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ON BREAKDOWN OF SOLUTIONS TO THE FULL COMPRESSIBLE

NAVIER-STOKES EQUATIONS∗

XIANGDI HUANG† AND JING LI‡

Abstract. In this paper, when the initial density is away from vacuum, we establish a blow up
criterion for the strong solutions of the viscous heat-conductive flows just in terms of the gradients
of the velocity and the temperature, analogous to the Beal-Kato-Majda criterion for the ideal incom-
pressible flow. In particular, the viscous coefficients µ and λ are only required to satisfy the physical
restrictions.
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1. Introduction. This paper is devoted to studying the following 3D full com-
pressible Navier − Stokes equations:















∂tρ + div(ρu) = 0,

∂t(ρu) + div(ρu ⊗ u) − µ△u − (µ + λ)∇(divu) + ∇P = 0

cv[∂t(ρθ) + div(ρθu)] − κ△θ + Pdivu =
µ

2
|∇u + ∇uT |2 + λ(divu)2,

(1.1)

where ρ ≥ 0 denotes the density of the mass; u is the velocity;

P = Rρθ (R > 0) (1.2)

is the pressure; µ,λ,R,cv and κ are the physical constants satisfying µ > 0, λ + 2µ
3 ≥

0, R > 0, cv > 0 and κ > 0.
Let Ω be a bounded smooth domain in R3. We consider an initial boundary value

problem for (1.1) − (1.3) with the following boundary conditions

(ρ, u, θ)|t=0 = (ρ0, u0, θ0) in Ω (1.3)

u|∂Ω = 0,
∂θ

∂ν
|∂Ω = 0 (1.4)

where ν is the normal to ∂Ω.
There are huge literatures on the studies of the well-posedness and behavior of so-

lutions to (1.1). In the case that the density is away from vacuum, the one-dimensional
problem was addressed by Kazhikhov and Shelukhin [26] for sufficient smooth data,
and by Serre [33,34] and Hoff [18] for discontinuous initial data. The global existence
of classical solutions to the compressible Navier-Stokes equations in multidimensional
case was obtained by Matsumura and Nishida [31] as long as the initial data is a small
perturbation of a non-vacuum constant state in H3. This result was generalized to
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the data with discontinuities by Hoff in a series of papers (see [18–20] and references
therein). Furthermore, it is shown by Xin [37] that there is no global in time regular
solution in R3 to the compressible Naiver-Stokes equations (1.1) provided that the
initial density is compactly supported.

In contrast to the theory of weak solutions for the incompressible Navier-Stokes
system established by Leray [27], a major breakthrough for the compressible isentropic
Navier-Stokes system is due to Lions. In [28,29], for P (ρ) = aργ(a > 0), Lions showed
the global existence of weak solutions to the problem (1.1) provided that γ ≥ 9

5 , which
was improved later for γ > 3

2 by Feireisl [16,17]. It should be noted that the density is
allowed to vanish initially. The restriction of γ is to show the existence of renormalized
solutions introduced by DiPerna and Lions [13]. If the solution has certain symmetry,
the global existence of the weak solution was obtained for any γ > 1 in [25, 36].
Hoff [19] also obtained the global existence of weak solutions in case γ ≥ 1 if the
initial density and velocity is a general small perturbation of a non-vacuum resting
state.

Another issue concerns the existence of strong solutions to the compressible
Navier-Stokes equations (1.1). When the density is positive initially, it turns out
that the density will be away from vacuum at least locally in time. If, furthermore,
the initial data are sufficient regular, there will exist a unique solution under various
boundary conditions, see [3, 4, 6, 32] and reference therein. For instance, Solonnikov
obtained in [35] a local existence of strong solutions with periodic non-vacuum data.
However, for the general case allowing initial vanishing densities, it was shown re-
cently in [3] that the Navier-Stokes equations admit a local strong solution as long
as a suitable compatibility condition is satisfied initially. This is also true for the full
compressible Navier-Stokes equations (cf. [5]). Moreover, a local classical solution is
established by Kim [4] under various boundary conditions recently. The question is
whether such solutions can be globally well defined. Although the result in [37] showed
that the smooth solutions will blow up in finite time in general in the presence of vac-
uum, the detailed information on the formation of singularity is unknown. In this
regard, Jiang and Fan [14] established a blowup criterion for such strong solutions
only in terms of the density and its gradients. Furthermore, the full Navier-Stokes
equations has a global strong solutions provided that the temperature and the density
are well behaved.

In fact, Fan [14] proved the following blow-up criteria for the local strong solutions
in the case of two dimensions. That is, if 2µ > λ, then

lim
T→T∗

( sup
0≤t≤T

‖ρ‖L∞, ‖ρ−1‖L∞, ‖θ‖L∞) +

∫ T

0

(‖ρ‖W 1,q0 + ‖∇ρ‖4
L2)dt = ∞ (1.5)

where T ∗ < ∞ is the maximal time of existence of a strong solution. q0 > 3 is a
constant. For the isentropic case, the result could be reduced to

lim
T→T∗

( sup
0≤t≤T

‖ρ‖L∞ +

∫ T

0

(‖ρ‖W 1,q0 + ‖∇ρ‖4
L2)dt) = ∞ (1.6)

provided 7µ > 9λ.
In contrast to the result in [14], we first [22–24] established a blowup criterion,

analogous to the Beal-Kato-Majda criterion for the ideal incompressible flows for the
strong and classical solutions to the isentropic compressible flows:

lim
T→T∗

∫ T

0

‖∇u‖L∞dt = ∞, (1.7)
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provided

7µ > λ. (1.8)

Very recently, under the same assumption (1.8), Fan etc [15] establish a blowup cri-
terion similar to (1.7) for the non-isentropic flows, that is

lim
T→T∗

(‖θ‖L∞(0,T ;L∞) + ‖∇u‖L1(0,T ;L∞)) = ∞. (1.9)

In this paper, when the initial density is away from vacuum, we remove the
restriction (1.8) and establish an improved criterion for the strong solutions to the
heat-conductive flows.

We first recall the existence results of strong solutions. It is essentially proved
in [4] that if

inf
x∈Ω

ρ0 > 0, ρ0 ∈ W 1,q(Ω) for some q > 3,

u0 ∈ H1
0 (Ω) ∩ H2(Ω), θ0 ∈ H2(Ω), inf θ0 ≥ 0

(1.10)

with the initial boundary conditions (1.3) − (1.4), then there exist a T∗ > 0 and a
unique strong solution (ρ, θ, u) on [0, T∗] to the problem, such that for any q0 ∈ (3, q),

ρ ∈ C([0, T∗], W
1,q0), ρt ∈ C([0, T∗], L

q0), inf ρ > 0

u ∈ C([0, T∗], D
1
0 ∩ D2) ∩ L2(0, T∗; D

2,q0)

ut ∈ L∞(0, T∗; L
2) ∩ L2(0, T∗; D

1
0)

θ ∈ C([0, T∗]; H
2) ∩ L2(0, T∗; D

2,q0), θ ≥ 0

θt ∈ L∞(0, T∗; L
2) ∩ L2(0, T∗; D

1).

(1.11)

Now, we are ready to state our main theorem of this paper.

2. Main results. Basic assumptions: µ and λ are assumed to satisfy a phys-
ical restriction

µ +
3

2
λ ≥ 0, µ > 0. (2.1)

Set

γ =
R

cv
+ 1. (2.2)

For the initial boundary value problem, we have the following blowup criterion.

Theorem 2.1. Let QT = (0, T )× Ω. Assume that the initial data satisfy (1.10).
Let (ρ, u, θ) be a strong solution of the system (1.1) − (1.3) satisfying the regularity
(1.11). If T ∗ < ∞ is the maximal time of existence, then

lim
T→T∗

∫ T

0

(‖∇u‖L∞ + ‖θ‖2
L∞)dt = ∞ (2.3)

Remark 2.1. The blow up criterion (2.3) is analogous to the Beal-Kato-Majda
criterion for the ideal flows. For the isentropic flow, it can be reduced to

lim
T→T∗

‖∇u‖L1(0,T ;L∞) = ∞. (2.4)
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which improves previous results [7,22,24] when the density is away from vacuum.

Remark 2.2. In fact, the most difficult part is to estimate the convection term
F = ρut + ρu · ∇u. The condition 7µ > λ used in [15, 22-24] to obtain an improved
energy estimate, which is necessary to estimate F . In order to remove the restriction
7µ > λ, we need to derive some new estimates. Our key observation is to establish a
relationship between the convect term F and ρ|u|4, see Lemmas 3.2 − 3.4 below. It is
only here we require the density is away from vacuum initially only. Consequently, we
successfully apply the Gronwall’s inequality to derive a uniform bound of

∫

Ω
|∇ρ|2 +

|∇u|2 + |∇θ|2 + ρ|u|4dx. This will be enough to obtain the higher order regularity of
ρ, u, θ.

Remark 2.3. The above results also hold for Ω = R3 or T 3. Note that for the
Cauchy problem, we need to assume (ρ0 − ρ∞) ∈ W 1,q(R3) and inf ρ0 > 0 to keep the
density away from vacuum, where ρ∞ > 0 is a constant. Then one can easily deduce

that the density ρ is always away from vacuum provided
∫ T

0
‖∇u‖L∞dt is bounded.

3. Proof of Theorem 2.1. Let (ρ, u) be a strong solution described in Theorem
2.1. We assume that the opposite holds, i.e

lim
T→T∗

∫ T

0

(‖∇u‖L∞ + ‖θ‖2
L∞)dt = M0 < ∞. (3.1)

By assumption (3.1) and the conservation of mass, the upper and lower bounds
of density follows immediately.

Lemma 3.1. Assume that

∫ T

0

‖divu‖L∞dt ≤ C, 0 ≤ T < T ∗. (3.2)

Then

‖ρ, ρ−1‖L∞(QT ) ≤ C, 0 ≤ T < T ∗. (3.3)

Proof. It follows from the conservation of mass that for ∀q > 1,

∂t(ρ
q) + div(ρqu) + (q − 1)ρqdivu = 0,

which, after integration over Ω, gives

∂t

∫

Ω

ρqdx ≤ (q − 1)‖divu‖L∞(Ω)

∫

Ω

ρqdx,

that is,

∂t‖ρ‖Lq ≤
q − 1

q
‖divu‖L∞(Ω)‖ρ‖Lq ,

which implies immediately

‖ρ‖Lq(t) ≤ C,
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with C independent of q, so the lemma follows. The same holds for ‖ρ−1‖L∞ .
One has the following estimate.

Lemma 3.2. It holds that for 0 < t ≤ T < T ∗

∂t

∫

Ω

ρ|u|4dx ≤ C(‖∇u‖L∞ + ‖θ‖2
L∞ + 1)(

∫

Ω

ρ|u|4dx + ‖∇u‖2
L2) + C. (3.4)

Proof. Indeed, multiplying (1.2) by 4|u|2u, and integrating over Ω, we obtain by
using Lemma 2.1 that

d

dt

∫

Ω

ρ|u|4dx + 4

∫

Ω

|u|2
(

µ|∇u|2 + (λ + µ)(divu)2 + 2µ|∇|u||2
)

dx

= −4(λ + µ)

∫

Ω

u · ∇|u|2divudx + 4

∫

Ω

div(|u|2u)Pdx

≤ C

∫

Ω

|u|2|∇u|2dx + C

∫

Ω

ρθ2|u|2dx

≤ C‖∇u‖L∞

(
∫

Ω

ρ|u|4dx + ‖∇u‖2
L2

)

+ C‖θ‖2
L∞ , (3.5)

where in the last inequality we have used the following simple fact due to (3.3)

∫

Ω

|u|2|∇u|2dx ≤ C

∫

Ω

ρ
1

2 |u|2|∇u|2dx

≤ C(

∫

Ω

ρ|u|4dx)
1

2 ‖∇u‖2
L4

≤ C(

∫

Ω

ρ|u|4dx)
1

2 ‖∇u‖L2‖∇u‖L∞

≤ C‖∇u‖L∞

(
∫

Ω

ρ|u|4dx + ‖∇u‖2
L2

)

. (3.6)

This completes the proof of Lemma 3.2.
Next, we have θ ≥ 0 in [0, T ]×Ω. The proof is standard, one can refer to [16] for

more detail (see also [15]).
Now, we are ready to bound the first-order spatial derivatives of ρ and u.

Lemma 3.3. It holds for any 0 < T < T ∗,

d

dt

∫

Ω

(

C

κ
ρθ2 + µ|∇u|2 + (λ + µ)(divu)2

)

dx + C‖∇θ‖2
L2 +

∫

Ω

ρu2
t dx

≤ C
(

‖θ‖2
L∞ + ‖∇u‖L∞ + 1

)

(
∫

Ω

(ρ|u|4 + ρθ2)dx + ‖∇u‖2
L2 + ‖∇ρ‖2

L2

)

+ C. (3.7)

Proof. Multiplying the momentum equation by ut, we get after integration by
parts that

d

dt

∫

Ω

(
µ

2
|∇u|2 +

λ + µ

2
(divu)2)dx +

∫

Ω

ρu2
t dx

= −

∫

Ω

ρu · ∇u · utdx −

∫

Ω

ut · ∇Pdx. (3.8)
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We easily derive that

∣

∣

∣

∣

∫

Ω

ρu · ∇u · utdx

∣

∣

∣

∣

≤
1

4

∫

Ω

ρu2
t dx +

∫

Ω

ρ|u · ∇u|2dx

≤
1

4

∫

Ω

ρu2
t dx + C‖∇u‖L∞

(
∫

Ω

ρ|u|4dx + ‖∇u‖2
L2

)

. (3.9)

For the last term of the righthand side of (3.8),

∣

∣

∣

∣

∫

Ω

ut · ∇Pdx

∣

∣

∣

∣

≤ C‖ρ1/2ut‖L2 (‖θ‖L∞‖∇ρ‖L2 + ‖∇θ‖L2)

≤
1

4

∫

Ω

ρu2
t dx + C

(

‖θ‖2
L∞‖∇ρ‖2

L2 + ‖∇θ‖2
L2

)

, (3.10)

which, together with (3.8) and (3.9), yields that

d

dt

∫

Ω

µ|∇u|2 + (λ + µ)(divu)2dx +

∫

Ω

ρu2
t dx

≤ C
(

‖θ‖2
L∞ + ‖∇u‖L∞

)

(
∫

Ω

ρ|u|4dx + ‖∇u‖2
L2 + ‖∇ρ‖2

L2

)

+ C‖∇θ‖2
L2 . (3.11)

Multiplying θ on both sides of the energy equations, one has

1

2

d

dt

∫

Ω

ρθ2dx + κ

∫

Ω

|∇θ|2dx ≤ C‖divu‖L∞

∫

Ω

ρθ2dx + C‖θ‖L∞‖∇u‖2
L2. (3.12)

Adding (3.12) multiplied by 2C/κ to (3.11) gives (3.7).
We are now ready to show the desired L∞(0, T ; L2(Ω)) estimate of ∇ρ and ∇u.

Lemma 3.4. Under the assumption (3.1), it holds that for 0 ≤ T < T ∗,

sup
0≤t≤T

∫

Ω

ρθ2 + |∇ρ|2 + |∇u|2 + ρ|u|4dx +

∫ T

0

∫

Ω

ρu2
t + |∇θ|2dxdt ≤ C, (3.13)

∫ T

0

‖∇u‖2
H1(Ω)dt ≤ C, 0 ≤ T < T ∗. (3.14)

Proof. Applying ∇ on both sides of the mass equation and multiplying the re-
sulting equation by 2∇ρ, we obtain

∂t(|∇ρ|2) + div(|∇ρ|2u) + |∇ρ|2divu + 2(∇ρ)t∇u∇ρ + 2ρ∇ρ · ∇divu = 0,

which, after integration over Ω by parts, gives

∂t‖∇ρ‖2
L2 ≤ C(ε)(‖∇u‖L∞ + 1)‖∇ρ‖2

L2 + ε‖∇2u‖2
L2. (3.15)

On the other hand, since u is a solution of the elliptic system

µ△u + (λ + µ)∇divu = ρut + ρu · ∇u + ∇P
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it follows from the classical regularity theory that

‖∇2u‖L2 ≤ C‖ρut‖L2 + C‖u · ∇u‖L2 + C‖∇P‖L2

≤ C(‖ρut‖L2 + ‖∇u‖
3/2
L2 ‖∇2u‖

1/2
L2 + ‖θ‖L∞‖∇ρ‖L2 + ‖∇θ‖L2),

which implies

‖∇2u‖L2 ≤ C(‖ρut‖L2 + ‖∇u‖2
L2 + ‖θ‖L∞‖∇ρ‖L2 + ‖∇θ‖L2). (3.16)

We deduce from (3.7) (3.15) and (3.16) by choosing ε small enough then applying
Gronwall’s inequality that (3.13) holds. Estimate (3.14) is a simple consequence of
(3.13) and (3.16).

Next, we will derive higher derivatives based on the previous estimates.

Lemma 3.5. Under the assumption (3.1), it holds that for 0 ≤ T < T ∗,

sup
0≤t≤T

(

‖∇θ‖2
L2 + ‖ut‖

2
L2

)

+

∫ T

0

(

‖θt‖
2
L2 + ‖∇ut‖

2
L2 + ‖∇2θ‖2

L2 + ‖∇2u‖4
L2

)

dt ≤ C. (3.17)

Proof. Observing that

‖∇2θ‖L2 ≤ C(‖ρ
1

2 θt‖L2 + ‖ρu · ∇θ‖L2 + ‖∇u‖2
L4)

≤ C(‖ρ
1

2 θt‖L2 + ‖∇θ‖L3 + ‖∇u‖2
L4)

≤ C(‖ρ
1

2 θt‖L2 + ‖∇θ‖
1

2

L2‖∇
2θ‖

1

2

L2 + ‖∇u‖2
L4),

(3.18)

one has

‖∇2θ‖L2 ≤ C(‖ρ
1

2 θt‖L2 + ‖∇θ‖L2 + ‖∇u‖2
L4). (3.19)

It follows from (3.16) and (3.13) that

‖∇u‖2
L4 ≤ C‖∇2u‖

3/2
L2

≤ C‖∇2u‖
1/2
L2 (‖ρ

1

2 ut‖L2 + ‖θ‖L∞ + ‖∇θ‖L2)

≤ C‖∇2u‖
1/2
L2 (‖ρ

1

2 ut‖L2 + ‖∇θ‖
1/2
L2 ‖∇2θ‖

1/2
L2 + ‖∇θ‖L2)

≤ C(ε)‖∇2u‖L2(‖ρ
1

2 ut‖L2 + ‖∇θ‖L2) + ε‖∇2θ‖L2 + C

≤ C(ε)‖∇2u‖L2(‖ρ
1

2 ut‖L2 + ‖∇θ‖L2) + Cε‖ρ
1

2 θt‖L2

+Cε‖∇θ‖L2 + Cε‖∇u‖2
L4 + C, (3.20)

which implies by choosing ε small enough that

‖∇u‖2
L4 ≤ C(ε)‖∇2u‖L2(‖ρ

1

2 ut‖L2 + ‖∇θ‖L2)

+Cε‖ρ
1

2 θt‖L2 + C‖∇θ‖L2 + C. (3.21)

This, together with (3.19), yields

‖∇2θ‖2
L2 ≤ C‖ρ

1

2 θt‖
2
L2 + C(‖∇2u‖2

L2 + 1)(‖ρ
1

2 ut‖
2
L2 + ‖∇θ‖2

L2) + C. (3.22)
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Multiplying the energy equation by θt in L2(Ω), we use (2.13) to conclude

k

2

d

dt

∫

Ω

|∇θ|2dx + cv

∫

Ω

ρθ2
t dx

= −cv

∫

Ω

ρ(u · ∇)θθtdx −

∫

Ω

Pdivuθtdx +

∫

Ω

(
µ

2
(∇u + ∇ut)2 + λ(divu)2)θtdx

≤ C‖u‖L∞‖∇θ‖L2‖ρ
1

2 θt‖L2 + C‖∇u‖L2‖ρ
1

2 θt‖L2 + C‖∇u‖2
L4‖ρ

1

2 θt‖L2

≤ C‖∇u‖H1‖∇θ‖L2‖ρ
1

2 θt‖L2 + C(ε)(‖∇2u‖2
L2 + 1)(‖ρ

1

2 ut‖
2
L2 + ‖∇θ‖2

L2)

+ Cε

∫

Ω

ρθ2
t dx + C

≤ Cε

∫

Ω

ρθ2
t dx + C(ε)(‖∇2u‖2

L2 + 1)(‖ρ
1

2 ut‖
2
L2 + ‖∇θ‖2

L2) + C,

which as well as (3.22) gives

Cκ
d

dt

∫

Ω

|∇θ|2dx + Ccv

∫

Ω

ρθ2
t dx + ‖∇2θ‖2

L2

≤ C(‖∇2u‖2
L2 + 1)(‖ρ

1

2 ut‖
2
L2 + ‖∇θ‖2

L2) + C. (3.23)

Taking ∂t to the momentum equation, multiplying the resulting equation by ut,
integrating over Ω, we find that

1

2

d

dt

∫

Ω

ρu2
t dx +

∫

Ω

(µ|∇ut|
2 + (λ + µ)(divut)

2)dx

=

∫

Ω

Ptdivutdx −

∫

Ω

ρu · ∇[(ut + u · ∇u)ut]dx −

∫

Ω

ρut · ∇u · utdx

= I1 + I2 + I3. (3.24)

Observing that |Pt| ≤ C|ρt|θ + |θt|, and

‖ρt‖L2 ≤ (‖u · ∇ρ‖L2 + ‖ρdivu‖L2)

≤ C(1 + ‖u‖L∞) ≤ C(1 + ‖∇2u‖
1

2

L2), (3.25)

we can estimate I1 as follows:

|I1| ≤ C‖∇ut‖L2

(

‖θ‖L∞ + ‖∇θ‖
1/2
L2 ‖∇2θ‖

1/2
L2 ‖∇2u‖

1/2
L2 + ‖ρ1/2θt‖L2

)

≤ ε
(

‖∇ut‖
2
L2 + ‖∇2θ‖2

L2

)

+ C(ε)‖θ‖2
L∞ + C(ε)‖∇2u‖2

L2‖∇θ‖2
L2

+C(ε)‖ρ1/2θt‖
2
L2 . (3.26)

For I2, we have

|I2| ≤

∫

Ω

ρ|u||ut||∇ut|dx +

∫

Ω

ρ|u||∇u|2|ut|dx

+

∫

Ω

ρ|u|2|∇2u||ut|dx +

∫

Ω

ρ|u||∇u||∇ut|dx

≤ C‖∇u‖L2‖∇ut‖L2‖ρ1/2ut‖
1/2
L2 ‖ut‖

1/2
L6 + C‖u‖L6‖∇u‖L2‖∇u‖L6‖ut‖L6

+ C‖∇u‖2
L2‖∇2u‖L2‖ut‖L6 + C‖∇u‖2

L2‖∇u‖H1‖∇ut‖L2

≤ ε‖∇ut‖
2
L2 + C(ε)‖ρ1/2ut‖

2
L2 + C(ε)‖∇u‖2

H1 .

(3.27)
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Finally, we bound I3,

|I3| ≤ C‖∇u‖L2‖ρ1/2ut‖
2
L4

≤ C‖ρ1/2ut‖
3/2
L6 ‖ρ1/2ut‖

1/2
L2

≤ ε‖∇ut‖
2
L2 + Cε−1‖ρ1/2ut‖

2
L2 .

(3.28)

Substituting (3.26)-(3.28) into (3.24), and taking ε small enough, we arrive at

d

dt

∫

Ω

ρu2
t dx +

∫

Ω

(µ|∇ut|
2 + (λ + µ)(divut)

2)dx

≤ C
(

‖∇2u‖2
L2 + 1

)

(

‖ρ1/2ut‖
2
L2 + ‖∇θ‖2

L2 + 1
)

+C‖ρ1/2θt‖
2
L2 + C‖∇2θ‖2

L2 + C‖θ‖2
L∞ + C. (3.29)

Adding (3.29) to (3.22) multiplied by some sufficiently large C0, then applying
Gronwall’s inequality, we finally obtain

sup
0≤t≤T

(

‖∇θ‖2
L2 + ‖ut‖

2
L2

)

+

∫ T

0

(

‖θt‖
2
L2 + ‖∇ut‖

2
L2 + ‖∇2θ‖2

L2

)

dt ≤ C,

which as well as (3.16) yields

∫ T

0

‖∇2u‖4
L2dt ≤ C

∫ T

0

(1 + ‖θ‖2
L∞)2dt ≤ C

∫ T

0

(1 + ‖∇2θ‖L2)2dt ≤ C.

Next, we will derive the desired estimates for θt. In fact, we have

Lemma 3.6. For any T < T ∗, it holds that

sup
0≤t≤T

∫

Ω

ρθ2
t dx +

∫ T

0

‖∇θt‖
2
L2dt ≤ C (3.30)

sup
0≤t≤T

‖∇θ‖2
H1 ≤ C. (3.31)

Taking ∂t on both sides of the energy equation, then multiplying the resulting
equation by θt in L2(Ω), we obtain

1

2

d

dt

∫

Ω

ρθ2
t dx + κ

∫

Ω

|∇θt|
2dx

=

∫

Ω

Rρθ2
t divudx +

∫

Ω

Rρtθdivuθtdx +

∫

Ω

Rρθdivutθtdx

+

∫

Ω

[µ(∇u + ∇ut) : (∇ut + ∇ut
t) + 2λdivudivut]θtdx

−

∫

Ω

ρtu · ∇θθtdx −

∫

Ω

ρut · ∇θθtdx −

∫

Ω

ρtθ
2
t dx =

7
∑

i=1

Ji. (3.32)

It is clear that

|J1| ≤ C‖ρ1/2θt‖
2
L2‖∇u‖L∞. (3.33)
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It follows from (3.25) that

|J2| ≤ C‖ρt‖L2‖θ‖L6‖∇u‖L6‖θt‖L6

≤ C
(

1 + ‖∇2u‖
1/2
L2

)

‖∇2u‖L2‖∇θt‖L2

≤ ε‖∇θt‖
2
L2 + C(ε)‖∇2u‖4

L2 + C, (3.34)

|J5| ≤ ‖ρt‖L2‖∇2u‖
1/2
L2 ‖∇θt‖L2‖∇2θ‖

1/2
L2

≤ C
(

1 + ‖∇2u‖L2

)

‖∇2θ‖
1/2
L2 ‖∇θt‖L2

≤ C + C‖∇2u‖4
L2 + C(ε)‖∇2θ‖2

L2 + ε‖∇θt‖
2
L2, (3.35)

and

|J7| ≤ ‖ρt‖L2‖θt‖
1/2
L2 ‖∇θt‖

3/2
L2

≤ C(ε)
(

1 + ‖∇2u‖4
L2

)

‖ρ1/2θt‖
2
L2 + ε‖∇θt‖

2
L2 . (3.36)

The estimate of J3 is easy.

|J3| ≤ C‖ρ1/2θt‖L2‖θ‖L∞‖∇ut‖L2

≤ ‖∇ut‖
2
L2 + C‖ρ1/2θt‖

2
L2‖θ‖2

L∞ . (3.37)

Cauchy inequality yields directly that

|J4| ≤ C‖∇u‖L6‖∇ut‖L2‖θt‖L3

≤ C‖∇2u‖L2‖ρ1/2θt‖
1

2

L2‖∇θt‖
1

2

L2‖∇ut‖L2

≤ ε‖∇θt‖
2
L2 + ε‖∇ut‖

2
L2 + C(ε)

(

‖ρ1/2θt‖
2
L2‖∇ut‖

2
L2 + ‖∇2u‖4

L2

)

, (3.38)

and

|J6| ≤ C‖ρut‖L2‖∇θ‖L3‖∇θt‖L2 ≤ ε‖∇θt‖
2
L2 + Cε−1‖∇2θ‖L2 . (3.39)

Substituting (3.33)− (3.39) into (3.32), we integrate to obtain for small ε that

‖ρ1/2θt‖
2
L2 + ‖∇θt‖

2
L2(0,T ;L2) ≤ C + C

∫ t

0

(1 + ‖∇u‖2
H1)‖ρ1/2θt‖

2
L2ds, 0 ≤ t ≤ T,

(3.40)
which, by applying Gronwall’s inequality, implies (3.30). As a consequence of (3.30),
we see that κ△θ from the energy equation is bounded by a constant, which implies
(3.31) immediately.

Finally, we derive the Lq bounds of the density.

Lemma 3.7. Let q be the same as in (1.10). Then

sup
0≤t≤T

‖∇ρ‖Lq ≤ C (3.41)

∫ T

0

(‖∇u‖2
W 1,q + ‖∇θ‖2

W 1,q)dt ≤ C. (3.42)
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Proof. Differentiating (1.1) with respect to xj and multiplying the resulting equa-
tion by |∇ρ|q−2∂jρ, one deduces that

d

dt

∫

Ω

|∇ρ|qdx ≤ C

∫

Ω

(|∇u||∇ρ|q + |ρ||∇ρ|q−1||∇2u|)dx

≤ C‖∇u‖L∞‖∇ρ‖q
Lq + C‖∇2u‖Lq‖∇ρ‖q−1

Lq ,

(3.43)

Using the regularity of elliptic equations again, we have

‖u‖W 1,q ≤ C(‖ut‖Lq + ‖u · ∇u‖Lq + ‖∇ρ‖Lq + ‖∇θ‖Lq)

≤ C(‖∇ut‖L2 + ‖∇u‖2
H1 + ‖∇ρ‖Lq + ‖∇θ‖H1).

(3.44)

Integrating the above inequality over (0, T ) and make use of Gronwall’s inequality
to show that

sup
0≤t≤T

‖∇ρ‖Lq ≤ C (3.45)

∫ T

0

(‖∇u‖2
W 1,q + ‖∇θ‖2

W 1,q)dt ≤ C. (3.46)

The proof is finished.
We are now ready to extend the strong solutions beyond the time T ∗.
In fact, in view of Lemma 3.4−3.7, the functions (ρ, u, θ)|t=T∗ = limt→T∗(ρ, u, θ)

satisfy the conditions imposed on the initial data (1.10) at the time t = T ∗. Therefore,
we can take (ρ, u, θ)|t=T∗ as the initial data and apply the local existence theorem [3]
to extend the strong solution beyond T ∗. This contradicts the assumption on T ∗.
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