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ON THE DEGREE OF ILL-POSEDNESS FOR LINEAR PROBLEMS
WITH NON-COMPACT OPERATORS*

BERND HOFMANN' AND STEFAN KINDERMANN?

Abstract. In inverse problems it is quite usual to encounter equations that are ill-posed and
require regularization aimed at finding stable approximate solutions when the given data are noisy.
In this paper, we discuss definitions and concepts for the degree of ill-posedness for linear operator
equations in a Hilbert space setting. It is important to distinguish between a global version of such
degree taking into account the smoothing properties of the forward operator, only, and a local version
combining that with the corresponding solution smoothness. We include the rarely discussed case of
non-compact forward operators and explain why the usual notion of degree of ill-posedness cannot
be used in this case.
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1. Introduction. It is an intrinsic property of a wide class of inverse problems
that small perturbations in the data may lead to arbitrarily large errors in the so-
lution. Hence, abstract models of inverse problems are frequently associated with
operator equations formulated in infinite dimensional spaces that are ill-posed in the
sense of Hadamard. For their stable approximate solution such equations require
regularization when the given data are noisy. The mathematical theory and prac-
tice of regularization (see, e.g., the textbooks [1, 4, 7, 11, 20, 25] and the papers
[2, 5,9, 22, 24, 26, 28, 33, 35]) takes advantage of some knowledge concerning the na-
ture of ill-posedness of the underlying problem. This nature regards available a priori
information and the degree of ill-posedness from which conclusions with respect to
appropriate regularization methods and efficient regularization parameter choices can
be drawn.

We restrict our considerations here on ill-posed linear operator equations

where the linear forward operator A : X — Y mapping between separable Hilbert
spaces X and Y with norms | - | and inner products (-, -) is assumed to be bounded
and injective. For those equations a slightly weaker definition of ill-posedness is the
continuity of the pseudoinverse [7]:

DEFINITION 1. The linear operator equation (1) is ill-posed if and only if the
pseudoinverse At is unbounded.

An immediate consequence of this definition is the following characterization of
ill-posedness (see, e.g., [7]):

PROPOSITION 1. The linear operator equation (1) is ill-posed if and only if

R(A) # R(A).
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Here w denotes the closure of the range of A. Note that ill-posedness can only
occur if the range R(A) is an infinite dimensional subspace of Y. A canonical example
of an ill-posed operator is a compact operator A. However, not all ill-posed problems
are related to compact operators, which led Nashed in [30] to the distinction between
ill-posedness of type I and type II:

DEFINITION 2. Let the equation (1) be ill-posed, i.e. R(A) # R(A). Then we call
it ill-posed of type I if A is not compact and of type II if A is compact.

Note that in the case of ill-posedness of type I the range R(A) always contains
a closed infinite dimensional subspace and hence a closed infinite dimensional unit
sphere, whereas this is impossible for compact A. Another well-known difference
between ill-posedness of type I and II, for example mentioned in [14], can be charac-
terized by the approximation of A by operators with finite-dimensional range:

PROPOSITION 2. Let (1) be ill-posed. Then the equation is ill-posed of type II if
and only if there exists a sequence {An : X — Y }nen of bounded linear operators
with finite dimensional range, dim(R(An)) = N, such that

|A— An| — 0.

lim
N —o00

The distinction between type I and type II ill-posed problem does not tell very
much how difficult it is to solve an actual ill-posed problem. Therefore, since thirty
years the inverse problems community has realized that the degree of ill-posedness
distinguishing mildly, moderately and severely ill-posed problems plays a prominent
role in theory and practice of regularization. Such degree should reflect the level
of challenge which is posed in the context of reconstructing solutions to (1). In
the literature we can find two different approaches for measuring the degree of ill-
posedness in a Hilbert space setting.

The first approach takes into account the smoothing properties of the for-
ward operator A, only, and exploits the fact that those properties are globally uni-
form on the whole Hilbert space because A is linear. A quantitative measure of
the degree of ill-posedness for that global approach is yielded by the decay rate
on = on(A) — 0 as n — oo of the singular values ||A|| = 01 > 02 > ... of A ar-
ranged in decreasing order, but only when A is compact and hence possesses a purely
discrete spectrum (type II ill-posedness). In [17, §1] and [27, §2] one can find a collec-
tion of basic and textbook references for that approach in the compact case. However,
as was outlined in [14] with focus on ill-posed multiplication operators with purely
continuous spectrum it is difficult to find surrogate tools for measuring the degree of
ill-posedness in the non-compact case (type I ill-posedness). One goal of this paper is
to obtain some progress in that field.

The second and alternative approach for measuring the degree of ill-posedness,
early introduced in the German textbook [25], is a more local one with focus on
some specific solution z! to equation (1) based on the interplay of the smoothing
properties of A and the solution smoothness of 2. There are good arguments to
prefer that approach: For example, severely ill-posed problems may occur on the one
hand if A is strongly smoothing (exponential decay of singular values for compact
A) and z' is of medium smoothness with respect to A or on the other hand if A
is moderately smoothing (power-type decay of singular values for compact A) and
the smoothness of 2T with respect to A is very low expressed by logarithmic source
conditions, see e.g. [19]. As Neubauer already stated in [31], the spectral distribution
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function F2(t) = u.((0,t]) of the element z € X with respect to the positive self-
adjoint bounded linear operator H := A* A provides us with very precise information
about the smoothness of this element and in contrast to the singular values this
mathematical tool is also available for non-compact operators A. Here we have t > 0,
te(B) == (xg(H)z, ) is the corresponding measure defined for Borel sets B C (0, 00),
and xp(-) denotes the characteristic function. We are going to use that fact for getting
a deeper insight into the non-compact case.

The paper is organized as follows: In Section 2 we discuss different concepts for
measuring ill-posedness based, only, on smoothing properties of A in the compact
as well as in the non-compact case. In this context, we prove the existence of a
clear borderline between those cases by considering finite dimensional discretizations.
Section 3 consists of a brief visit to non-compact examples. We conclude this paper
with some new assertions on the interplay of solution smoothness and smoothing
properties of A by exploiting the function F2? expressing the energy distribution of an
element x with respect to the spectrum of H = A*A.

2. Some concepts for measures of ill-posedness. We start with what we
think is the least requirement of a measure of ill-posedness:

DEFINITION 3. A measure of ill-posedness for equation (1) taking into account
the smoothing properties of A, only, should correspond with some partial ordering
A < B of the forward operators. For a given measure of ill-posedness, we call ‘A
more ill-posed than B’ if A < ¢ B with some constants ¢ > 0, in the same manner ‘B
more ill-posed than A’ if B < cA, and ‘A as ill-posed as B’ if A<c1 B and B<cy A
for two constants c1,co > 0.

However, there is a canonical partial ordering only for non-negative self-adjoint
operators S, T : X — X defined as

S<T = (Sz,z) < (Tx,x) Vo € X,
where the implication
(2) S<T = 98 <o)

holds for operator monotone functions ¢ : (0,00) — (0, 00). Our forward operators A
are in general not self-adjoint. Therefore a symmetrization seems to be necessary and
we arrive at H := A*A or at powers H", k > 0, to be used as S and T. A monomial
p(t) = t¥, t > 0, is operator monotone if and only if 0 < v < 1. If we start with
k = 2 motivated below and define for the forward operators in (1) a partial ordering
by ((A*A)2z,z) < ((B*B)?z,z) for all z € X, then this implies with v = 1/2 the
inequality (A*Az,z) < (B*Bux,x) for all z € X. So we use the latter case for a first
specified definition. Note that S < ¢T for some arbitrary ¢ > 0 is equivalent to the
range inclusion R(S) C R(T) (cf. [3, Prop. 2.1]).

DEFINITION 4. We define a first measure of ill-posedness on the set of bounded
linear operators A, B : X —'Y by the partial ordering

(3) A<porm B =  |Az| <||Bz| VzeX.

This ordering can be rewritten as A*A < B*B in the sense of the canonical
ordering for non-negative self-adjoint operators. Most of the usual ways of ordering
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operators according to their ill-posedness are extensions of an operator ordering by
exploiting implication (2) with a certain index function . Here, we call an ordering
<5 an extension of another ordering <; if the implication

Ang — ASQB

holds. An extension <5 is thus a more detailed way to order operators than <j.

For compact operators the inequality A <,orm ¢B in the sense of Definition 4
implies the corresponding inequalities 0, (A) < co,(B), Yn € N, for the singular
values (see, e.g., [11, Lemma 2.46]). Consequently, if A is more ill-posed than B then
the decay rate to zero of the singular values of B is not faster than the associated
decay rate for A and hence solving an ill-posed problem with B is not more difficult
than the same for A, which motivates this definition. As mentioned we have here
that A <,omm B is equivalent to the range inclusion R(A*) = R((A*A)Y/?) C
R(B*) = R((B*B)'/?) and this can never occur when B is compact and A is not
compact since then R(A*) has a closed infinite dimensional subspace which violates
the compactness of B. On the other hand, in particular for non-compact operators A
and B, showing that A <,,rm ¢ B holds in order to compare the two operators with
respect to its degree of ill-posedness is usually quite difficult. An alternative consists
of characterizing the ill-posedness of an operator equation (1) by certain moduli.

Widely used characteristics of an ill-posed operator equation are the modulus of
injectivity and the modulus of continuity of the forward operator.

DEFINITION 5. For a given set M C X we define the modulus of injectivity as

| Az
e S

(4) J(A, M) =
For § > 0 the modulus of continuity is defined as
(5) w(d, M, A) ;= sup{||z|| : = € M, |Az| < }.

For conical sets these two moduli are related to each other:

PROPOSITION 3. Let M be a conical set, i.e., x € M implies Ax € M for all
A> 0. Then

(6) J(A, M) = m.

Proof. For fixed § > 0 and since M is conical we have

w(d, M, A) = sup{||6Z|| : = € M, ||Adz|| < }. = dsup{||Z]| : =€ M, ||AZ| <1}

_ sy L _ 0

ozzem |AZ|| (A, M)
d
For an arbitrary set M the modulus of continuity w will, in general, be infinite
in the case of ill-posed problems. In order to get useful information out of these
moduli, one takes families of sets M with stabilizing properties, preferably compact
and hence closed and bounded sets, which make the problem (1) restricted to M
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conditionally well-posed. Such sets frequently occur in the context of conditional
stability estimates (cf. [20]), and in the method of quasisolutions (cf. [21, 23]). For
further cross connections to regularization theory we also refer to [15] and [18, §6.2].
However, there are also closed but unbounded sets M with stabilizing properties,
namely finite dimensional subspaces of X.

We can define measures of ill-posedness using the moduli of Definition 5 as follows:

DEFINITION 6. Let {My}~cr, be a (not necessarily infinite) family of sets in X.
We define

(7) A<jm, B+ j(A M,) <j(B,M,) Vyel
(8) A<um, B w(d,A,M,)>w(6,B,M,) Vyel,oc(0,0d)

It follows immediately from the definition that these orderings define measure of
ill-posedness:

LEMMA 1. The ordering <; ., <w,m, define a measure of ill-posedness. If all

v) —
M., are conical, these two orderings coincide.

2.1. The case of type II ill-posedness. The moduli and the associated mea-
sure of ill-posedness, of course, depend strongly on the choice of M. For ill-posed
problems of type II the choice of finite dimensional subspaces is promising. In this
context, we consider sequences { X, }nen of nested finite dimensional with

(9) X, C Xpp1, dim(X,)=n, U X, =X,
neN

which provide us with a discretization of the operator equation. In the following,
let P, : X — X, always denote the orthogonal projector onto X,,. The sequence
of moduli {j(A, X,)}nen and {w(d, A, X,,) }nen associated to the discretization by
the nested sequence { X, }nen satisfying (9) allows us to define the orderings <; x,,
and <, x, as in (7), (8). For the sets M = X, the identity (6), which is now a
consequence of Proposition 3, has been shown already in in [15].

For compact operators, estimates for j(A, X,,) are obtained by the singular values:

PROPOSITION 4. Let the nested sequence { X, }nen satisfy (9). For A being a
compact operator, let {on, Un, Un }nen be the singular system of A. Then we have

J(A X)) <o, VnéeN.

Moreover we have equality if X, = span{ui,...,u,} is the n-dimensional subspace
corresponding to the singular functions w; (i = 1,2,...,n) to the n largest singular
values oy, of A.

Hence, for type II problems in separable Hilbert spaces there is a canonical choice
of subspaces X,,, namely the appropriate n-dimensional subspace generated by the
singular value decomposition. Note that we have the well-known max-min character-
ization of the singular values,

Az
10 on(A) = max min
(10) n(A) =max_ min S

— (A X
H;gxy( » Xn),
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where the maximum is taken over all n-dimensional subspaces. This gives a uniform
lower bound on the sequence of modulus of injectivity for type II problems. We will
see later, that the existence of such a uniform bound actually characterizes type II
problems.

By this lower bound, the definition of <; x, in (7) can be extended to a ordering
that is independent of the discretization { X, }nen.

DEFINITION 7. For A and B being compact operators the measure of ill-posedness
according to the singular values is defined as

(11) A<, B <<= o,(A) <o0,(B) YneN.

LEMMA 2. The ordering <, defines a measure of ill-posedness. Moreover if
A <; x, B for all nested sequences {X,}nen satisfying (9), then A <, B. On the
other hand if A <, B, then there exists such a sequence of spaces {X,}nen with
A< x, B.

Proof. Since the singular values of A are the eigenvalues of A*A, it follows from
Weyl’s estimates (e.g [29]) that this is a measure of ill-posedness in our sense. O

According to these results, the orderings for compact operators are extensions in
the following sense

(A*A)? < (B*B)? ="' A<,umB = A<;x, B Vx, = A<,B.

The measure of ill-posedness <, can be seen as a uniform measure independent of
the actual discretization. This measure is useful in defining the degree of ill-posedness
for compact A:

DEFINITION 8. Let A be a compact operator. If there exists a constant C > 0

and a real number 0 < s < co such that

1
(12) C— <o, Vn € N,

né
we call the equation (1) moderately ill-posed of degree at most s. If for all e > 0, (12)
does not hold with s replaced by s — € we call (1) moderately ill-posed of degree s. If
no such s exists such that (12) holds, we call (1) severely ill-posed. *

Definition 8 is a slight generalization of the usual one, where the degree of ill-
posedness of an operator equation (1) is s if o, < n™° as n — oo. If the sequence
{01 (A) }nen possesses subsequences of power-type decay with varying exponents, then
the interval of ill-posedness
—1In(oy,)

— In(ow) limsu
= n—oo  In(n) P In(n)

]

introduced in [16] can be of interest. Of course, if (1) is ill-posed of degree s, then
J = s. Moreover, for o, < n™° the interval of ill-posedness degenerates to a single
point j = j = s.

Note that singular values are only defined for type II problems, hence a straight-
forward extension to type I problems cannot be seen. We will show later that such a
notion cannot be defined independently of the discretization if A fails to be compact.

LThis implication follows from (2) with S := (A*A)2, T := (B*B)2, and ¢(t) = t1/2.

2Some authors distinguish between mildly ill-posed operator equations if 0 < s < 1 and moder-
ately ill-posed one if 1 < s < co. Typical behavior of severe ill-posedness is exponential decay of the
singular values of A.
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2.2. The case of type I ill-posedness. The singular value decomposition is
not defined for type I problems. Hence, the ordering <., and in particular the degree
of ill-posedness in Definition 8 is not defined. In this section we discuss possible gen-
eralizations of <, and obstacles when extending the notion of degree of ill-posedness
to the non-compact case.

Let us look again at the max-min principle (10). For non-compact operators A
this definition does not make sense, because even for ill-posed problems o, (A) does
not necessarily tend to zero. This is a consequence of the fact that type I operators
cannot be approximated uniformly by operators with finite dimensional range (cf.
Theorem 2 below).

Along the lines of [14] one could try to extend the degree of ill-posedness Def-
inition 8 for type I problems by using the sequence {j(A,X,)}nen in place of
{on(A)}nen. As the singular values for type II problems the numbers j(A4, X,,) tend
to zero as n — oo if the problem is ill-posed [14]:

PROPOSITION 5. The equation (1) is ill-posed if and only if for all discretizations
{ X }nen satisfying (9)

lim j(A, X,)=0.

n—oo

However, as the following paradoxical example will show, an extension of Defini-
tion 8 in that sense is conflicting.

ExaMPLE 1. Let {w;};eny be an orthonormal basis for X. Define the bounded
linear operator A: X — X as

i §iw; i diiw;
i=1 i=1

with

L 4f § = k2 for some k € N,
di=1{ 7
1 else.

It is easy to see that this induces is an ill-posed problem of type I (A non-compact).
Now observe what happens if we naively look at the degree of ill-posedness in analogy
to Definition 8. We can compare the operator A with the operator

B:X—>X

o0 o0 1
D G Y G
i=1 =

It follows immediately that B <,,rm A and hence A is less ill-posed than B. It
is straightforward to calculate the numbers j(A, X,,) for a given discretization using
{witien:

(13) X, =span{w; : i =1,...n}.

Then

. . . 1111111
{J(A7Xn)}nEN - {Hllf{dz 1 Sn}}nEN: {15171515151717175555"'}5



452 B. HOFMANN AND S. KINDERMANN
and

Jj(B,X,)=—<jlA4;X,) VYneN.

S|

According to the definition, with respect to this measure, B is ill-posed of degree 1,
hence the operator A is ill-posed of at most 1.

However, if we look more closely on A, we see that the problem (1) can be split
into two problems. Denote by @ the orthogonal projector onto the space

X = span{w; : i = k?},

ie.

o0 o0
Q: ) &wi— Y Gewe
=1 k=1

Then the problem (1) can be solved by
r=x1+22:=Qx+ (I —Q)x,
and by two equations

(14) AQxy = Qy
(15) Al - Q)ra = (I — Q)y.

Now the second equation (15) is not an ill-posed equation at all, in fact, its solution
is trivially

T = (I - Q)%

where the only remaining ill-posedness comes from the first equation (14). If we look
at the operator

AQ QX - X
it is obvious that AQ is a diagonal operator
oo oo 1
AQ : ka2wk2 — Z ﬁglﬂwk%
k=1 k=1

On the subspace QX , AQ is a compact operator with singular values

1
0i(AQ) = 2

Hence, we can be convinced that the only ill-posed part of the problem is ill-posed of
degree 2. However, in view of the first assertion this is paradox.

The paradox cannot be solved if we consider the decay rate of j(A, X,,) and do
not take into account the specific discretization: We have seen that for the natural
discretization (13),

(16) J(A, Xn) >

S =
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Now, we choose a different discretization
X, =span{wy) : i =1,...n},
where the index mapping ¢ : N — N is defined by the sequence

{(b(i)}’iEN = {17 22) 27 32) 37425 57 .. '}a

i.e. the even indices satisfy ¢(2k) = (k + 1)2, while the subsequence of odd indices
is the ordered sequence of non-quadratic numbers (including 1). Since ¢(N) = N
the associted subspaces X, satisfy the discretization condition (9). The sequence of
J(A, X)) can be calculated as

{j(AaXrlz)}neN:{l T4 a’a "}7

which implies that

J(A, X)) =

m if n is even
2
L ifnisodd

in particular

. 1
J(A’XTI’L) ~ g

n?’

which indicates a degree 2 ill-posedness in contradiction to (16).

This example should indicate that for type I problem the meaning of degree of
ill-posedness is not as simple as for type II problems. This fact is not artificial in
this example, but an intrinsic property of type I problems. The main difference of
type I and type II problems is that in the latter case there is for all n € N a uniform
upper bound of j(A, X,,) over all discretizations in the sense of (10), while for type I
problems the rate of j(A4, X,) — 0 as n — oo depends on the specific choice of the
discretization { X, } nen, i.e., the convergence cannot be uniformly as also the following
theorem will show. The main message is that is is impossible to define a degree of
ill-posedness for the non-compact case independent of the discretization.

THEOREM 1. Let the operator equation (1) be ill-posed. Moreover, let the conver-
gence (A, X,) — 0 as n — oo be uniform with respect to the chosen discretization,
i.e., we have for all e > 0 a number ng = no(e) € N such that

(17) JA X)) <e Vn > ng

holds for all subspaces X,, forming the n — th entry of an arbitrary nested sequence
{ X} nen satisfying (9). Then A is compact.

Proof. From (17) we know that the sequence of supmin numbers

N 1= sup min  (z,A*Az)

X ,,: N-dimensional 2EX N, || z||=1

tends to 0, 7, — 0. By a generalization of the max-min principle (see [34, Lemma 3.1],
compare also [32]) it follows that

Mn > max{\ |\ € o.ss (A" A)},
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where 0.4 is the essential spectrum, which is the complement of the set of isolated
eigenvalues with finite mulitplicity, i.e. the discrete spectrum og;s.. Since o(A*A) >0
and 7, — 0 it follows that

Oess(A*A) C {0}.

Hence, all A > 0 in the spectrum correspond to isolated eigenvalues of finite mulit-
plicity. It follows immediately that there can only be at most a countable number of
these values, with only limiting point 0:

o(A*A) = {0} U J{nE Ni>o.
i=1
Let (A, u;)$24, Ai > 0 be the eigenvalues and eigenfunctions written with multiplicity,
then for each N

BNIZ Z )\i(ui,x)ui

Xi>+
is a selfadjoint operator with finite dimensional range, hence compact, moreover

1
o(A*A— By) C [0, N]’
in particular
1
14°4 - Byl < .

Since By is compact it follows from Theorem 2 that A* A is compact. With a similar
argument is follows as well that (A*A)% is compact. From the polar decomposition
[10] A= U(A*A)z it follows that A is compact. 0

This shows that a degree of ill-posedness independent of the discretization is only
possible if and only if we have a type II problem.
We collect the results in the following theorem

THEOREM 2. The operator equation (1) is ill-posed if and only if j(A, X,) — 0
for any discretization satisfying (9). In particular, the equation (1) is ill-posed of
type II if and only if this convergence is uniform in the sense of

rr)l(axj(A,Xn) — 0,

where the mazimum is taken over all such discretizations.

The lack of a canonical choice of degree of ill-posedness is therefore a character-
istic of type I problems. However, we should mention that there is a simple way to
overcome that drawback, namely by transforming type I problems to type II problems
as follows: If we know that the exact solution z' of (1) has some higher smoothness,
we can suppose that the solution x of (1) is contained in a subspace X such that the
embedding 7 : X = X is compact. Then we use the restriction to a pre-compact set
and (1) can be seen as an equation

ATz =y,

where the operator A = AT is compact. Hence the usual notion of degree of ill-
posedness for compact forward operators applies. Of course, this strongly depends on
the choice of X, and again there is no canonical choice of such space.
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2.3. Measuring ill-posedness by regularization errors. Let us start with
some preliminary considerations. Intuitively, a measure of ill-posedness A < B indi-
cates that it is more difficult to solve an inverse problem for A than for B. Such a
difficulty is usually manifest in a slow convergence of a regularization method. We
might therefore order operators accordingly to the approximation property of a regu-
larization method. For simplicity we consider Tikhonov regularization and define for
y = Axf

Toant = (A"A+al) T A*y.

The approximation error of the regularized solution can be expressed by the well-
known quantity

T Azt — ot = —a(A*A + al) L2l

We now can order two operators A, B according to the speed of approximation as
a— 0.

DEFINITION 9. We define a further measure of ill-posedness on the set of bounded
linear operators A, B : X —'Y by the partial ordering

(18) A<,y B <  ||A*Az|| < |B*Bz|| VzeX.

This ordering is identical with the canonical ordering (A*A4)? < (B*B)? men-
tioned above in the compact case. Due to the following proposition A <,., B indi-
cates that Tikhonov regularization for B will converge faster than for A for any fixed
element 2. However, we notice that the ordering

A Sreg B - A <norm Ba

but not vice versa.

PROPOSITION 6.

(19) A<,y B <= |Tqa0t — 2| > |Tapet —2'| YVa>0 and Val € X.

Proof. <: From |24 a2t —2'|| > |Zapet —2f] Va>0 and Vazl € X we
have that for all @ > 0, zf € X : |[(A*A + ol)~ 12t > ||(B*B + al)~'27|. Using
the self-adjoint invertible operators Ty := (A*A + ol)™!, Tg := (B*B + ol) ™1, this
inequality implies that ||T4T5"|| > 1. Since for any operator ||A*|| = ||A| we get

1< |(Tg")TAll = (T5")Tall.
It follows that
I(A*A+al)z'|| > [|(B*B + al)z'|.

Letting o — 0 (noticing uniform convergence of the operators) we obtain the inequal-
ity ||A*Azt|| < ||B*BxT| for all 2T € X and consequently A <,., B.

=: Due to Definition 9 A <,., B is expressed by |[(A*A)zT| < ||(B*B)z'||
for all 2T € X from which it follows that ||(A*A)2at|| < |[(B*B)zz'||. Hence,
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under this condition we get the inequalities ((A*A)%xT,2") < ((B*B)2%zf,2") and
(A*A)zt, zt) < ((B*B)z', 21) for all 2T € X. Thus,

[(A* A+ oD)zt||? = (A* A+ al)?zt, 2T
= ((A*A)2%zT 2T + 20((A* A)aT, 2T) + 2 (2T, 2T)

< ((B'B)*t,a1) + 2a((B* B)al,a1) + a2(a!, a1) = | (B* B + al)a! |
Proceeding as in the first part of the proof we get
[(A*A+al) 't 2 |(B*B + al)~'af||

and hence in total the required equivalence. 0
3. Examples of type I problems.

EXAMPLE 2. Specific equations with multiplication operators A form a typical
class of examples for ill-posedness of type I (cf., e.g., [8, 13]). Therefore we consider
operators A : L?(0,1) — L?(0,1) defined by the assignment

[Az](t) := m(t) z(t), t€(0,1),
where m is a real multiplier function satisfying the conditions
m € L*(0,1), |m(t)] >0 ae. in(0,1).

Under these conditions, A is a bounded self-adjoint non-compact injective operator.
If m moreover satisfies

(20) essinfc(o,1) m(t) = 0,

then the problem (1) is ill-posed in the sense of Definition 1 (cf. [14]). Hence, the
corresponding operator equation is in general ill-posed of type I. Its nature of ill-
posedness was a studied for continuous and increasing functions m with lim;_,o m(t) =
0 in [14, 17] with respect to the fact that the decay rate of m(t) — 0 as t — 0 seems
to be crucial for ill-posedness properties of that problem class.

EXAMPLE 3. Another example comes from the classical Hausdorff moment prob-
lem and was extensively studied in [12, p.91-93]. In this context, we define the forward
operator A : L?(0,1) — ¢% as

{[AZ]  hen = {/01 th(t)dt}kEN.

Hence, this operator maps a function to the sequence of its moments. The Hausdorff
moment problem associated to the solution of equation (1) with this operator A is
the problem aimed at reconstructing a function x from the given infinite sequence of
square-summable moments fol t*m(t)dt. Tt it well known that the moment operator
A in this abstract space setting is an injective bounded linear operator. In [12] it was
proven that the Hausdorff moment problem is ill-posed in the sense of Definition 1
and furthermore that A fails to be compact, which is a fact that was rarely discussed
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in the literature. Hence, the Hausdorff moment problem is an ill-posed problem of
type 1.

Other type I examples can be found by considering convolution equations on in-
finite domains, i.e., the forward operator defined as Az := k *x acts in L*(R™), m =
1,2,3,.... By Fourier transforms the corresponding problems get the structure of equa-
tions with multiplication operators, but in contrast to Example 2 also with functions
on unbounded domains.

4. Local degree of Ill-posedness. We emphasize that for non-compact oper-
ators there is no useful characterization by discretization, nor is there a canonical
choice of a set M on which we can find estimates uniform in z' € M for the mod-
ulus of injectivity and continuity, respectively, to generalize the definition of degree
of ill-posedness. We therefore consider a generalization of degree of ill-posedness de-
pending on some fixed exact solution z' and taking into account the smoothness of
this element. This will lead to the notion of local degree of ill-posedness, where we
use a definition based on spectral functions:

DEFINITION 10. Let x € X and let the range R(A) be a non-closed subset of Y.
If the limit expression

attains a finite positive value, then we call this number local degree of ill-posedness
of the problem (1) at the point x. where

(21) F2(t) = (x(o.0 (H)z,2) = / AF2(1)

is the distribution function of the element x with respect to the spectrum of the operator
H := A*A. We say that the problem (1) has a local degree of ill-posedness of at most
v € (0,00) at x if for some constant C > 0

F2(t) < Ctv, t>0,

and v cannot be replaced by a larger number.

The relation to the approximation by Tikhonov regularization is given by the
following celebrated result from [31]

PROPOSITION 7.

FR(t) <Ctr = |mga0 —2f[| < Cav.

Thus the local degree of ill-posedness can equivalently be defined as

+ —1

.. 1Og ”:L'a,A,:cT - T H

lim inf ,
a—0 logt

and it is therefore closely related to the ordering A <,., B, just as the usual notion
of degree of ill-posedness for compact operator via singular values is related to the
ordering A <, B.
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It is of interest to study this local degree of ill-posedness in view of the modulus
of continuity. The set of 2f, which lead to a local degree of ill-posedness of certain
type can be viewed as a certain source set, for which the modulus of continuity has
a prescribed rate. We will focus on this relation for more general index function
(increasing from zero and continuous). Let us define

(22) Eox ={xeX: Fy(s) < Ky(s), 0<s<|H|}

for index functions ¢. Notice that 55 is the set of points with local degree of

K
ill-posedness v.
On this set we define the corresponding modulus of continuity

(23) w(0, & i) i=sup{|z]| - = € & i, || Az]| < 6}

Note that £, x is central symmetric, i.e. with an element x also the element —x
belongs to the set.

For general source conditions x = ¢(H)v, |jv]] < C with index functions
P(t), 0 < t < ||H|, as spectral information on z with respect to H we have

[h(H)z|| < C sup h(t)¥(t), from which we can derive profile functions for specific
0<t<| H|
regularization methods. In the literature the central symmetric source sets

Myc={a € X : x=p(H)o, |v] < C}

play an important role. In particular, see for example [15], the associated modulus of
continuity

(24) w(d, My, c) = sup{|[z[| : = € My,c, ||[Az]| <}

with the well-known estimate
)
(25) w(8, My,c) < V20 (@1 <5)>

for sufficiently small 6 > 0 and with ©(t) := v/f1)(t) characterizes the best possible
error of reconstruction for given noisy data y° with ||y — y°|| < J when x € My, ¢ is
the prescribed a priori information about the solution.

We can find some interplay property between the two level sets as follows:
PROPOSITION 8. Let x € £, i and let 0 < k < 1, then x € Myr ¢, with

K2 (p(H])20—) _
1—k

1002

Proof. We have for 9(t) := ¢"(t) the following equations and inequalities

1] e e,
- 2 il 2
_ 0/ I < O/ Fa g 20

o M o
dFQ(l—K)t _ 2(1-k)
F [ AR =
0

K2 (Ko([H|)20—) K2 (p(| H[)*—
11—k 1—x

QL
80
—

~
=

|

: C2.
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This implies © € My g,. O
Conversely we have
PROPOSITION 9. Let x € My, o, then x € £, k. with K = C.
Proof. By monotonicity of the index function and positivity of dF2(t) we obtain

! 2/ _ " o(r)? 2 2 ! 20 _ 2
| arze) = [ EEgare) < et [ —marie) = eleie

|

For the case of Holder index functions ¢(t) = t”, t > 0, we therefore have the
following inclusion for any small € > 0:

(26) Mt”,K C gt",K C Mt’/*E,KE

with some K. > 0. Since the estimate of the modulus of continuity is sharp (cf.
Proposition 3.15, Remark 3.16 in [7] and the results in [6]) we have the following
proposition:

PROPOSITION 10. For any € > 0 there exists a constant Ce > 0
v 2(v—¢)
(27) C.675T < w(8,Ep i) < C.6Tw-o1+1

All this indicates that the degree of ill-posedness defined by approximation of
Tikhonov regularization and by rate § 741 of the modulus of continuity, or by the
condition z € & i, or * € My ¢ are basically identical up to an e.

As was discussed in [8] the e-difference just indicates that the function F2 carries
the point-wise information of z with respect to the spectrum of H, whereas general
source condition can express that information only in an integral sense. This can be
seen from [8, Lemma 3], where it was shown for arbitrary index functions ¢ that

(28) v e RW(H)) = Fy(t)=o((t)) as t — 0.

To enlighten this scenery one can consider an element x € X such that

(29) F2(t) =t7g(t)

for sufficiently small ¢ > 0, fixed exponent v > 0, and some index function
"

g(t) = (W) , > 0. Then the local degree of ill-posedness according to Def-

inition 10 is v, and the same would be the case if we had F2(t) = tv. However, in
the light of the implication (28) the ansatz (29) allows the general source condition
T € R(Hl/”) if and only if p > 1. This expresses a real gap between the distribution
function and the corresponding Holder-type source condition.

Conclusions. In this paper, we could formulate a criterion for distinguishing lin-
ear ill-posed problems in Hilbert spaces with compact and non-compact operators by
considering the modulus of injectivity, which converges with respect to discretizations
in a uniform and non-uniform manner, respectively. Moreover, we discussed global
and local measures of ill-posedness for both cases. In this context, we emphasized
the utility of the local degree of ill-posedness based on distribution functions for the
non-compact case in order to overcome the deficit of missing singular values.
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