − ri. Therefore,

αk =
−h(rj − (ri + h))q′(ck)

q(ck) + (ck − (ri + h))q′(ck)

is defined, and for this value of αk, p̃′(ck) = 0.
�
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The cases where ri = ck or rj = ck are trivial. As intuition suggests, if
ri = ck, then

h + αk = h +
−h(rj − (ri + h))q′(ck)

(ri − (ri + h))q′(ck)
= h +

−h(rj − (ri + h))

(−h)
= rj − ri.

Likewise, if rj = ck, then h + αk = 0.
The Polynomial Root Dragging Theorem suggests that 0 ≤ h + αk ≤

rj − ri. This is in fact true.

Lemma 2.2. Under the hypothesis of Theorem 2.1,

h + αk =
hr2

j

r2
i + h(ri + rj)

with 0 ≤ h + αk ≤ rj − ri.

Proof. By shifting p(x), we can assume that ck = 0.
(More generally, one can show that

h + αk =
h(rj − ck)2

(ri − ck)2 + h(ri + rj − 2ck)
.

However, the starting point for this formula is to consider an ordinary
critical point ck. So for simplicity we shift the polynomial making ck = 0.)
Therefore,

h + αk = h +
−h(rj − (ri + h))q′(0)

q(0) − (ri + h)q′(0)

=
hq(0) − hrjq

′(0)

q(0) − (ri + h)q′(0)
.

If rirj 6= 0, equation (2.4) implies that

h + αk =
hq(0) − hrj

(ri+rj)
rirj

q(0)

q(0) − (ri + h)
(ri+rj)

rirj
q(0)

=
hr2

j

r2
i + h(ri + rj)

.

If rirj = 0, then either ri = 0 or rj = 0. If ri = 0 (since ri 6= rj , rj 6= 0),
Equation (2.4) implies that q(0) = 0. In this case

h + αk =
hrjq

′(0)

hq′(0)

= rj .
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If rj = 0, similar work shows that h + αk = 0. So when rirj = 0, the
formula

h + αk =
hr2

j

r2
i + h(ri + rj)

still holds.
Since,

d

dh

(

hr2
j

r2
i + h(ri + rj)

)

=
r2
i r2

j

(r2
i + h(ri + rj))2

≥ 0

and 0 < h < rj − ri, we have that

0 ≤ h + αk ≤
(rj − ri)r

2
j

r2
i + (rj − ri)(ri + rj)

= rj − ri.

�

We now are ready to show that ck is the kth critical point of p̃(x).

Theorem 2.3. Under the hypothesis of Theorem 2.1, denote r̃i = ri + h,

r̃j = rj − h − αk and the critical points of p̃(x) by c̃1 ≤ c̃2 ≤ · · · ≤ c̃n−1.

Then ck = c̃k.

Proof. We will show that ck is the kth critical point of p̃(x). Since 0 ≤
h + αk ≤ rj − ri, it follows that if ck ≤ ri or rj ≤ ck, then neither root
crosses ck. Therefore ck will be the kth critical point of p̃(x).

When ri < ck < rj , we show that there are exactly three possibilities:

r̃i < ck < r̃j ,

r̃j < ck < r̃i,

r̃i = ck = r̃j .

By shifting p(x), we can assume ck = 0, so that ri < 0 < rj . We first
show that if h < |ri| = −ri, then h + αk < rj . The proof of Lemma 2.2

implies that h + αk =
hr2

j

r2
i + h(ri + rj)

is a nondecreasing function of h.

Since 0 < h < −ri,

h + αk <
−rir

2
j

r2
i − ri(ri + rj)

= rj .

Therefore, if r̃i < ck, then ck < r̃j . A similar argument shows that if
r̃i > ck, then ck < r̃j .

128 VOLUME 22, NUMBER 2



SQUEEZING POLYNOMIAL ROOTS A NONUNIFORM DISTANCE

We now show that if h = −ri, then h + αk = rj . In this case,

h + αk = h +
−h(rj − (ri + h))q′(0)

q(0) − (ri + h)q′(0)

= −ri +
rirjq

′(0)

q(0)

=
−riq(0) + (ri + rj)q(0)

q(0)

= rj .

Therefore, if r̃i = ck, then ck = r̃j .
When ri < ck < rj , it is now easy to see that ck will be the kth critical

point of p̃(x), we simply count the number of roots to the left of ck. How-
ever, in each case, since ri and rj are the only moved roots, it is clear that
ck is the kth critical point of p̃(x). �

In general, it seems unrealistic to know what happens to a given criti-
cal point, when squeezing roots a nonuniform distance, without accounting
for the distances between the critical point and each moving root which is
done in Lemma 2.2. It remains an open question to find similar estimates
when more than two roots are moved in opposing directions (a uniform or
nonuniform distance). This could prompt some interesting undergraduate
research.
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