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DIAGONAL DEFECT MEASURES, ADHESION DYNAMICS

AND EULER EQUATION ∗

FRÉDÉRIC POUPAUD†

Abstract. This paper is concerned with the existence and the stability of global solutions, with
concentrations, for two systems of Partial Differential Equations. The first one is a system modeling
adhesion dynamics, the second one is the incompressible Euler equations in vorticity form, with
vortex points of distinguished sign. The results are obtained in two space dimension. In order to
study the concentrations effects, defect measures for sequences of tensor products of measures are
introduced.

1. Introduction. The goal of this paper is to study concentration effects in
P.D.E. We focus on two systems of equation of physics. The first one is the classical
incompressible Euler equation in vorticity formulation. In the 2-space dimensional
setting, this system of equations reads

∂

∂t
ω +

∂

∂x1
(u1 ω) +

∂

∂x2
(u2 ω) = 0, t ∈ R, x ∈ R

2,

ω =
∂

∂x1
u2 −

∂

∂x2
u1,

∂

∂x1
u1 +

∂

∂x2
u2 = 0 t ∈ R, x ∈ R

2.

The scalar ω(t, x) is the vorticity and u(t, x) = (u1(t, x), u2(t, x)) is the velocity of
the fluid at time t and position x. This system of equations is one of the master
model for fluid dynamics. It has been intensively studied and we refer to the books of
J.-Y. Chemin, [7], C. Marchioro and M. Pulvirenti, [25], or of P.L. Lions, [22], for an
excellent survey and a lot of new mathematical results in this field. We only mention
that the widest class for which a global existence theorem is known is the class of
vorticity with a non negative part which is a bounded measure and a non positive
part which is an integrable function and which correspond to a velocity whose square
is locally integrable. This famous result is due to J.M. Delort, [9], and simplified
proofs can be found in [14, 24, 29]. One of the key ingredient in Delort’s proof is
that there is no point concentration in space for the vorticity. By essence, the case
of vortex points which correspond to the case where there are delta masses in space,
for the vorticity, is not considered in these works. However vortex points have a
great physical interest in addition to a numerical interest for particles methods, see
[25]. One of our result is the existence and stability of generalized weak solution with
defect measure for vortex points of distinguished sign, cf Theorems 4.3 and 4.4.

The other system we want to study, is a model for adhesion dynamics which reads

∂

∂t
ρ+

∂

∂x1
(u1 ρ) +

∂

∂x2
(u2 ρ) = 0, t ∈ R, x ∈ R

2,

ρ = − ∂

∂x1
u1 −

∂

∂x2
u2,

∂

∂x2
u1 −

∂

∂x1
u2 = 0 t ∈ R, x ∈ R

2.

The scalar ρ(t, x) is a concentration of particles and u(t, x) = (u1(t, x), u2(t, x)) is the
velocity of the particles at time t and position x. This system is in a way orthogonal
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to the Euler system. For instance it can be easily seen that the velocity solves

∂

∂t
u+ u div(u) = −∇⊥p, curl(u) = 0,

for a scalar pressure p, indeed div(
∂

∂t
u+u div(u)) = 0. Contrarily to Euler equations,

Lp-norms of the vorticity are not conserved quantities. Indeed we have

D

Dt
ρ
def
=

∂

∂t
ρ+ u · ∇ρ = ρ2.

This Ricatti equation shows that there is a blow up of the L∞-norm of the concen-
tration. Actually it can be shown that there is always appearance of delta masses in
space, for finite time, despite of the fact the initial data is smooth, cf Proposition 3.2.
As for vortex points, we obtain for this adhesion dynamics model a global existence
and stability result of generalized solutions with defect measures, cf Theorem 3.2.
The model as an obvious generalization in any dimension which reads

∂

∂t
ρ+ divx(ρ u) = 0, u = ∇xΦ, −∆xΦ = ρ.

The problem of global existence in dimension higher than 2 is completely open.

Since this system is much less classical than Euler equations, let us spent some
lines to give the physics motivations to study it. First, we point out that it has
a lot of connections with the equations of pressure-less gases which model sticky
particles. Actually, it can be seen as a multi-dimensional generalization of sticky
particles models. Pressure-less gases equations has been studied in different contexts,
first regarding the properties of solutions associate to the stationary problem (ρ does
not depend of t). In this direction we mention the work of H. A. Herrero, B. Medina
and J. J. L. Velázquez [17] proving blow-up for the solution and the work of P.
Constantin, A. J. Majda and E. Tabak [8] as an example of fluid where formation of
strong fronts appears. In one dimension the problem of existence and uniqueness for
the time dependent pressure-less gases system has been studied by F. Bouchut and F.
James in [2], by W. E, Y. Rykov and Y. Sinai in [13] and by Y. Brenier and E. Grenier
in [6], who solved the problem by showing its equivalence with the Cauchy problem
for scalar conservation laws with general fluxes and monotonic initial conditions. A
probabilistic interpretation of sticky particles model is also given by A. Dermoune in
[10]. Recently, Y. Brenier [5] has proposed a new multi-dimensional model where the
potential Φ solves the fully non linear Monge Ampère equation:

det

(

∂2

∂xi∂xj
Φ

)

= ρ

instead of the Poisson equation. It allows to introduce a weak Lagrangian formulation
of the problem. For this formulation, Y. Brenier proves the existence and the stability
of some global in time weak solutions. For this “Monge Ampère” flow, the particles
move straight with constant velocities until concentrations occur. This method does
not seem to apply, in the present context.

From the Physics view point, the model of adhesion dynamics we study, can be
justified as follows. If we consider particles moving in a thermal bath and interacting
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each other via Newton attractive forces, they can be modeled by the Vlasov-Poisson-
Fokker-Planck system (VPFP in short). When the friction forces due to the thermal
bath and the gravitational forces are large and of the same order of magnitude, we
end up with the following equations for the distribution function fǫ(t, x, v) ≥ 0 and
for the potential Φǫ :

ǫ

(

∂fǫ
∂t

+ v · ∇xfǫ

)

+ (∇xΦǫ · ∇v)fǫ = L(fǫ),

L(fǫ)
def
= ∆vfǫ + divv(vfǫ) = divv

(

e−
v
2

2 ∇v

(

e
v
2

2 fǫ

))

,

Φǫ = ΓN ∗ ρǫ, ρǫ =

∫

RN

fǫ dv,

where ǫ is a small parameter. The kernel ΓN is the fundamental solution of −∆ in
R
N , which is defined by

ΓN (x) =







− 1
2 |x| if N = 1

− 1
2π ln|x| if N = 2

1
4π

1
|x| if N = 3 ...

Such a scaling has been first introduced in [27] for semiconductors modeling. In [26]
the limit ǫ → 0 is performed for the (VPFP) system. The particles concentration
ρ = lim

ǫ→0
ρǫ satisfies the limit system

∂

∂t
ρ(t, x) + divx(ρu) = 0, t ≥ 0, x ∈ R

N , (1)

u
def
= ∇xΦ(t, x) = ∇xΓN ∗x ρ(t, x). (2)

The proof is complete in one space dimension and the velocity u = − ∂
∂xΦ is shown to

be the unique Kruzkov entropy solution of the Hopf Burgers equation

∂

∂t
u− ∂

∂x
(
u2

2
) = 0.

Since shocks appear in finite time, it shows the occurrence of concentration (gravita-

tional collapse) for the concentration ρ = − ∂

∂x
u. It follows that in the multidimen-

sional case, this system admits classical solutions only for short times. We have ([26])

Theorem 1.1. If ρ0 ∈ L1(RN ) ∩W 1,∞(RN ), then there exists a unique strong
solution (ρ, u) of the system (1)-(2) with initial data ρ0 which verifies

{

ρ ∈ W 1,∞([0, T ′] × R
N ),

u ∈ L∞(0, T ′;W 1,∞(RN )N ),

where

0 < T ′ < T ∗ =
1

‖ρ0‖L∞(RN )

.

If ρ0 ∈ L1(RN ) ∩ L∞(RN ) and its first order moment is bounded, then there exists
a unique weak solution (ρ, u) to the problem (1)-(2) with initial data ρ0 such that
ρ ∈ L∞(0, T ′;L1 ∩ L∞(RN )).
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An other field where such models arise is chemo-taxis. One of the basic model
was introduced by Keller and Segel in [21]. The corresponding equations read

∂

∂t
ρ+ χ ∇(ρ∇Φ) − δ ∆ρ = 0,

∂

∂t
Φ − γ ∆Φ = β ρ− µ Φ.

The positive parameters, χ, δ, γ, β, µ, are biological constants. This system has
been studied in different asymptotic regimes. A particular interest is the occurrence
of blow up (collapse) of the solution. We refer to the work of Jäger and Luckhaus,
[20], or to the paper of Herrero, Velazquez, [18] for example of such results. We also
mention the work of Rascle, Ziti [28], see also [32], for a study of self-similar solutions
in some variants of the Keller-Segel model. Nothing is known about solutions after
collapse and the present work can be seen as a step in this direction. Indeed if we
assume that the coefficients of diffusion satisfy δ << γ, we put δ = εγ and we rescale
the equation according to ρ→ Rρ, Φ → V Φ, t→ T t and x→ L x. Then the choice

T =
√
ε
1

µ
, L =

√
ε

√

γ

µ
, V =

√
ε
γ

χ
, R =

1

ε

µV

β
,

which is a zoom in time space close to a blow up of a solution, leads to the scaled
system

∂

∂t
ρ+ ∇(ρ∇Φ) −√

ε∆ρ = 0,

√
ε
∂

∂t
Φ − ∆Φ = ρ− εΦ.

At least formally, we recover the system under study in this paper in the limit ε→ 0.
We point out that Proposition 3.2 gives an upper bound for the collapse time.

Let us focus now on the mathematical techniques we use in this work. The
approach of [26] consist in defining a generalized product which gives sense to the
product ρu. The skew property of the kernel KN = ∇xΓN gives rise to the following

Definition 1.1. Let N = 1 or 2 be the space dimension. Let us define

∀x ∈ R \ {0}, K1(x) = −1

2
sign(x), K1(0) = 0, (3)

∀x ∈ R
2 \ {0}, K2(x) = − 1

2π

x

|x|2 , K2(0) = 0. (4)

Let µ ∈ M1(R
N ) and v be such that v = KN ∗ µ, (−∆xΨ = µ, v = ∇xΨ). Then, for

every ϕ ∈ C1
b (R

N ) we define

∫

R

(v µ)ϕdx
def
=

∫

RN

∫

RN

KN (x− y)

(

ϕ(x) − ϕ(y)

2

)

µ(y) µ(x) dx dy,

which extends the regular case in a natural way.

We first remark that for Euler equations in two space dimension, the Biot
Savart law reads u = K2

⊥ ∗ ω and Definition 1.1 can be used for the product u ω
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with K2 replaced by K⊥
2 . For N = 1, the function K1(x − y)

(

ϕ(x) − ϕ(y)

2

)

is

continuous. It is an essential argument used in [26] to obtained the weak stability of
this definition and the high field limit of the VPFP system. For N = 2, this function
is still bounded but no more continuous on the diagonal D = {(x, x)/ x ∈ R

2} ⊂ R
4.

Actually this approach is this one used by J.-M. Delort to obtain his famous result
on vortex sheets, [9]. The point is that the H−1 estimate of the vortex field for the
incompressible Euler equation prevents of the appearance of concentration. It is easy
to check that if µ has no atomic part then µ ⊗ µ does not charge the diagonal. In
our context the measure has an atomic part. The Definition 1.1 makes still sense (by
definition of K2 the function vanishes on the diagonal) but it is no more stable for
the weak topology of measures. The goal of this paper is to prove that up to a defect
measure which is localized on the atomic support of the measure µ we can recover
weak stability. The Definition 1.1 being relaxed in such a way, it is then possible to
obtained a global existence and the stability of solutions for the system (1)-(2) in
two space dimension as well as the existence of weak solution for non negative vortex
points.

The spaces Lp, Hm, Wm,p are the usual Sobolev spaces. The set Cp is the set
of p-times continuously differentiable functions, Cpb the subspace of functions with all
derivatives, up to order p, which are bounded, Cpc the subspace of functions of Cp

with compact support.
We denote by Br the ball of radius r of R

N .
The space M(RN ) is the space of Radon measures, M1(R

N ) is the space of
bounded Radon measures and M+

1 (RN ) ⊂ M(RN ) is the subset of non negative
bounded measures. In the following we will have to deal with measures µ(t) on R

N

which depend continuously on the parameter t ∈ I, where I is an open interval of R.
These measures can also be considered as distributions on I × R

N . For ψ ∈ C0
c (R

N )
we denote by

∫

RN

ψ(x) µ(t, x) dx

the action of the measure µ(t) on ψ. For ψ ∈ C0
c (I × R

N ) we use the notation

∫

I

∫

RN

ψ(t, x) µ(t, x) dx dt =

∫

I

(∫

RN

ψ(t, x) µ(t, x) dx

)

dt

which defines the measure µ on I × R
N .

The next Section is devoted to the definition and properties of diagonal defect
measures. In Section 3, we apply the tools developed in Section 2 to the study
of adhesion dynamics in dimension 2. We obtain an existence and stability results
in Theorem 3.2 and qualitative properties of solutions in Proposition 3.2. Finally
Section 4 is concerned with Euler equations in two space dimension. We obtain a
global existence result for an initial non negative vorticity with non vanishing atomic
parts in Theorem 4.3. This result can be generalized to perturbations in Lp(R2),
p > 2 of the initial vorticity, cf Theorem 4.4.

2. Defect measures of tensor products. Let µn be a sequence of Borelian
measures of R

N and ψ be a real test function on R
2N which is Borelian and bounded.

We assume that ψ is continuous except on the diagonalD := {(x, x)/ x ∈ R
N} ⊂ R

2N .
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The aim of this Section is to characterize the limit of quantities like

∫

R2N

ψ(x, y) µn(x) µn(y) dx dy.

We first introduce some notations.

Definition 2.2. Let µ be a Borelian measure of R
N . We denote by Sat(µ) the

atomic support of µ. It is a countably set of points of R
N .

Consider now m(x, y) = µ(x) ⊗ µ(y). We immediately check from the definition
that we have Sat(m) = {(a, b), a, b ∈ Sat(µ)}. Let χD be the characteristic function
of the diagonal. Then by Fubini theorem we have

µ⊗ µ(x, y) = (1 − χD)µ⊗ µ(x, y) +
∑

a∈Sat(µ)

(µ({a}))2 δ(x− a) ⊗ δ(y − a). (5)

We recall that a sequence µn ∈ M1(R
N ) converges vaguely to µ ∈ M1(R

N ) if it
converges in M1(R

N ) − weak∗, that is ∀ϕ ∈ C0
c (R

N )

∫

RN

ϕ(x) µn(x) dx→
∫

RN

ϕ(x) µ(x) dx. (6)

For non negative sequences of measures µn ∈ M+
1 (RN ) this convergence can be

precised. The sequence converges tightly if moreover lim
n→∞

µn(RN ) → µ(RN ). In this

case (6) holds for every bounded continuous function. We also say that a sequence
µn ∈ M+

1 (RN ) is tightly bounded if for some M > 0

∀n ≥ 1, µn(RN ) ≤M,

sup
n=1,2,...

µn(RN \BR) → 0 as R→ ∞. (7)

The condition (7) is the Prokhorov criterion to ensure that the sequence is compact
for the tight topology of measures, see [3] for instance. As a consequence, a sequence
of non negative measures which vaguely converges is tightly convergent if and only if
it is tightly bounded. We recall the following classical result.

Lemma 2.1. Let (µn)n≥1 be a sequence of M+
1 (RN ) which converges toward µ

vaguely. Let F be a subset of R
N such that µ(F ) = 0. Then for every bounded,

compactly supported, Borelian function ϕ on R
N which is continuous at every points

of R
N \ F we have

∫

ϕ(x) µn(x) dx→
∫

ϕ(x) µ(x) dx.

This Lemma can be found in the book of L. Schwartz, [30]. It is one of the key
point of the work of J.-M. Delort on vortex sheets, [9]. Proofs can be found in [30]
(Theorems 62-63, chapter IV, paragraph 6) and in [9, 14] or [29] in the case where F
is closed. We point out that it is trivially false for signed measures as showed by the
following example

F = {0}, µn = δ(x− 1/n) − δ(x+ 1/n), µ = 0, ϕ(x) = sign(x).
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The main idea of this Section is the following. Assume that µ(F ) 6= 0 and that
the discontinuity of the test functions ϕ on F are specified. Then the limit sets

of the sequence

∫

ϕ(x) µn(x) dx can be characterized by introducing defect measures.

We introduce now for i, j = 1, ..N , the Borelian functions

∀x ∈ R
N \ {0}, Ni,j(x) =

xi xj
|x|2 ,

Ni,j(0) = 0. (8)

We denote N := (Ni,j)i,j=1,..N the corresponding matrix valued function. We have
that

∀ξ ∈ R
N , ∀x ∈ R

N \ {0}, N (x).ξ.ξ =

(

x.ξ

|x|

)2

≥ 0,

∀x ∈ R
N \ {0}, tr(N (x)) = 1.

Therefore N is a non negative symmetric matrix valued function and its trace is
bounded by 1. We will have to introduce regularization sequences for the functions
Ni,j .

Definition 2.3. A sequence Nn := (Nn
i,j)i,j=1,..N , n = 1, 2, ..., of symmetric

matrix valued functions on R
N is said to be an admissible approximation sequence of

the function N if and only if it satisfies for some real sequence εn → 0

(i) ∀r > 0, Nn(x) → N (x) uniformly on R
N \Br

(ii) ∀x ∈ R
N , tr(Nn(x)) ≤ 1 + εn

(iii)∀x, ξ ∈ R
N , Nn(x).ξ.ξ ≥ −εn |ξ|2

We remark that (iii) implies that Nn(x) + εnI, where I is the N × N identity
matrix, is symmetric and non negative. Therefore condition (ii) implies that the
coefficients of the matrix Nn are uniformly bounded. There exists some M > 0 such
that for i, j = 1, ..N we have

∀x ∈ R
N , ∀n ≥ 1, |Nn

i,j(x)| ≤M. (9)

The main result of this Section is the following

Proposition 2.1. Let µn ∈ M+
1 (RN ), n = 1, 2, ..., be a tightly bounded se-

quence and Nn, n = 1, 2, ..., an admissible approximation sequence of the function
N . Then for some subsequence nk there is a measure µ ∈ M+

1 (RN ) and diagonal
defect measures νi,j ∈ M1(R

N ) for i, j = 1, ..N such that µnk ⇀ µ tightly and

∀ϕ ∈ C0
b (R

2N ),

∫

R2N

ϕ(x, y) Nnk

i,j (x− y) µnk(x) µnk(y) dx dy →
∫

R2N

ϕ(x, y) Ni,j(x− y) µ(x) µ(y) dx dy +

∫

RN

ϕ(x, x) νi,j(x) dx. (10)

The matrix value measure ν = (νi,j)i,j=1,..N is non negative, symmetric and satisfies

tr(ν(x)) ≤
∑

a∈Sat(µ)

(µ({a}))2 δ(x− a). (11)
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Remark 2.1. If Sat(µ) = ∅ then the defect measure ν vanishes. By this way
we recover the result of Lemma 2.1 for the measure µ ⊗ µ with F = D. At least, it
shows that, in the particular situation described in the Proposition, the above result is
stronger than Lemma 2.1.

Proof. Let ψ ∈ C0
b (R

N ), we define Radon measures, mn
i,j , by

∫

RN

ψ(x) mn
i,j(x) dx :=

∫

R2N

ψ(x) Nn
i,j(x− y) µn(x) µn(y) dx dy.

In view of (9) we have |mn
i,j | ≤ Mµn(RN ) µn, therefore these measures are tightly

bounded. For a subsequence, still indexed by n for the sake of legibility, we have

mn
i,j ⇀mi,j , µn ⇀ µ, tightly.

We define
∫

RN

ψ(x) νi,j(x) dx :=

∫

RN

ψ(x) mi,j(x) dx

−
∫

R2N

ψ(x) Ni,j(x− y) µ(x) µ(y) dx dy.

It remains to check that (10) and (11) hold. Let ϕ ∈ C0
b (R

2N ) be a test function.
The uniform bound (9), and the point (i) of Definition 2.3 imply that

∀R > 0, (ϕ(x, y) − ϕ(x, x)) N n
i,j(x− y) →

(ϕ(x, y) − ϕ(x, x)) Ni,j(x− y) uniformly on BR.

The sequence (ϕ(x, y) − ϕ(x, x)) Nn
i,j(x − y) is uniformly bounded and the function

(ϕ(x, y)−ϕ(x, x)) Ni,j(x−y) is continuous and bounded. Then, the fact that µn(x)⊗
µn(y) → µ(x) ⊗ µ(y) tightly, yields

∫

R2N

(ϕ(x, y) − ϕ(x, x)) Nn
i,j(x− y) µn(x) µn(y) dx dy →

∫

R2N

(ϕ(x, y) − ϕ(x, x)) Ni,j(x− y) µ(x) µ(y) dx dy.

Using the definition of mi,j and νi,j with ψ(x) = ϕ(x, x) we obtain (10). Let ξ ∈ R
N

be a fixed vector. Let ϕ be a non negative, bounded, continuous function. The point
(iii) of Definition 2.3 implies

∀x, y ∈ R
N ,

∑

i,j=1,..N

Nn
i,j(x− y)ξiξj ≥ −εn |ξ|2,

∑

i,j=1,..N

∫

R2N

ϕ(x, y) ξiξjNn
i,j(x− y) µ(x) µ(y) dx dy ≥ −C εn

for some positive constant C which does not depend on n. Using (10) we obtain that

∑

i,j=1,..N

∫

R2N

ϕ(x, y) ξiξjNi,j(x− y) µ(x) µ(y) dx dy

+
∑

i,j=1,..N

∫

RN

ϕ(x, x) ξiξj νi,j(x) dx ≥ 0. (12)
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Let η ∈ C0
c (R

N ) satisfying 0 ≤ η ≤ 1, η(0) = 1. Let ψ ∈ C0
b (R

N ) be any non negative
function. We define ϕp(x, y) = η(p(x−y))ψ(x). The functions ϕp(x, y) ξiξjNi,j(x−y)
tend to 0 pointwise and are bounded. Then by dominated convergence, the first term
in (12) tends to 0. The second one is constant, so we obtain

∑

i,j=1,..N

∫

RN

ψ(x) ξiξj νi,j(x) dx ≥ 0.

It proves that ν is a non negative symmetric matrix valued measure. From the point
(ii) of Definition 2.3 we deduce that for all non negative functions ϕ ∈ C0

b (R
N ).

(1 + εn)

∫

R2N

ϕ(x, y) µn(x) µn(y) dx dy ≥

tr

(∫

R2N

ϕ(x, y) Nn(x− y) µn(x) µn(y) dx dy

)

.

Passing to the limit, we get

∫

R2N

ϕ(x, y) µ(x) µ(y) dx dy

≥ tr

(∫

R2N

ϕ(x, y) N (x− y) µ(x) µ(y) dx dy

)

+tr

(∫

RN

ϕ(x, x)ν(x) dx

)

≥
∫

R2N

ϕ (1 − χD)(x, y) µ(x) µ(y) dx dy

+tr

(∫

RN

ϕ(x, x)ν(x) dx

)

,

where χD is the characteristic function of the diagonal. We use (5), in order to
conclude that

∑

a∈Sat(µ)

µ({a})2 ϕ(a, a) ≥ tr

(∫

RN

ϕ(x, x)ν(x) dx

)

.

It ends the proof of Proposition 2.1.

Proposition 2.1 gives a generalization of the tensor product of measures acting
on functions which are not continuous on the diagonal. The discontinuity has to
be of the same kind as the one of the functions Ni,j . A remarkable point is that
this generalization is stable for the weak convergence of measures. Indeed we can
use Proposition 2.1 with the (constant) sequence Nn = N which is obviously an
admissible approximation. Then we obtain the following result.

Corollary 2.1. Let µn ∈ M+
1 (RN ) be a tightly bounded sequence. Let νn be a

sequence of non negative matrix valued measures on R
N , satisfying

tr(νn(x)) ≤
∑

a∈Sat(µn)

(µn({a}))2 δ(x− a).
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Then for some subsequence nk there is a measure µ ∈ M+
1 (RN ) and diagonal defect

measures νi,j ∈ M1(R
N ) for i, j = 1, ..N such that µnk ⇀ µ tightly and ∀ϕ ∈ C0

b (R
2N )

we have
∫

R2N

ϕ(x, y) Ni,j(x− y) µnk(x) µnk(y) dx dy +

∫

RN

ϕ(x, x) νnk

i,j (x) dx→
∫

R2N

ϕ(x, y) Ni,j(x− y) µ(x) µ(y) dx dy +

∫

RN

ϕ(x, x) νi,j(x) dx. (13)

The matrix value measure ν = (νi,j)i,j=1,..N is non negative, symmetric and satisfies

tr(ν(x)) ≤
∑

a∈Sat(µ)

(µ({a}))2 δ(x− a). (14)

Proof. We first remark that for any ξ ∈ R
N the sequence of measures νn.ξ.ξ is

tightly bounded because νn.ξ.ξ ≤ |ξ|2tr(νn) ≤ |ξ|2µn(RN ) µn. It follows that up to a
subsequence, we can assume it tightly converges. This fact together with Proposition
2.1 for the sequence Nn = N yields the existence of the limit measures νi,j satisfying
(13). The non negativity of ν is obtained as in the proof of Proposition 2.1. The
bound of the trace is also obtained in the same way by remarking that for every non
negative test function ϕ

tr

(∫

R2N

ϕ(x, y) N (x− y) µnk(x) µnk(y) dx dy +

∫

RN

ϕ(x, x) νnk(x) dx

)

=

∫

R2N

ϕ(x, y)(1 − χD(x, y)) µnk(x) µnk(y) dx dy

+tr

(∫

RN

ϕ(x, x) νnk(x) dx

)

≤
∫

R2N

ϕ(x, y)(1 − χD(x, y)) µnk(x) µnk(y) dx dy

+
∑

a∈Sat(µ
nk )

µnk({a})2ϕ(a, a)

=

∫

R2N

ϕ(x, y) µnk(x) µnk(y) dx dy,

where we have used (5) for the last equality. Passing to the limit in this inequality
and arguing as in the proof of the Proposition conclude the proof of the corollary.

We can have similar result for measures depending on parameters. We first intro-
duce some definitions. We denote by λ the Lebesgue measure on the real line. Let I
be a real interval and µ(t), t ∈ I a family of bounded non negative measures which are
tightly continuous with respect to t. Let χnD, n = 1, 2, ... be a sequence of bounded
continuous functions which converges pointwise to χD. The measures µ(t) ⊗ µ(t) χnD
are tightly continuous with respect to t and converge tightly, pointwise with respect
to t, toward µ(t) ⊗ µ(t) χD =

∑

a∈Sat(µ(t))(µ(t)({a}))2 δ(x − a) δ(y − a). Therefore
this family of measures is measurable with respect to t. Then the marginal

∫

RN

µ(t) ⊗ µ(t)(x, y) χD(x, y) dy =
∑

a∈Sat(µ(t))

(µ(t)({a}))2 δ(x− a)
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is also measurable. Since it is locally bounded (by µ(t,R2) µ(t)) it is locally integrable
with respect to the Lebesgue measure λ. We denote by

∑

a∈Sat(µ(t))

(µ(t)({a}))2 δ(x− a) λ(t)

the measure in M(I × R
2) defined by

ψ ∈ C0
c (I × R

2) 7→
∫

I





∑

a∈Sat(µ(t))

(µ(t)({a}))2 ψ(t, a)



 dt.

The set of time dependent measures equipped with admissible diagonal defect mea-
sures is given as follows.

Definition 2.4. Let I be an interval of R, we define the set of time dependent
measures with diagonal defects

DM+(I; RN ) := {(µ, ν); ∀t ∈ I, µ(t) ∈ M+
1 (RN ), ν ∈ M(I × R

N )N×N ,

µ(t) is a tightly continuous with respect to t,

ν is a non negative, symmetric, matrix valued measure,

tr(ν(t, x)) ≤
∑

a∈Sat(µ(t))

(µ(t)({a}))2 δ(x− a) λ(t) }. (15)

We have

Definition 2.5. A sequence (µn, νn) ∈ DM+(I; RN ), n = 1, 2, ... converges in
the set of measures with diagonal defects toward (µ, ν) ∈ DM+(I; RN ) if and only if,
for every compact interval K ⊂ I, µnk(t) ⇀ µ(t) tightly, uniformly with respect to
t ∈ K and ∀ϕ ∈ C0

b (I × R
2N ) with supp(ϕ) ⊂ K × R

2N , we have
∫

I

∫

R2N

ϕ(t, x, y) Ni,j(x− y) µn(t, x) µn(t, y) dx dy dt +

∫

I×RN

ϕ(x, x) νni,j(t, x) dx dt→
∫

I

∫

R2N

ϕ(t, x, y) Ni,j(x− y) µ(t, x) µ(t, y) dx dy dt+

∫

I×RN

ϕ(t, x, x) νi,j(t, x) dx dt. (16)

We note

(µn, νn) ⇀ (µ, ν) d.m.

Let µn(t) ∈ M+
1 (RN ), n = 1, 2, ... be a sequence of non negative measures de-

pending on a real parameter t ∈ I. The sequence is said to be equicontinuous and
locally tightly bounded if and only if for all compact intervals K ⊂ I there is a positive
constant M such that ∀ψ ∈ C0

c (R
N )

the sequence t→
∫

RN

ψ(x) µn(t, x) dx is equicontinuous on I,

∀t ∈ K, µn(t)(RN ) ≤M,

sup
n=1,2,...

sup
t∈K

∫

|x|≥R

µn(t, x) dx→ 0, as R→ ∞.
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If it holds, there is a measure µ(t) tightly continuous with respect to time and a
subsequence nk such that µnk(t) converges tightly, locally uniformly in time toward
µ(t). It means that ∀ψ ∈ C0

b (R
N ), all compact interval K ⊂ I, we have

∫

RN

ψ(x) µnk(t, x) dx→
∫

RN

ψ(x) µ(t, x) dx, uniformly for t ∈ K.

The uniform convergence with respect to the parameter is necessary to obtain the
convergence of the tensor product. Indeed, we have (see [26] for instance) that if µn(t)
converges tightly, uniformly in time, toward µ(t) then the tensor product µn(t)⊗µn(t)
converges tightly, uniformly in time, toward µ(t) ⊗ µ(t). This allows to argue as in
the proofs of Proposition 2.1, and of Corollary 2.1. We have the following new version
of Proposition 2.1.

Corollary 2.2. Let I be a real interval, let (µn(t))n≥1, t ∈ I be a locally tightly
bounded, equicontinuous sequence of measures. Let Nn be an admissible approxima-
tion sequence of N . Then for some subsequence nk there is (µ, ν) ∈ DM+(I; RN )
such that for every compact interval K ⊂ I, µnk(t) ⇀ µ(t) tightly, uniformly with
respect to t ∈ K and ∀ϕ ∈ C0

b (I × R
2N ) with supp(ϕ) ⊂ K × R

2N

∫

I

∫

R2N

ϕ(t, x, y) Nnk

i,j (x− y) µnk(t, x) µnk(t, y) dx dy dt→
∫

R2N

ϕ(x, y) Ni,j(x− y) µ(x) µ(y) dx dy dt +

∫

I

∫

RN

ϕ(x, x) νi,j(x) dx dt. (17)

We have also the following compactness result analogous to Corollary 2.1.

Corollary 2.3. Let I be a real interval, let (µn, νn)n≥1 be a sequence of mea-
sures in DM+(I; RN ). We assume that (µn(t))n≥1, t ∈ I is a locally tightly bounded,
equicontinuous sequence of measures. Then for some subsequence nk there is

(µ, ν) ∈ DM+(I; RN )

such that

(µnk , νnk) ⇀ (µ, ν) d.m. as k → ∞.

3. Application to adhesion dynamics. We define

Ki(x) = − 1

2π

xi
|x|2 , for x ∈ R

2 \ {0}, Ki(0) = 0, i = 1, 2. (18)

The Newton adhesion dynamics is modeled by the following equation for the time
dependent measure ρ on R

2

∂

∂t
ρ+

∑

i=1,2

∂

∂xi
ji = 0, t > 0, x ∈ R

2, (19)

with ji = ρ ui, ui(t) = Ki ∗ ρ(t).
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This equation is completed by a Cauchy data

ρ(0) = ρI , ρI ∈ M+
1 (R2). (20)

As explained in the introduction, the property that the functions Ki are odd, allows
to define the distribution ji = ρ(t)ui(t). We have

∀ψ ∈ C∞
c (R2),

∫

R2

ψ(x) ji(t, x) dx :=

1

2

∫

R4

(ψ(x) − ψ(y))Ki(x− y) ρ(t, x) ρ(t, y) dx dy. (21)

We remark that the function (ψ(x) − ψ(y))Ki(x− y) is equivalent to

− 1

2π

∑

j=1,2

∂

∂xj
ψ(x)Ni,j(x− y)

in the neighborhood of the diagonal. In particular the functions

Li(ψ) =
1

2
(ψ(x) − ψ(y))Ki(x− y) +

1

4π

∑

j=1,2

∂

∂xj
ψ(x)Ni,j(x− y) (22)

are bounded and continuous. We summarize these results in the following Lemma

Lemma 3.2. Let µ ∈ M+
1 (R2) then ∀ψ ∈ C1

b (R
2) and for i = 1, 2 we have

1

2

∫

R4

(ψ(x) − ψ(y))Ki(x− y) µ(x) µ(y) dx dy =

∫

R4

Li(ψ)(x, y) µ(x) µ(y) dx dy

− 1

4π

∑

j=1,2

∫

R4

∂

∂xj
ψ(x)Ni,j(x− y) µ(x) µ(y) dx dy (23)

where the operators Li ∈ L(C1
b (R

2);C0
b (R

4)) are defined in (22).

We recall that by definition Ni,j(0) = 0, so that the above equality makes sense.
However we have seen in the previous Section that it is necessary to introduce diagonal
defect measures in order to recover stability for the tight convergence of measures.

Definition 3.6. Let I be a real interval, let (ρ, ν) ∈ DM+(I; R2), then the
Newton flux j(ρ, ν) = (j1(ρ, ν), j2(ρ, ν)) is defined by

∀ψ ∈ C1
c (I × R

2),

∫

I

∫

R2

ψ(t, x) ji(ρ, ν)(t, x) dx dt =

1

2

∫

I

∫

R4

(ψ(t, x) − ψ(t, y))Ki(x− y) ρ(t, x) ρ(t, y) dx dy dt

− 1

4π

∑

j=1,2

∫

I

∫

R2

∂

∂xj
ψ(t, x) νi,j(t, x) dx dt. (24)

A direct consequence of Definition 2.5 and of Lemma 3.2 is the following stability
result.
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Lemma 3.3. Let I be a real interval and (ρn, νn) ∈ DM+(I; R2), n = 1, 2, ...,
(ρ, ν) ∈ DM+(I; R2) such that

(ρn, νn) ⇀ (ρ, ν) d.m.

then for i = 1, 2 we have

∀ψ ∈ C1
c (I × R

2),
∫

I

∫

R2

ψ(t, x) ji(ρ
n, νn)(t, x) dx dt→

∫

I

∫

R2

ψ(t, x) ji(ρ, ν)(t, x) dx dt.

Proof. In view of (24) and using Lemma 3.2 we get

∀ψ ∈ C1
b (I × R

2),

∫

I

∫

R2

ψ(t, x) ji(ρ, ν)(t, x) dx dt =

1

2

∫

I

∫

R4

Li(ψ)(x, y) ρn(t, x) ρn(t, y) dx dy dt

− 1

4π

∑

j=1,2

∫

I

∫

R4

∂

∂xj
ψ(t, x)Ni,j(x− y) ρn(t, x) ρn(t, y) dx dt

− 1

4π

∑

j=1,2

∫

I

∫

R4

∂

∂xj
ψ(t, x) νni,j(t, x) dx dt.

The first integral converges because ρn(t, x) ρn(t, y) ⇀ ρ(t, x) ρ(t, y) tightly on R
4

uniformly with respect to t ∈ K, for any compact interval K ⊂ I. The last two
integrals converge by Definition 2.5.

This continuity result of the Newton flux allows to obtain the stability of gener-
alized solutions to Newton adhesion dynamics.

Definition 3.7. Let T ∈ (0,+∞], a couple (ρ, ν) ∈ DM+([0, T ); R2) is a gener-
alized solution on [0, T ) of the Newton adhesion dynamics equation with the Cauchy
data ρI ∈ M+

1 (R2) if and only if ρ(0) = ρI and

∂

∂t
ρ+

∑

i=1,2

∂

∂xi
ji(ρ, ν) = 0

in the sense of distribution on (0, T ) × R
2.

Let us remark that if there is no atomic part to the measures ρ(t), t ∈ [0, T ) then
the defect measure vanishes and the definition of ji(ρ, 0) coincide with the classical
definition (21). The generalized solutions also satisfy the classical conservation law
and are stable for the weak convergence of measures.

Theorem 3.2. We have the following results concerning generalized solutions.
Global existence. For all initial data ρI ∈ M+

1 (R2), there is a generalized solution on
[0,∞).
A priori estimates. Let T ∈ (0,+∞], and let (ρ, ν) ∈ DM+([0, T ); R2) be a gener-

alized solution on [0, T ) of the Newton adhesion dynamics equation with the Cauchy
data ρI ∈ M+

1 (R2). Then we have the conservation law

∀t ∈ [0, T ), ρ(t,R2) = ρI(R
2). (25)
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Moreover, we have an a priori tight bound of the solution. There is a universal
constant, C > 0, such that

∀R > 0, ∀t ∈ [0, T ), ρ(t,R2 \BR) ≤ ρI(R
2 \BR/2) + C

t

R2
ρI(R

2)
2
. (26)

If |x| ρI is assumed to be a bounded measure then the same is true for |x| ρ(t),
t ∈ [0, T ) and there is a universal constant C > 0 such that

∀t ∈ [0, T ),

∫

R2

|x| ρ(t, x) dx ≤
∫

R2

|x| ρI(x) dx

+C ρI(R
2)

(

1 + t ρI(R
2)

)

. (27)

In this case the mean position of particles defined by

X(t) :=

∫

R2

x
ρ(t, x) dx

ρ(t,R2)
(28)

is conserved

∀t ∈ [0, T ), X(t) = XI :=

∫

R2

x
ρI(x) dx

ρI(R2)
. (29)

The equicontinuity of generalized solutions can be estimated as follows. For every test
function ψ ∈ C2

b (R
2), there is a positive constant C(ψ) which depends only on the test

function such that

∣

∣

∣

∣

d

dt

∫

R2

ψ(x) ρ(t, x) dx

∣

∣

∣

∣

≤ C(ψ) ρI(R
2)

2
, (30)

in the distribution sense on (0, T ).

It follows that if (ρn, νn) ∈ DM+([0, T ); R2), n = 1, 2, ... is a sequence of generalized
solutions such that ρnI = ρn(t = 0) is tightly bounded then the sequence ρn(t), t ∈ [0, T )
is locally tightly uniformly bounded and equicontinuous with respect to time.
Stability. The set of generalized solutions is stable. More precisely let (ρn, νn) ∈
DM+([0, T ); R2), n = 1, 2, ... be a sequence of approximated solutions of Coulomb
adhesion dynamics:

∂

∂t
ρn +

∑

i=1,2

∂

∂xi
ji(ρ

n, νn) = Sn

with Sn → 0 in the sense of distribution on (0, T ) × R
2 as n → ∞. We assume that

the sequence of measures (ρn(t))n≥1 is locally tightly uniformly bounded and equicon-
tinuous with respect to time. Then all accumulation points of the sequence (ρn, νn) for
the convergence in diagonal defect measures obtained by Corollary 2.3 are generalized
solutions of the Newton adhesion dynamics equation.

Proof.

Stability. The stability result is a direct consequence of Lemma 3.3 and of
Definition 3.7.
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A priori estimates. We use Definition 3.7 with test functions of the form ϕ(t, x) =
α(t) ψ(x), α ∈ C∞

c (I), ψ ∈ C∞
c (R2). We obtain the following equality in the sense of

distribution on (0, T )

d

dt

∫

R2

ψ(x) ρ(t, x) dx =

1

2

2
∑

i=1

∫

R4

(

∂

∂xi
ψ(x) − ∂

∂xi
ψ(y)

)

Ki(x− y) ρ(t, x) ρ(t, y) dx dy

− 1

4π

2
∑

i,j=1

∫

R2

∂2

∂xi∂xj
ψ(x) νi,j(t, x) dx.

Since ν is symmetric, non negative matrix valued, by Schwartz inequality we have

|νi,j |(t,R2) ≤
√

νi,i(t,R2) νj,j(t,R2)

≤ tr(ν(t,R2) ≤ ρ(t,R2)
2
,

where we have used (15) to obtain the last inequality. If we denote

|ψ|2,∞ := sup
x∈R2, i,j=1,2

∣

∣

∣

∣

∂2

∂xi∂xj
ψ(x)

∣

∣

∣

∣

,

we obtain for a universal constant C > 0

For a.e. t ∈ (0, T ),

∣

∣

∣

∣

d

dt

∫

R2

ψ(x) ρ(t, x) dx

∣

∣

∣

∣

≤ C |ψ|2,∞ ρ(t,R2)
2
. (31)

We choose ψ(x) = β(|x|2/R2) where β ∈ C∞
c (R) is non negative and equal to 1 in a

neighborhood of 0. We obtain

∣

∣

∣

∣

d

dt

∫

R2

β(|x|2/R2) ρ(t, x) dx

∣

∣

∣

∣

≤ C(β)
1

R2
ρ(t,R2)

2
.

The limit R → ∞ yields that
d

dt
ρ(t,R2) = 0 in the sense of distribution on (0, T ).

Since by definition ρ(t,R2) is continuous, in particular at t = 0, we obtain the con-
servation law (25). The estimate (30) is a direct consequence of (31) and of (25). An
other consequence of (25) is that we also have

∣

∣

∣

∣

d

dt

∫

R2

(1 − β(|x|2/R2)) ρ(t, x) dx

∣

∣

∣

∣

≤ C(β)
1

R2
ρI(R

2)
2
.

We choose β such that 0 ≤ β ≤ 1, β(r) = 1 for 0 ≤ r ≤ 1/2, β(r) = 0 for r ≥ 1, in
order to obtain (26). We can also use (31) with ψ(x) =

√

1 + |x|2 β(|x|2/R2). The
semi-norm |ψ|2,∞ is bounded independently of R. Therefore the limit R→ ∞ gives

∫

R2

√

1 + |x|2ρ(t, x) dx ≤
∫

R2

√

1 + |x|2ρI(x) dx+ C t ρI(R
2)

2
.

It leads to (27). Now we can use ψ(x) = x β(|x|2/R2) in (31). We have
|ψ|2,∞ ≤ C(β)/R. The limit R→ ∞ leads to the conservation of the first momentum
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∫

R2

x ρ(t, x) dx which together with (25) leads to (29).

Let ρnI ∈ M+
1 (R2), n = 1, 2, ..., be a tightly bounded sequence of non negative

measures. Then it follows from (25), (26) that a corresponding sequence of generalized
solutions ρn(t), n = 1, 2, ..., t ∈ [0, T ) is tightly bounded uniformly with respect to
time on every interval [0, T0] with T0 < T . Let ψ ∈ C0

c (R
2), for all ε > 0 there exists

ψε ∈ C∞
c (R2) such that ∀x ∈ R

2, |ψ(x) − ψε(x)| ≤ ε. A consequence of (30) is that

∀t, s ∈ [0, T ),

∣

∣

∣

∣

∫

R2

ψ(x) ρn(t, x) dx −
∫

R2

ψ(x) ρn(s, x) dx

∣

∣

∣

∣

≤
∣

∣

∣

∣

∫

R2

(ψ(x) − ψε(x)) (ρn(t, x) − ρn(s, x)) dx

∣

∣

∣

∣

+

∣

∣

∣

∣

∫

R2

ψε(x) ρ
n(t, x) dx −

∫

R2

ψε(x) ρ
n(s, x) dx

∣

∣

∣

∣

,

≤ 2 ε ρnI (R
2) + C(ψε) ρ

n
I (R

2)
2 |t− s|,

≤ C (ε + C(ψε) |t− s|),

for a constant C independent on n. Therefore the sequence is equicontinuous with
respect to time.

Global existence. We choose β ∈ C∞
c (R) such that 0 ≤ β ≤ 1, β(r) = 1 for

0 ≤ r ≤ 1/2, β(r) = 0 for r ≥ 1. For n = 1, 2, ..., let us define ∀x ∈ R
2, γn(x) =

1 − β(n2|x|2), Kn
i (x) = Ki(x) γ

n(x). The functions Kn
i belong to C∞

b (R2). We also
regularize the initial data ρI ∈ M+

1 (R2). So, let ρnI ∈ C∞
c (R2), n = 1, 2, ..., be a

sequence of non negative functions such that ρnI ⇀ ρI tightly. For n = 1, 2, ..., a fixed
point method gives the existence and the uniqueness of a smooth solution ρn of the
regularized adhesion dynamics

∂

∂t
ρn(t, x) +

∑

i=1,2

∂

∂xi
jni (t, x) = 0, t > 0, x ∈ R

2, (32)

with jni = ρn (Kn
i ∗x ρn)

ρn(t = 0) = ρnI . (33)

The same arguments as in the previous part of the proof show that ρn(t), n = 1, 2, ...,
t ∈ [0,∞), is locally uniformly tightly bounded and equicontinuous with respect to
time. We also remark that Kn

i is an odd function. So, as for Lemma 3.2, we obtain

∀ϕ ∈ C∞
c ((0,∞) × R

2),

∫ ∞

0

∫

R2

ϕ(t, x) jni (t, x) dx dt

=

∫ ∞

0

∫

R4

Li(ϕ)(t, x, y) γn(x− y) ρn(t, x) ρn(t, y) dx dy dt

+

2
∑

j=1

∫ ∞

0

∫

R4

∂

∂xj
ϕ(t, x)Nn

i,j(x− y) ρn(t, x) ρn(t, y) dx dy dt, (34)

with Nn
i,j(x) = Ni,j(x) γ

n(x).

The sequence Nn is obviously an admissible approximation of the matrix valued
function N in the sense of Definition 2.3. Then we can use Corollary 2.2 to obtain
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for a subsequence, still labeled by n for the sake of legibility, the existence of a limit
(ρ, ν) ∈ DM+([0,∞); R2) such that

∫ ∞

0

∫

R4

∂

∂xj
ϕ(t, x)Nn

i,j(x− y) ρn(t, x) ρn(t, y) dx dy dt

→
∫ ∞

0

∫

R4

∂

∂xj
ϕ(t, x)Ni,j(x− y) ρ(t, x) ρ(t, y) dx dy dt

+

∫ ∞

0

∫

R2

∂

∂xj
ϕ(t, x)νi,j(t, x) dx dt. (35)

We remark that Li(ϕ) is uniformly continuous and ∀(t, x) ∈ (0,∞) × R
2 we have

Li(ϕ)(t, x, x) = 0. Then we can easily check that

Li(ϕ)(t, x, y) γn(x− y) → Li(ϕ)(t, x, y), uniformly on (0,∞) × R
4.

On the other hand, for all T > 0, ρn(t) → ρ(t) tightly, uniformly with respect to
t ∈ [0, T ]. Therefore ρn(t, x)ρn(t, y) → ρ(t, x)ρ(t, y) tightly, uniformly with respect to
t ∈ [0, T ]. We conclude that

∫ ∞

0

∫

R4

Li(ϕ)(t, x, y) γn(x− y) ρn(t, x) ρn(t, y) dx dy dt

→
∫ ∞

0

∫

R4

Li(ϕ)(t, x, y) ρ(t, x) ρ(t, y) dx dy dt. (36)

We deduce from (34), (35) and (36) that jni → ji(ρ, ν) in the distribution sense on
(0,∞) × R

2. It allows to pass to the limit in (32) and in (33). We obtain that (ρ, ν)
is a generalized solution of the adhesion dynamic equation corresponding to the
Cauchy data ρI .

In the last Proposition of this Section, our goal is to prove that there is always
appearance of an atomic part for generalized solution and to try to characterize the
defect measure. We also give the large time behavior of global generalized solutions.

Proposition 3.2. Let (ρ, ν) ∈ DM+([0, T ); R2) be a generalized solution. Let
S = {(t, a)/ t ∈ [0, T ), a ∈ Sat(ρ(t))} be the singular support of the measure ρ. If Γ
is a Borellian set which does not meet S (Γ ∩ S = ∅) or if Γ is an Hölder continuous
curve, Γ = {(t, Z(t))/ t ∈ [0, T ), Z ∈ C0,γ(R; R2)}, with coefficient γ > 1/2 then the

defect measure ν does not charge Γ :

∫

Γ

ν(t, x) dx dt = 0.

If ρI = ρ(t = 0) has its second moment bounded,
∫

R2 |x|2 ρI(x) dx < ∞, then the
maximal time T0 where ρ(t) has no atomic part for almost every t ∈ [0, T0] is bounded
by

T0 ≤ 2π

ρI(R2)
2

∫

R2

|x−XI |2 ρ(x) dx,

where XI is the mean position of particles defined by (29).
If (ρ, ν) ∈ DM+([0,∞); R2) is a global generalized solution then the defect mea-
sure (s, x) → ν(t + s, x) tends to 0 tightly as a measure on [0,∞) × R

2 and
ρ(t) ⇀ ρI(R

2) δ(x−XI) tightly as t→ ∞.
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Proof. The fact that the defect measure ν does not charge Γ, when Γ does not
meet S, is only a consequence of the bound on the trace given in Definition (15). Let
now Z ∈ C0,γ(R; R2). Let ζ ∈ C∞

0 (R) such that
∫

R
ζ(s) ds = 1. We consider the

regularization Zn = Z ∗ ζαn
with ζαn

(t) =
1

αn
ζ

(

t

αn

)

, where αn → 0 is a sequence

to be chosen later on. For t in a compact interval, we have for some constant C > 0

|Z(t) − Zn(t)| ≤
∫

R

|Z(t− αns) − Zn(t)| ζ(s) ds

≤ C αn
γ .

For the time derivative of the regularized curve, we have the following estimate
∣

∣

∣

∣

d

dt
Zn(t)

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

R

Z(s)
1

αn2

d

dt
ζ

(

t− s

αn

)

ds

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

R

(Z(t− αns) − Z(t))
1

αn

d

dt
ζ(s) ds

∣

∣

∣

∣

≤ C
1

αn1−γ
.

For γ ∈ ( 1
2 , 1) we choose αn = n−δ with 1

γ < δ < 1
1−γ . In such a way, we obtain that

for any T0 > 0 there is a constant C > 0 such that

∀t ∈ [0, T0],

∣

∣

∣

∣

1

n

d

dt
Zn(t)

∣

∣

∣

∣

≤ C,
1

n

d

dt
Zn(t) → 0, n |Zn(t) − Z(t)| → 0. (37)

Let η ∈ C∞
c (0, T ), and β ∈ C∞

c (R2). We use the weak formulation of the adhesion
equation with the test function ψn(t, x) = η(t) 1

n2 β(n(x− Zn(t))). We get

∫ T

0

∫

R2

(

η′(t)
1

n2
β(n(x− Zn(t))) + η(t)

1

n

d

dt
Zn(t).∇β(n(x− Zn(t)))

)

ρ(t, x) dx dt

+
1

2

∑

i=1,2

∫ T

0

∫

R4

η(t)
1

n

(

∂

∂xi
β(n(x− Zn(t))) −

∂

∂xi
β(n(y − Zn(t)))

)

Ki(x− y) ρ(t, x) ρ(t, y) dx dy dt

− 1

4π

∑

i,j=1,2

∫ T

0

∫

R2

η(t)
∂2

∂xi∂xj
β(n(x− Zn(t))) νi,j(t, x) dx dt = 0.

In view of (37), we can use dominated convergences to obtain in the limit n→ ∞
∑

i,j=1,2

∫ T

0

η(t)
∂2

∂xi∂xj
β(0)) νi,j(t, {Z(t)}) dt = 0.

By choosing for instance β(x) = |x|2 in a neighborhood of 0, we deduce from the
above equality that tr(ν) does not charge Γ. Since ν is a non negative matrix valued
measure, it is enough to conclude that ν does not charge Γ.

We prove now that there is always appearance of an atomic part in the solutions
of the adhesion dynamics equation. We assume that

∫

R2 |x|2 ρI(x) dx < ∞. Then,
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as in the proof of Theorem 3.2, by using convenient truncation sequences, we prove
that

∫

R2 |x|2 ρ(t, x) dx is a bounded continuous function which satisfies in the sense
of distribution

d

dt

∫

R2

|x|2 ρ(t, x) dx

=
∑

i=1,2

∫

R4

(xi − yi)Ki(x− y) ρ(t, x) ρ(t, y) dx dy

− 1

2π

∑

i=1,2

∫

R2

νi,i(t, x) dx

= − 1

2π

(∫

R4

(1 − χD)(x, y) ρ(t, x) ρ(t, y) dx dy + tr(ν)(t,R2)

)

.

We use (5) and the conservation law (25) to obtain

d

dt

∫

R2

|x|2 ρ(t, x) dx

= − 1

2π



ρI(R
2)

2
+ tr(ν)(t,R2) −

∑

a∈Sat(ρ(t))

ρ(t, {a})2


 .

The conservation of the first moment and (25) yields

d

dt

∫

R2

|x−XI |2 ρ(t, x) dx =
d

dt

∫

R2

|x|2 ρ(t, x) dx.

Therefore for any t ∈ [0, T ) we have

0 ≤
∫

R2

|x−XI |2 ρ(t, x) dx =

∫

R2

|x−XI |2 ρI(x) dx

− 1

2π

∫ t

0



ρI(R
2)

2
+ tr(ν)(s,R2) −

∑

a∈Sat(ρ(s))

ρ(s, {a})2


 ds. (38)

Let T0 the maximal time such that for almost every s ∈ [0, T0], Sat(ρ(s)) = ∅, we have

0 ≤
∫

R2

|x−XI |2 ρI(x) dx− 1

2π

∫ T0

0

(

ρI(R
2)

2
+ tr(ν)(s,R2)

)

ds

≤
∫

R2

|x−XI |2 ρI(x) dx− 1

2π
T0 ρI(R

2)
2
.

It gives the desired estimate on T0.

We now study the asymptotic behavior for large time. Then we assume that (ρ, ν)
is a global generalized solution. Since

F (s) = ρI(R
2)

2 −
∑

a∈Sat(ρ(s))

ρ(s, {a})2 = ρ(s) ⊗ ρ(s)(R4 \D)

and tr(ν)(s,R2) are non negative, the inequality (38) proves that these functions are
integrable on (0,∞). Let tn → ∞, the measure (s, x) → tr(ν)(tn + s, x) tends to



ADHESION DYNAMICS AND EULER EQUATIONS 553

0 tightly in M+
1 ([0,∞) × R

2) which leads to the first assertion on the asymptotic
behavior. We also have that the function s → F (tn + s) tends to 0 in L1(0,∞).
Therefore there is a subsequence tnk

such that F (tnk
+ s) → 0, a.e. We use now the

following Lemma whose proof is postponed at the end of this Section.

Lemma 3.4. Let ρk ∈ M+
1 (RD), k = 1, 2, ... be a tightly bounded sequence of non

negative measures such that ρk ⊗ ρk(R2D \D) → 0. Then, up to a subsequence, there
exist M ≥ 0 and X ∈ R

2D such that ρk(x) ⇀M δ(x−X) tightly.

We apply this Lemma for s a.e. to the sequence ρ(tnk
+ s). Remark that the

sequence is tightly bounded because

∫

R2

|x|2ρ(tnk
+ s, x) dx is uniformly bounded.

Since the mass and the mean position of particles are conserved quantities we
obtain that, up to subsequences, ρ(tnk

+ s) ⇀ ρI(R
2) δ(x − XI). Since the limit

is unique the whole sequence converges. But it follows from (30) that the sequence
is equicontinuous with respect to time. Therefore ρ(tnk

+ s) ⇀ ρI(R
2) δ(x − XI)

for all s ∈ [0, T ). In particular ρ(tnk
) ⇀ ρI(R

2) δ(x − XI). Once again, the limit
does not depend on the subsequence tnk

we have considered which proves that the
convergence holds for the whole sequence. It concludes the proof of the Proposition.

Proof of Lemma 3.4. Let ρkreg(x) = ρk(x) −
∑

a∈Sat(ρk)

ρk({a}) δ(x − a) be the

regular part of the measure ρk. Since 0 ≤ ρkreg ≤ ρk, we have

ρkreg(R
D)

2
= ρkreg ⊗ ρkreg(R

2D \D) → 0.

Therefore ρkreg ⇀ 0 tightly and we can now assume without loss of generality that

ρk is purely atomic. Up to extracting a subsequence, for some M ≥ 0, we have
Mk := ρk(RD) → M . If M = 0 the point X can be chosen arbitrarily. We assume
now M > 0. We have

ρk ⊗ ρk(R2D \D) =
∑

a6=b∈Sat(ρk)

ρk({a}) ρk({b})

=
∑

a∈Sat(ρk)

ρk({a})
(

Mk − ρk({a})
)

→ 0.

Let Nk := sup
a∈Sat(ρk)

ρk({a}). We have Nk ≤Mk and

Mk (Mk −Nk) =
∑

a∈Sat(ρk)

ρk({a}) (Mk −Nk)

≤
∑

a∈Sat(ρk)

ρk({a})
(

Mk − ρk({a})
)

→ 0.

We conclude that Nk →M > 0. Therefore for k large enough there existXk such that
ρk({Xk}) ≥ 4

5 Nk ≥ 3
5 M > Mk/2. Then all other atoms a satisfy ρk({a}) < Mk/2.

It yields Nk = maxa∈Sat(ρk) ρ
k({a}) = ρk({Xk}) → M . Since the sequence is tightly

bounded we obtain also that the sequence Xk is bounded. Still up to a subsequence,
we thus can assume that Xk → X. We have ρk(x) − ρk({Xk}) δ(x −Xk) ⇀ 0 and
ρk({Xk}) δ(x−Xk) ⇀M δ(x−X) tightly. It ends the proof of the Lemma and the
Section.
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4. Euler equation with vortex points of distinguished sign. This Sec-
tion is concerned with the existence of weak solutions of the two dimensional Euler
equations with vortex points initial data. The Euler equations read

∂

∂t
ui +

2
∑

j=1

∂

∂xj
(uj ui) +

∂

∂xi
p = 0, t ∈ R, x ∈ R

2, i = 1, 2, (39)

2
∑

j=1

∂

∂xj
(uj) = 0 t ∈ R, x ∈ R

2. (40)

The vorticity is defined by ω =
∂

∂x1
u2−

∂

∂x2
u1 and we deduce immediately from (39)

that it is advected by the velocity u = (u1, u2). We have

∂

∂t
ω +

2
∑

j=1

∂

∂xj
(uj ω) = 0, t ∈ R, x ∈ R

2, (41)

ω =
∂

∂x1
u2 −

∂

∂x2
u1,

2
∑

j=1

∂

∂xj
(uj) = 0 t ∈ R, x ∈ R

2. (42)

We study the case where ω is a bounded measure. The case which has been
intensively studied is the case of vortex sheets which correspond to concentrations
of the measure ω on surfaces in time space (lines in the 2D-space). vortex points
correspond to concentrations on curves in time space (points in the 2D-space).
To obtain a global existence result of weak solutions the difficulty comes from the
non-linear terms uj ui in (39) or uj ω in (41). Starting from smooth global solutions,
un, which are known to exist, the goal is to pass to the limit in the terms unj uni .
Actually it was pointed out by Di Perna and Majda, see [12], that it is necessary
to pass to the limit only in the special non linearity (un1 )2 − (un2 )2 and un1 un2 .
However when the vorticity is only a bounded measure and not better there is a
lack of compactness in L2

loc(R
2) for the sequence un which is a major obstruction to

the fact that lim
n→∞

un ⊗ un = lim
n→∞

un ⊗ lim
n→∞

un. One way to study such a lack of

compactness is to introduce a defect measure related to the sequence un. Such an
approach has been followed by many authors, see [1, 11, 31]. In particular situations
(concentration-cancellation), it is possible to conclude that the defect measure
vanishes, leading to an existence theorem. The next step in the theory has been
performed by Delort in [9]. He proved that if a sequence un is bounded in [L2

loc(R
2)]2,

is divergence free and has a vorticity with a distinguished sign bounded in M(R2)
then the special non linearities (un1 )2 − (un2 )2 and un1 un2 pass to the limit even if the
complete matrix un ⊗ un does not. It allows to obtain a global in time existence
result of weak solution for vortex sheets of prescribed sign. Let us remark that the
vorticity ωn is bounded in H−1

loc (R
2) in this context. It allows Delort to prove that

there is no point concentration. Therefore Delort existence theorem do not include
the case of vortex points. Our goal is to use the techniques developed in the previous
Section to study weak solution with vortex points of distinguished sign. Remark that
in this case u(t) is no more in L2

loc(R
2) which poses the problem of the definition of

the product u⊗ u. We conclude the introduction of this Section by pointing out that
the existence of weak solution of vortex sheets with no distinguished sign is still an
outstanding open problem. The only result we know in this direction is due to M.C.
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Lopes Filho, H.J. Nussenzveig Lopes, Zhouping Xin, [23]. It is an existence result
when the non negative and the non positive part of vortex sheets are separated by a
symmetry axis. We now introduce the weak vorticity formulation of Euler equation
which is one of the key ingredient in Delort’s proof.

Let x = (x1, x2) ∈ R
2 be any vector, we define x⊥ = (−x2, x1). The equations (42)

supplemented by convenient conditions of decreasing of the velocity field at infinity are
equivalent to the Biot-Savart law which expresses the velocity in term of the vorticity

u(t, x) =
1

2π

∫

R2

(x− y)⊥

|x− y|2 ω(t, y) dy. (43)

Using the skew property of the kernel
(x)⊥

|x|2 , the equations (41) and (42) lead to the

following weak vorticity formulation

∀ϕ ∈ C∞
c ((−∞,∞) × R

2),

∫ ∞

−∞

∫

R2

∂

∂t
ϕ ω(t, x) dx dt =

− 1

4π

∫ ∞

−∞

∫

R4

Hϕ(t)(x, y) ω(t, x) ω(t, y) dx dy dt (44)

where the function Hϕ(t) is defined as follows.

∀ψ ∈ C1(R2), Hψ(x, y) =
(x− y)⊥(∇ψ(x) −∇ψ(y))

|x− y|2 . (45)

The function Hϕ(t) is bounded, tends to 0 at infinity and is continuous except on the
diagonal. If ωn(t) is a non negative sequence, vaguely equicontinuous with respect to
time and has no concentration point then the non-linear term

∫ ∞

−∞

∫

R4

Hϕ(t)(x, y) ω
n(t, x) ωn(t, y) dx dy dt

is under control. When the velocity ωn(t) is uniformly with respect to n and t bounded
in H−1

loc (R
2), Delort proved that point concentration cannot occur which leads to

his existence theorem. Majda, in [24], proved a quantitative estimate for this no
concentration effect. We refer for more details on this subject to the original Delort
works, [9], to [14, 24] or to the enlightening presentation given by Schochet in [29].
We want to relax the condition ωI ∈ H−1

loc (R
2) in order to consider vortex points. The

price to pay is, as in the previous Section, the introduction of a diagonal defect measure
for the sequence ωn(t)⊗ωn(t). Let us remark that the diagonal defect measure is, in
a way, a micro-localization of the defect measure related to the sequence un(t). As in
the previous Section we have a generalization of the product ω u.

Definition 4.8. Let I be a real interval, let (ω, ν) ∈ DM+(I; R2), then the
vortex flux q(ω, ν) = (q1(ω, ν), q2(ω, ν)) is defined by q(ω, ν) = j(ω, ν)⊥ where j is
given in Definition 3.6.
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In other words we have

∀ψ ∈ C1
c (I × R

2),

∫

I

∫

R2

ψ(t, x) q(ω, ν)(t, x) dx dt =

1

4π

∫

I

∫

R4\D

(x− y)⊥(ψ(t, x) − ψ(t, y))

|x− y|2 ω(t, x) ω(t, y) dx dy dt

− 1

4π

∫

I

∫

R2

(ν(t, x) · ∇ψ(t, x))⊥ dx dt.

Remark that the first integral is out of the diagonal. As in the previous Section this
definition of the vortex flux corresponds to a concept of generalized solutions of the
weak vorticity formulation of Euler equations.

Definition 4.9. Let T ∈ (0,+∞], a couple (ω, ν) ∈ DM+((−T, T ); R2) is a
generalized solution on (−T, T ) of Euler equation in weak vorticity form with the
Cauchy data ωI ∈ M+

1 (R2) if and only if ω(0) = ωI and

∂

∂t
ω +

∑

i=1,2

∂

∂xi
qi(ω, ν) = 0

in the sense of distribution on (−T, T ) × R
2.

Let us remark that if there is no atomic part to the measures ω(t), t ∈ (−T, T )
then the defect measure vanishes and ω is a weak solution of the classical formulation
(44). The generalized solutions also satisfy the classical conservation law and are
stable for the weak convergence of measures.

Theorem 4.3. We have the following results concerning generalized solutions.
Global existence. For all initial data ωI ∈ M+

1 (R2), there is a generalized solution on
(−∞,∞).
A priori estimates. Let T ∈ (0,+∞], and let (ω, ν) ∈ DM+((−T, T ); R2) be a gener-

alized solution on (−T, T ) of Euler equation in weak vorticity form, with the Cauchy
data ωI ∈ M+

1 (R2). Then we have the conservation law

∀t ∈ (−T, T ), ω(t,R2) = ωI(R
2). (46)

Moreover, we have an a priori tight bound of the solution. There is a universal
constant, C > 0, such that

∀R > 0, ∀t ∈ (−T, T ), ω(t,R2 \BR) ≤ ωI(R
2 \BR/2) + C

|t|
R2

ωI(R
2)

2
. (47)

If |x|p ωI with p = 1 or 2, is assumed to be a bounded measure then the same is true
for |x|p ω(t), t ∈ (−T, T ) and there is a universal constant C > 0 such that

∀t ∈ (−T, T ),

∫

R2

|x|p ω(t, x) dx ≤
∫

R2

|x|p ωI(x) dx

+C ωI(R
2)

(

1 + |t| ωI(R2)
)

. (48)

In this case the first moment is a conserved quantity

∀t ∈ (−T, T ),

∫

R2

x ω(t, x) dx =

∫

R2

x ωI(x) dx. (49)
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If p = 2 we have moreover conservation of the second moment

∀t ∈ (−T, T ),

∫

R2

|x|2 ω(t, x) dx =

∫

R2

|x|2 ωI(x) dx. (50)

The equicontinuity of generalized solutions can be estimated as follows. For every test
function ψ ∈ C2

b (R
2), there is a positive constant C(ψ) which depends only on the test

function such that

∣

∣

∣

∣

d

dt

∫

R2

ψ(x) ω(t, x) dx

∣

∣

∣

∣

≤ C(ψ) ωI(R
2)

2
, (51)

in the distribution sense on (−T, T ).

It follows that if (ωn, νn) ∈ DM+((−T, T ); R2), n = 1, 2, ... is a sequence of gen-
eralized solutions such that ωnI = ωn(t = 0) is tightly bounded then the sequence
ωn(t), t ∈ (−T, T ) is locally tightly uniformly bounded and equicontinuous with re-
spect to time.
Stability. The set of generalized solutions is stable. More precisely let (ωn, νn) ∈
DM+((−T, T ); R2), n = 1, 2, ... be a sequence of approximated solutions of the gen-
eralized weak vorticity formulation:

∂

∂t
ωn +

∑

i=1,2

∂

∂xi
qi(ω

n, νn) = Sn

with Sn → 0 in the sense of distribution on (0, T ) × R
2 as n → ∞. We assume

that the sequence of measures (ωn(t))n≥1 is locally tightly uniformly bounded and
equicontinuous with respect to time. Then all accumulation points of the sequence
(ωn, νn) for the convergence in diagonal defect measures obtained by Corollary 2.3
are generalized solutions of the vorticity formulation of Euler equations.

Proof. The main points in the proof are mutatis mutandis the ones of the proof
of Theorem 3.2. Therefore we only point out the differences.
The first difference comes from the fact that global smooth solutions of Euler equation
are known to exist. Therefore the global existence result is a consequence of the
stability statement and of the a priori bounds.
The stability statement is still a consequence of Lemma 3.3.
To obtain the a priori bounds we remark that in the sense of distribution on (−T, T )
we have

d

dt

∫

R2

ψ(x) ω(t, x) dx

=
1

4π

∫

R4\D

(x− y)⊥ · (∇ψ(x) −∇ψ(y))

|x− y|2 ω(t, x) ω(t, y) dx dy

+
1

4π

∫

R2

∂2

∂x1∂x2
ψ(x) (ν1,1 − ν2,2)(t, x) dx

+
1

4π

∫

R2

(

∂2

∂x2
2ψ(x) − ∂2

∂x1
2ψ(x)

)

ν1,2(t, x) dx.

Thus we obtain the analogue of the estimate (31). The remainder of the proof is
exactly the same. The conservation of the second moment comes from the fact that



558 F. POUPAUD

the right hand side of the above equation vanishes for ψ(x) = |x|2.

The null sets of the defect measure can also be characterized. Exactly in the same
way as in Section 3 we prove

Proposition 4.3. Let (ω, ν) ∈ DM+((−T, T ); R2) be a generalized solution. Let
S = {(t, a)/ t ∈ (−T, T ), a ∈ Sat(ω(t))} be the singular support of the measure ω. If
Γ is a Borelian set which does not meet S (Γ∩S = ∅) or if Γ is an Hölder continuous
curve, Γ = {(t, Z(t))/ t ∈ (−T, T ), Z ∈ C0,γ(R; R2}}, with coefficient γ > 1/2 then
the defect measure ν does not charge Γ :

∫

Γ

ν(t, x) dx dt = 0.

In the theory of Delort and Schochet, [9, 29], it is possible to consider an initial
vorticity with integrable non positive parts, ωI ∈ (M+

1 (R2) + L1(R2)) ∩ H−1
loc (R

2).
One difficulty to obtain such a result in the present context is that we do not know
if the positive part of a sequence of smooth solutions are equicontinuous with respect
to time. A remedy is to change the definition of diagonal defect measures to take into
account sequences of measures with non positive parts in a compact set of L1−weak.
In the sake of concision, we do not follow this approach and we prefer to give a result
about perturbation in Lp for p > 2.

Theorem 4.4. Let p ∈ (2,∞]. For all initial data ωI ∈ M+
1 (R2)+(L1∩Lp(R2))

there exist (ω+, ν) ∈ DM+((−∞,∞); R2) and ωr ∈ C0((−∞,∞);L1∩Lp(R2)−weak)
such that ω = ω+ + ωr is a solution of Euler equation, corresponding to the initial
data ωI = ω(t = 0), in the following generalized weak vorticity formulation

∀ψ ∈ C∞
c ((−∞,∞) × R

2),

∫ ∞

−∞

∫

R2

∂

∂t
ψ(t, x) ω(t, x) dx dt

+
1

4π

∫ ∞

−∞

∫

R4\D

(x− y)⊥ · (∇ψ(t, x) −∇ψ(t, y))

|x− y|2 ω(t, x) ω(t, y) dx dy dt

+
1

4π

∫ ∞

−∞

∫

R2

∂2

∂x1∂x2
ψ(t, x) (ν2,2 − ν1,1)(t, x) dx dt

+
1

4π

∫ ∞

−∞

∫

R2

(

∂2

∂x1
2ψ(t, x) − ∂2

∂x2
2ψ(t, x)

)

ν1,2(t, x) dx dt = 0.

Proof. Let us consider two regularized sequence of smooth initial data (ωn,+I )n≥1

and (ωn,rI )n≥1 such that

ωn,+I ≥ 0, ωn,+I ⇀ ω+
I tightly,

ωn,rI → ωrI in L
1 ∩ Lp(R2).

The vorticity ωn solution of the Euler equation can be decomposed in ωn = ωn,++ωn,r

corresponding to the initial data ωnI = ωn,+I +ωn,rI . The functions ωn,+(t) (respectively
ωn,r(t)) are uniformly bounded with respect to n and t in L1(R2) (respectively in
L1 ∩ Lp(R2)). Let us split the velocity in un = un,+ + un,r. Classical results in
harmonic analysis show that (un,r(t))n≥1, t∈R is bounded in C0

b (R
2) and lies in a

compact of C0
b (K) for every compact subset K ⊂ R

2. We have

∂

∂t
ωn,+(t) + div(q(ωn,+, 0) + un,r(t) ωn,+) = 0 (52)
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which shows that ∂
∂tω

n,+(t) is uniformly with respect to t and n, bounded in the
distributions space of R

2. As in the proof of Theorem 3.2 we also deduce from the
above equation that for every T > 0, ωn,+(t), n ≥ 1, t ∈ [−T, T ], is tightly bounded.
From this two facts, we conclude that ωn,+ is uniformly tightly bounded and equicon-
tinuous with respect to t ∈ [−T, T ]. By Corollary 2.3 and Lemma 3.3, we obtain that
up to a subsequence (ωn,+, 0) ⇀ (ω+, ν) d.m. and q(ωn,+, 0) → q(ω+, ν) in the sense
of distribution on (−∞,∞) × R

2. For the regular part we have

∂

∂t
ωn,r(t) + div((un,+(t) + un,r(t)) ωn,r) = 0. (53)

The L1-bound of ωn,+(t) implies that un,+(t) is uniformly bounded in L1∩L2−α(R2)+
L2+α ∩ L∞(R2) for every α > 0. Therefore un(t) ωn,r(t) is uniformly bounded in
L1(R2). As before we deduce that ∂

∂tω
n,r(t) is uniformly with respect to t and n,

bounded in the distributions space of R
2 and that ωn,r(t), n ≥ 1, t ∈ [−T, T ], is

tightly bounded. Standard arguments show that up to a subsequence ωn,r → ωr

in C0([−T, T ];L1 ∩ Lp(R2) − weak). Since the map from L1 ∩ Lp(R2) to C0
b (K):

ω 7→ u =
x⊥

|x|2 ∗ ω, is compact, we have un,r → ur in C0
b ([−T, T ] × K) for every

compact subset K ⊂ R
2. Thanks to the tight bound of ωn,+(t) and the uniform

bound in C0
b ([−T, T ] × R

2) of un,r we can now pass to the limit in (52) to obtain

∂

∂t
ω+(t) + div(q(ω+, ν) + ur(t) ω+(t)) = 0, ω+(0) = ω+

I . (54)

It remains to pass to the limit in the term un,+(t) ωn,r(t) in (53). Let ψ ∈ C∞
c (R2).

We have
∫

R2

un,+(t) ωn,r(t)ψ(x) dx

=

∫

R4

(x− y)⊥

2π|x− y|2ω
n,r(t, x) ψ(x) ωn,+(t, y) dx dy.

Exactly for the same reasons as for the functions un,r, the sequence of functions

y 7→
∫

R2

(x− y)⊥

2π|x− y|2ω
n,r(t, x) ψ(x) dx

converges in C0
b ([−T, T ] × K) and is bounded in C0

b ([−T, T ] × R
2) for every T > 0

and for every compact subset K ⊂ R
2. Therefore

∫

R2

un,+(t) ωn,r(t)ψ(x) dx→
∫

R4

(x− y)⊥

2π|x− y|2ω
r(t, x) ψ(x) ω+(t, y) dx dy

uniformly with respect to t ∈ [−T, T ]. Therefore we can pass to the limit in (53) to
obtain

∂

∂t
ωr(t) + div((u+(t) + ur(t)) ωn,r) = 0. (55)

The weak vorticity formulation of the theorem is obtained by combining (55) and
(54). Remark that the formulation (55) and (54) is actually more precise but destroy
in a way the symmetry of the vorticity formulation. It is the price to pay to obtain
the continuity with respect to time of the singular non negative part of the vorticity.
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