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GENERALIZING VARIATIONAL THEORY TO INCLUDE THE

INDEFINITE INTEGRAL, HIGHER DERIVATIVES, AND A

VARIETY OF MEANS AS COST VARIABLES∗

JOHN GREGORY†

Abstract. In this paper we generalize the Calculus of Variations setting from the arguments�
t, x(t), x′(t)

�
to the arguments

�
t, x(t), x′(t), x̂(t)

�
, where x̂(t) is any indefinite integral of x(t) or its

extension. Related results are to various types of “averaging” variables and to higher derivatives.
Of interest is that this process extends the basic necessary condition, the Euler equation(s), from

a second order ordinary differential equation (ODE) to a second order differential equation involving
indefinite integrals. These ideas can be extended to optimal control and other constraint optimization
problems whose trajectory includes x̂ and/or averaging operators.

Of special interest is that these results can be obtained either by using a new extension of
classical arguments or by a new use of the author’s constraint optimization theory. Finally, these
multi-integral problems can now be solved by efficient numerical methods, previously developed by
the author, with a global a priori error estimate of O(h2).
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1. Introduction. The main purpose of this paper is to extend the ideas and
methods of the calculus of variations/optimal control theory to problems which include
the antiderivative and related dependent variables. Our basic problem is given as

min

∫ b

a

f
(

t, x(t), x′(t), x̂(t)
)

dt

s.t. x(a) = xa and x(b) = xb where

x̂(t) =

∫ t

a

x(t) dt.

(1.1)

For a multitude of reasons we also assume that fx′x′ > 0 (see, for example, [1], [5] or
[8]).

We assume this problem has a unique solution. “Smoothness” conditions will be
obvious and assumed as needed. The initial conditions x(a) and x(b) can be replaced
by the usual transversality conditions if these values are unspecified.

We note that our solution for (1.1) gives a more general theory for the usual clas-
sical calculus of variations/optimal control theory. In particular, the major necessary
condition, the Euler equation, is no longer an ordinary second order differential equa-
tion but, now, an equation with indefinite integrals. This often implies the equation
is essentially a third or fourth order ODE.

In Sections 2 and 3 we derive our key results using two distinct methods. In part
this is due to the fact that our methods are themselves new and these results are so
new that we wish to double check them. An example is given at the end of Section 2
which is then revisited after Section 3.

In Section 4 we extend these ideas to optimal control theory where both the cost
functional and the trajectory equation include the new variable, x̂. We will show that
the Pontryagin Maximal Principle is a special case of our results.
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In Section 5 we study the case where f(t, x, x′, x′′) with natural/sensible boundary
conditions. The extension to higher derivatives, i.e., f(t, x, x′, . . . , x(n)) where n > 2
is immediate.

In Section 6 we consider the general case where x2(t) = g(t)
∫ t

a
x1(s) ds and in

particular, g(t) = 1
t−a

to get the “running mean” as a cost variable.

2. Constraint Optimization Methods. The purpose of this section is to solve
Problem (1.1) using the previous constraint methods of the author ([5] and [7]). At
the end of this section we include an example to clarify the theory. A second distinct
method of solution using an extension of classical variational theory methods yielding
the main results as this section, will be given in Section 3.

Thus, let

min

∫ b

a

f
(

t, x, x′, x̂
)

dt

where x̂ =

∫ t

a

x(s) ds, and

x(a) = xa, x(b) = xb .

(2.1)

As noted above, we assume fx′x′ > 0. Let x1 = x, x2 =
∫ t

a
x1(s) ds, x′

3 be the

multiplier, X(t) =
(

x1(t), x2(t), x3(t)
)T

, and

F (t, X, X ′) = f(t, x1, x
′
1, x2)+x′

3(x
′
2−x1), X(a) =





xa

0
0



 and X(b) =





xb

∗
∗



 . (2.2)

The first 0 in X(a), X2(a), is the constant of integration. It and the constraint
x′

2 − x1 = 0 are equivalent to the integral definition of x2 . The second 0 in X(a),
X3(a) is to “normalize” x3(t) which otherwise is not unique, although, x′

3(t) is unique.
The “∗” in X(b) is because x2(b) and x3(b) are not specified, so the usual transversality
conditions x′

3(b) = 0 and (x′
2 − x1)(b) = 0 hold. From [5] or [7] we have, from the

multiplier rule,

d

dt





fx′

1

x′
3

x′
2 − x1



 =
d

dt
FX′ = FX =





fx1
− x′

3

fx2

0



 (2.3)

and

FX′X′ =





fx′

1
x′

1
0 0

0 0 1
0 1 0



 .

Hence det FX′X′ = −fx′

1
x′

1
6= 0 so that, from [8], we have

Theorem 2.1. There exists a unique solution to (2.3) with the given boundary
conditions.

It is instructive to reduce (2.3) to a second order problem in x1(t). To do this we
note we have

x′
2(t) ≡ x1(t) (2.4)
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from the third component of (2.3) and the third boundary condition for X(b), (x′
2 −

x1)(b) = 0. Hence

x2(t) =

∫ t

a

x1(s) ds since x2(a) = 0 and (2.5)

x′
3(t) =

∫ t

a

fx2
ds + c (2.6)

from the second component of (2.3). But x′
3(b) = 0, by the second component condi-

tion of X(b), so that c = −
∫ b

a
fx2

ds and hence

x′
3 = −

∫ b

t

fx2
ds. (2.7)

Finally,

d

dt
(fx′) = fx1

− x′
3 = fx1

+

∫ b

t

fx2
ds (2.8)

From the first component condition of (2.3). Thus, these results generalize the usual
case when f is independent of x2 = x̂. In addition, we have

Theorem 2.2. The solution to Problem (2.1) satisfies (2.8) and the boundary
conditions in (2.1). If x1(a) is not specified then fx′

1
(a) = 0, while if x1(b) is not

specified then fx′

1
(b) = 0.

We note that an equivalent expression for (2.8) is given in (3.1), below. The above
are also the necessary conditions which allow us to construct solutions. In addition,
we note that (2.8) is still a 2nd order differential equation, but it is not “ordinary” as
it involves a (double) indefinite integral. In a simpler case it leads to a fourth order
ODE as in Example 2.3, below.

As an exercise for the reader, we suggest obtaining the same results if we choose

X(a) =





xa

0
∗



 and X(b) =





xb

∗
0





We close this section by giving a simple example problem which leads to a fourth
order ODE. Thus,

Example 2.3. Let f = 1
2 (x′2 − x̂2), then fx′

1
= x′

1 and fx2
= −x2 so that x′

3 =
∫ b

t
x2(s) ds. The obvious calculations yield x′′

1 = −
∫ b

t
x2(s) ds and finally x

(IV )
1 −x1 =

0. Thus, x = x1 is in the span of S = {et, e−t, sin t, cos t}. The unique solution is
found using the values x1(a), x1(b), and x′′

1 (b) = 0, since S is a linearly independent
set of functions.x

Finally, we note that the nonreduced f in (2.2) and (2.3) yields a more complicated
second order differential equation than (2.8) which has a unique solution. However,
Theorems 2.1 and 2.2 hold. In fact, (2.2) yields a (unique) numerical solution (see
[5] or [6]) with an a priori error estimate of O(h2). In the classical case where f is
independent of x2, the same situation holds for (2.8).
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3. Variational Methods. The purpose of this section is to derive the basic
result (2.8), once again. This time we will use an interesting new modification of
more classical variational methods. We will see that what is required is new ideas
involving

∫ t

a
η(s) ds where η(t) is the variation in x(t). Thus, we have

Theorem 3.1. If x(t) gives a minimum to Problem (1.1), then it satisfies

d

dt
fx′ = fx +

∫ t

b

fx̂(s) ds , (3.1)

fx′ is continuous between “corners” where x′(t) is not continuous (3.2)

and the boundary conditions of Theorem 2.2 hold.

Proof. Assume that x(t) yields a minimum for Problem (1.1) and η(t) is a piece-
wise smooth function on [a, b]. Let x(t, ǫ) = x(t) + ǫη(t) and note that

I(ǫ) =

∫ b

a

f
(

t, x(t, ǫ), x′(t, ǫ), x̂(t, ǫ)
)

dt

is differential w.r.t. ǫ. Now I(0) ≤ I(ǫ) for ǫ in a neighborhood of 0 implies

0 = I ′(0) =

∫ b

a

[

fxη(t) + fx′η′(t) + fx̂

∫ t

a

η(s) ds

]

dt

=

∫ b

a

[

fx −
d

dt
fx′ +

∫ b

t

fx̂(s) ds

]

η(t) + fx′η

∣

∣

∣

∣

b

a

.

(3.3)

In the above, fx, etc., is evaluated along
(

t, x(t), x′(t),
∫ t

a
x(s) ds

)

.
The above is achieved by noting that

d

dt

[

−

∫ b

t

fx̂(s) ds ·

∫ t

a

η(s) ds

]

= fx̂(t)

∫ t

a

η(s) ds − η(t)

∫ b

t

fx̂(s) ds

and then integrating both sides from t = a to t = b.

Now if we assume that η(a) = η(b) = 0, then (3.1) follows from the Fundamental
Lemma of the Calculus of Variations [5, p. 38]. The boundary conditions follow
immediately by the usual arguments.

We note that Theorems 3.1 and 2.2 are the same.

Example 3.2 (Revisited). Result (3.1) becomes
d

dt
x′ = −

∫ b

t
x̂ ds and hence

x′′′ = x̂ or xiv − x = 0, as before. The specific solution follows from the two given
conditions and x′′(b) = 0.

4. The Optimal Control Extension. The purpose of this section is to extend
the previous theory to an optimal control setting. Thus, we join the ideas in Section
2 with previous work by the author in [5] or [7] which showed that the classical
optimal control problems with “solutions” by the Pontryagin Maximal Principle can
be extended (along with additional constraints) and efficiently solved by methods as
in Section 2.

Of note is the development of this section. We first show that our problem and
solution include the classical Pontryagin conditions.
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Our extension of the classical optimal control problem is

min

∫ b

a

f(t, x, u, x̂) dt

s.t. x′ = g(t, x, u, x̂), x(a) = xa, x(b) = xb .

(4.1)

We will get a more general Pontryagin Maximal Principle which includes the basic
problem and results of the classical problem. That is, we will “solve” problem (4.1),
but stop in the middle to obtain the classical result(s). In each case we assume fuu

and guu are linearly independent to impose nonsingularity in the sense of Bliss [1].
Thus, let x1 = x, x′

2 = u, x′
3 be a multiplier (this is usually p of the classical

theory). Also let x4 = x̂ =
∫ t

a
x1 ds and hence x′

4 = x1, x4(0) = 0 . Finally, let x′
5 be

the multiplier for the extension. Reformulating (4.1) we have

min

∫ b

a

F (t, X, X ′) dt, X(a) =













xa

0
0
0
0













and X(b) =













xb

∗
∗
∗
∗













, (4.2)

where F (t, X, X ′) = f(t, x1, x
′
2, x4) + x′

3

[

x′
1 − g(t, x1, x

′
2, x4)

]

+ x′
5[x

′
4 − x1]. Now

d

dt













x′
3

fx′

2
− x′

3gx′

2

x′
1 − g(t, x1, x

′
2, x4)

x′
5

x′
4 − x1













=
d

dt
fx′ = Fx =













fx1
− x′

3gx1

0
0

fx4
− x′

3gx4

0













. (4.3)

We make a brief detour to recall that the basic optimal control problem is as
follows:

min

∫ b

a

f(t, x, u) dt

s.t. x′ = g(t, x, u), x(a) = xa, x(b) = xb .

(4.4)

Its “solution” is obtained as follows: let H(t, x, u, p) = f(t, x, u) + pT g(t, x, u), then

x′ = Hp (4.5a)

p′ = −Hx , and (4.5b)

Hu = 0 . (4.5c)

Theorem 4.1. Conditions (4.5) are included in (4.3) and (4.2). That is, if we
ignore the x1 and x5 variables, we obtain (4.5).

Proof. Using the third component of (4.3) and the second component of X(b) we
have

x′
1 ≡ g(t, x1, x

′
2, x

′
4) which is (4.5a). (4.6a)
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Using the second component of (4.3) and the third component of X(b) we have

fx′

2
− x′

3gx2
≡ 0 which is (4.5c) with − p = x′

3 . (4.6b)

Finally, using the first component of (4.3) with −p = x′
3 we have

d

dt
x′

3 = fx1
− x′

3gx which is (4.5b). (4.6c)

Returning to (4.1), the more general problem, our first task is to check the non-
singularity of (4.3). Thus,

fX′X′ =













0 0 1 0 0
0 fx′

2
x′

2
− x′

3gx′

2
x′

2
−gx′

2
0 0

1 −gx′

2
0 0 0

0 0 0 0 1
0 0 0 1 0













and, hence, fX′X′ = fx′

2
x′

2
− x′

3gx′

2
x′

2
= fuu − x′

3guu 6≡ 0. Thus,

Theorem 4.2. Equation (4.3) is a second order differential equation in five
variables. This equation and the boundary conditions (4.2) give a unique solution to
Problem 4.1. Thus, if (4.1) has a unique solution it is given by (4.3) and (4.2).

To complete the solution of Problem (4.1) we note that the fifth component of
(4.3) and the fifth component of X(b) implies

x′
4 = x1 and hence by the fourth component of X(b) ,

x4 =

∫ t

a

x1(s) ds .
(4.6d)

Finally, from the fourth component of (4.3) and the fourth component of X(a), we
have

x′
5 =

∫ t

a

(fx4
− x′

3gx4
)(s) ds + c or

x′
5 =

∫ t

a

(fx4
− x′

3gx4
)(s) ds.

(4.6e)

But, by the fourth component of X(b) we have x′
5(b) = 0 and hence (also)

x′
5(t) = −

∫ b

t

(fx4
− x′

3gx4
)(s) ds.

5. Higher Derivatives. In this section we use our previous ideas to study

min

∫ b

a

f
(

t, z(t), z′(t), z′′(t)
)

dt

s.t. fz′′z′′ > 0, z′(a) = A, and z′(b) = B.

(5.1)

and
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We will see that the “s.t.” conditions are the natural conditions for this problem
using our approach. This will explain and “clear up” the usual difficulties often
encountered with these problems [2]. The extension of these ideas to the problem for
f(t, x, x′, . . . , x(n)) for n ≥ 2 is immediate and left to the reader.

Our results in this section are motivated by the idea that Problem (1.1) contains
three levels of differentiation but the variables and conditions must be chosen carefully.
Motivated by Section 2 we set

x1(t) = z(t) and x2(t) = z′(t). (5.2)

Hence

x′
1(t) = z′(t), x′

2(t) = z′′(t), and x′
1 = x2 . (5.3)

Thus, we have

Theorem 5.1. If (5.1) has a unique solution then it satisfies

d

dt
fz′′ = fz′ +

∫ t

b

fz ds (5.4)

such that z′(a) = A and z′(b) = B.

In addition, we note that

Corollary 5.2. Using (5.5) and (5.6), below, with (5.2), the algorithm in [5]
or [6] leads to a numerical solution with an a priori, global error is O(h2).

To justify these results and motivated by Section 2, we choose X = (x1, x2, x3)
T

and

F (t, X, X ′) = f(t, x1, x2, x
′
2) + x′

3(x
′
1 − x2) (5.5)

and

X(a) =





0
A

0



 , X(b) =





∗
B

∗



 . (5.6)

Now d
dt

FX′ = FX and hence

d

dt





x′
3

fx′

2

x′
1 − x2



 =





fx1

fx2
− x′

3

0



 . (5.7)

As before, we note that

FX′X′ =





0 0 1
0 fx′

2
x′

2
0

1 0 0



 = −fx′

2
x′

2
6= 0

so (5.4) has a unique solution.
Proceeding the (now) usual way we have

x′
1 ≡ x2 and thus x1(t) =

∫ t

a

x2(s) ds, (5.8a)
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x′
3(t) =

∫ t

a

fx1
(s) ds + c = −

∫ t

b

fx1
(s) ds, and (5.8b)

d

dt
fx′

2
= fx2

+

∫ t

b

fx1
(s) ds. (5.8c)

Thus, (5.8c) is a second order ODE with double integral arguments. Differentiation
yields a third order ODE with an integral argument. Under the best of conditions,
where f is quadratic, it becomes a fourth order ODE which “agrees” with the classical
results.

6. The g(t) Mean. The purpose of this section is to extend Problem (1.1) to the

case where x̂ = g(t)
∫ t

a
x(t) dt, and in particular, g(t) = 1

t−a
, to obtain the “running

mean” of x(t) as a new variable. In fact, we will derive the more general case. Hence,

min

∫ b

a

f
(

t, x(t), x′(t), x(t)
)

dt

s.t. fx′x′ > 0, x(a) = xa , x(b) = xb where

x(t) = g(t)

∫ b

a

x(t) dt.

(6.1)

We assume this problem has a unique solution while “smoothness” conditions will
be obvious and assumed as needed. Following, from Section 2 we have

x2(t) = g(t)

∫ t

a

x1 ds , (6.2)

x′
2(t) = g′

∫ t

a

x1 ds + gx1 = g′
x2

g
+ gx1 , (6.3)

F = f(t, x1, x
′
1, x2) + x′

3

[

x′
2 −

g′

g
x2 − gx1

]

, (6.4)

d

dt





fx′

1

x′
3

x′
2 −

g′

g
x2 − gx2



 =





fx1
− gx′

3

fx2
− g′

g
x′

3

0



 , and (6.5)

X(a) =





xa

0
0



 , X(b) =





xb

∗
∗



 . (6.6)

We note that we assume g(a) finite, so x2(a) = 0. If g(t) = 1
t−a

, then x2(a) = 1, by
l’Hospital’s Rule.

Hence x′
2 = g′

g
x2 + gx1 from the third component of (6.5) and X3(b) in (6.6), and

x2(t) = g(t)

∫ t

0

x1 ds from X2(a) in (6.6). (6.7a)
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From x′′
3 = fx2

− g′

g
x′

3 we have (gx′
3)

′ = gx′′
3 + g′x′

3 = g
(

x′′
3 + g′

g
x′

3

)

= gfx2
. Hence

gx′
3 =

∫ t

a
gfx2

ds + c1 or

x′
3 =

1

g

[ ∫ t

a

gfx2
ds + c1

]

= −
1

g

∫ b

t

gfx2
ds (6.7b)

since the second component of X(b) implies x′
3(b) = 0.

Finally, we have

d

dt
(fx′

1
) = fx1

+

∫ b

t

gfx2
ds. (6.7c)

Note that all boundary conditions are used (accounted for). The third component of
X(a) in (6.7) “normalize” x3 as x′

3 is unique, but x3 is otherwise not. The values xa

and xb along with the two starred conditions determine the solution for the second
order equation (6.7).
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