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1. Introduction. Recently, in the investigation of thin film problems, a class of
oscillating radial solutions has attracted the attention. The radial solutions of concern
satisfy the following initial value problem:

(1.1) u′′ +
n − 1

r
u′ = f(u) in R+, u(0) = α > 0, u′(0) = 0.

where f ∈ C1(0,∞) satisfies the following general conditions:

(i) f has a single zero t0 in (0,∞) satisfying f ′(t0) < 0,
(ii) f is nonincreasing near 0 and limt→0+ f(t) = ∞.

The radial solutions is a special case of more general thin film problem in a
bounded domain Ω in R

n with Neumann boundary condition

(1.2) ∆u = f(u), x ∈ Ω,
∂u

∂ν
= 0 on ∂Ω.

A typical example is that f(u) = u−p −µ1u
−q −µ2 with constants p > max(q, 0).

This kind of semilinear equation appears in several applications in mechanics and
physics. In particular, it has been used to model the dynamics of thin films for
viscous liquids. Some detailed physics background can be found in [1]-[3], [9] and
[12]-[14]. Some recent mathematical analysis can be found in [4, 6, 7, 8, 10, 11, 15, 17]
and the references therein.

It was proved in [8] (see also [11]) that in dimension N ≥ 3, for each α ∈ (0, t0),
(1.1) has a unique positive solution uα. Moreover, uα oscillates around the constant
t0, that is, there is an increasing positive sequence {rn

α} such that {r ∈ (0,∞) :
u′

α(r) = 0} = {rn
α}, and limn→∞ rn

α = ∞. Here r2i+1
α are local maxima of uα with

uα(r2i+1
α ) > t0 for any i ∈ N; while r2i

α are local minima with uα(ri
α) < t0. It is also

proven that there exists a singular (or so-called a rupture) radial solution u0(r) of (1.1)
such that u0 ∈ C(RN ), u0(0) = 0, u0(r) > 0 for r ∈ (0,∞) and f(u0) ∈ L1

loc(R
N ).

Moreover, any singular radial solution of (1.1) is oscillatory around t0 and converges
to t0 as r → ∞.

In [11], Jiang and Ni have showed the existence and uniqueness of radial rupture
solution for f(u) = u−p − µ2 in R

N with p, µ2 > 0 and N ≥ 2. Moreover, they
proved that limn→∞ rn+1

α − rn
α exits, and hence obtained the asymptotic formula for

the length of oscillating interval, which depends only on p and µ2.
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It it a natural question that whether more accurate asymptotic behaviors of the
radial solutions can be obtained. Similar question also arises in the study of oscillating
radial solutions of Allen Cahn equation

(1.3) ∆u + u − u3 = 0, x ∈ R
n.

Generally speaking, it is important to understand radial entire solutions since they
display one of the fundamental structures near interesting points such as singularities
of solutions. The asymptotic behavior of an entire solution at infinity is an essential
property since it reveals the condition away from the singularity. There has been a lot
of literature on the asymptotic behavior of positive radial solutions, see, for example
[16], [5], [18], etc. However, it seems that little has been done on oscillating radial
solutions.

In this note, we shall show an accurate asymptotic behavior of radial solutions
for a vast class of equations in term of Bessel functions. In Section 1, some basic
information on Bessel functions are collected; In Section 2, we show, for small initial
data, the existence of oscillating radial solutions which behaves like Bessel functions
at infinity; In Section 3 and 4, we shall show that the asymptotic behavior of radial
solutions in term of Bessel functions for rather general equations including Allen-Cahn
equations and thin-film equations.

2. Preliminaries.

2.1. Bessel Function. We recall that the Bessel Function

(2.1) x2y′′ + xy′ + (x2 − α2)y = 0 x > 0.

It has two independent (linearly) solutions: Bessel function of the first kind and second
kind, Jα(x), Yα(x) with asymptotic expansions

Jα(x) ∼
√

2

πx

[

cos
(

x − απ

2
− π

4

)

∞
∑

j=0

(−1)j(α, 2j)

(2x)2j
(2.2)

− sin
(

x − απ

2
− π

4

)

∞
∑

j=0

(−1)j(α, 2j + 1)

(2x)2j+1

]

and

Yα(x) ∼
√

2

πx

[

sin
(

x − απ

2
− π

4

)

∞
∑

j=0

(−1)j(α, 2j)

(2x)2j
(2.3)

+ cos
(

x − απ

2
− π

4

)

∞
∑

j=0

(−1)j(α, 2j + 1)

(2x)2j+1

]

where

(2.4) (α, k) =







(4α2 − 1)(4α2 − 32) · · · (4α2 − (2k − 1)2)

2kk!
, k > 1

1, k = 0.

Moreover, the Wronskian determinant associated is

(2.5) W (Jα(x), Yα(x)) =
2

πx
.
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2.2. Radial solution for a linear equation. Now consider the linear Laplace
equation

(2.6) ∆u + β2u = 0, x ∈ R
n,

its radial solution u(r) satisfies

(2.7) u′′ +
n − 1

r
u′ + β2u = 0 r = |x| > 0.

Let u = r
2−n

2 y(βr), then y(x) satisfies (2.1) with α = n−2
2 . Hence (2.7) has two

linearly independent solutions

(2.8) u1(r) = r
2−n

2 Jα(βr), u2(r) = r
2−n

2 Yα(βr)

and the Wronskian determinant is

(2.9) W (u1(r), u2(r)) = u1u
′
2 − u2u

′
1 =

2

π
r1−n.

In particular, we have

(2.10)

u1(r) =
2√
πβ

r
1−n

2

[

cos

(

βr − n − 1

4
π

)

+ O

(

1

r

)]

u2(r) =
2√
πβ

r
1−n

2

[

sin

(

βr − n − 1

4
π

)

+ O

(

1

r

)]

.

3. Existence of Radial Solutions for Nonlinear Equation. Let us consider
the nonlinear problems

(3.1)







u′′ +
n − 1

r
u′ + β2u + f(u) = 0, r > 0

u(r) → 0, as r → ∞

where f(0) = f ′(0) = 0.
We suppose that f(u) ∈ C1,σ(−δ0, δ0), for some δ0 > 0, σ > 2

n−1 if n > 3, and

f(u) ∈ C2,σ(−δ0, δ0), if n = 3, σ > 0.
It is easy to see that (3.1) is equivalent to

u(r) = u1(r)

∫ r

R

π

2
sn−1u2(s)(−f(u(s)))ds(3.2)

− u2(r)

∫ r

R

π

2
sn−1u1(s)(−f(u(s)))ds + γ1u1(r) + γ2u2(r),

or we can write
(3.3)

u(r) =
π

2

∫ r

R

sn−1f(u(s))[u2(r)u1(s) − u1(r)u2(s)]ds + γ1u1(r) + γ2u2(r) r ≥ R.

Then we have the following
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Theorem 3.1. When |(γ1, γ2)| is small enough, (3.3) has a unique solution uγ1,γ2

such that

uγ1,γ2
= (γ̃1 + o(1))u1 + (γ̃2 + o(1))u2

for some (γ̃1, γ̃2), provided that one of the following conditions holds
(3.4)










a) :f(u) ∈ C1,σ(−δ0, δ0), f(0) = f ′(0) = 0, σ > 2
n−1 if n > 3 or

b) :f(u) ∈ C2,σ(−δ0, δ0), f(0) = f ′(0) = f ′′(0) = 0, σ > 0 if n = 3 or

c) :f(u) ∈ C3,σ(−δ0, δ0), f(0) = f ′(0) = f ′′(0) = f (3)(0) = 0, σ > 0 if n = 2.

Proof. We define a Banach space HR for any R > 0.

(3.5) HR =

{

u ∈ C(R,∞); sup
r≥R

∣

∣

∣
u(r)r

n−1
2

∣

∣

∣
< ∞

}

with a weighted norm

‖u‖HR
= sup

r≥R

∣

∣

∣
u(r)r

n−1
2

∣

∣

∣
.

It is easy to see that ‖ ‖HR
is a norm in HR. Define now an operator in HR for any

(γ1, γ2) by
(3.6)

Kγ1,γ2
(u)(r) =

π

2

∫ r

R

sn−1f(u(s))[u2(r)u1(s) − u1(r)u2(s)]ds + γ1u1(r) + γ2u2(r).

Then there exists σ0, δ0 such that if |γ1| + |γ2| < σ0, δ < δ0, there holds

(3.7) ‖Kγ1,γ2
(u)‖HR

≤ δ when ‖u‖HR
< δ.

In fact,

‖Kγ1,γ2
(u)‖HR

≤ 4

πβ

π

2
sup
r≥R

∫ r

R

sn−1|f(u(s))|s− n−1

2 ds + 2

√

2

πβ
(|γ1| + |γ2|)

≤ 2

√

2

πβ
(|γ1| + |γ2|) +

4

β
sup
r≥R

∫ r

R

∣

∣

∣
s

n−1

2 u(s)
∣

∣

∣

∣

∣

∣

∣

f(u(s))

u(s)

∣

∣

∣

∣

ds

≤ 2

√

2

πβ
(|γ1| + |γ2|) +

4M

β
sup
r≥R

∫ r

R

∣

∣

∣
s

n−1
2 u(s)

∣

∣

∣
|u(s)|αds

≤ 2

√

2

πβ
(|γ1| + |γ2|) +

4M

β
‖u‖1+α

HR

(

sup
r≥R

∫ r

R

s−
n−1

2
αds

)

≤ 2

√

2

πβ
(|γ1| + |γ2|) +

C

β
‖u‖1+α

HR
R1−n−1

2
α,

where α = σ in case a) in (3.4); α = 1 + σ in case b) in (3.4), and α = 2 + σ in case
c) in (3.4) and

C = 4M/(
n − 1

2
α − 1).
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Here we have used
∣

∣

∣

∣

f(u)

u1+α

∣

∣

∣

∣

≤ M,

∣

∣

∣

∣

f(u) − f(v)

u − v

∣

∣

∣

∣

≤ M max{|u|α, |v|α},
(3.8)

for u near u = 0 and α > 2
n−1 .

Therefore, when

|γ1| + |γ2| < γ0 :=

√

πβ

2

1

4
δ,

δ < δ0 :=

(

β

4C

)
1
α

R− 1
α

+ n−1
2 ,

(3.9)

we have

‖Kγ1,γ2
(u)‖HR

≤ δ

2
+ δ1+α × C

β
R1−n−1

2
α ≤ δ

2
+

δ

4
< δ, when ‖u‖HR

< δ.

Furthermore, we know Kγ1,γ2
is a contracting mapping in Bδ(0) ⊂ HR, since

‖Kγ1,γ2
(u) − Kγ1,γ2

(v)‖HR
≤ 4

β
sup
r≥R

∫ r

R

s
n−1

2 |f(u(s)) − f(v(s))|ds

≤ 4M

β
‖u − v‖HR

δα

(

sup
r≥R

∫ r

R

s−
n−1

2
αds

)

(3.10)

≤ 1

2
‖u − v‖HR

.(3.11)

Here we have used (3.8).
It is easy to see that (3.8) and (3.11) hold if (3.4) is provided. Therefore Kγ1,γ2

(u)
has a fixed point in Bδ(0) ⊂ HR when (γ1, γ2) and δ satisfies (3.9).

Furthermore, the integral in (3.3) is integrable with r replaced by ∞. Hence
Theorem 3.1 is proven with (γ̃1, γ̃2) sufficiently small when R is fixed. Note that if
we allow R to be large, the size of γ1, γ2 can be indeed large as long (3.9) holds.

4. Application to Allen-Cahn Equation. Consider the radial solution to
Allen-Cahn equation

(4.1)







u′′ +
n − 1

r
u′ − F ′(u) = 0, r = |x|, x ∈ R

n

u(0) = u0, |u0| < 1.

where F (u) ∈ C2,σ([−1, 1]), and satisfies

(4.2)



















F ′(1) = F ′(−1) = 0, F (1) = F (−1) = 0

F (u) > 0 if |u| < 1

F ′(0) = 0, F ′′(0) < 0, F ′(u) < 0 if 0 < u < 1

F ′(u) > 0 if − 1 < u < 0.
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We have then

(4.3)

[

(

u′(r)

2

)2

− F (u(r))

]′

= −n − 1

r
u′2 ≤ 0, ∀ r > 0,

and thus

(4.4) F (u(r)) ≥ F (u0) +

(

u′(r)

2

)2

> 0 ∀ r > 0.

Hence

(4.5) |u(r)| < 1, ∀ r > 0.

Lemma 4.1. We have

(4.6) lim
r→∞

u(r) = 0.

Proof. If not, we assume that there exists rN → ∞ such that

u(rN ) → α 6= 0, u′(rN ) → 0 as n → ∞.

Define

un(r) = u(r + rN ) r > 0.

We know by the standard elliptic theory that

(4.7) |∇u| ≤ C, |∇2u| ≤ C, ‖u‖C2,σ(R2) < C.

Then un(r) → u∞(r) in C2(0,∞) up to a subsequence, and u0(r) satisfies |u∞(r)| <
|F−1(F (u0))| < 1, ∀ r ≥ 0, and

(4.8)

{

u′′
∞(r) − F ′(u∞(r)) = 0, r > 0

u∞(0) = α 6= 0, u′
∞(0) = 0, |α| < 1.

Equation (4.8) can be solved easily by integration, the only solution are periodic
solutions.

(4.9) u∞(r) = Pα(r) with

{

Pα(r + Tα) = Pα(r), for some Tα > 0

Pα(0) = α.

Without loss of generality, we assume α > 0. Let rk be the k-th local maximum point
of u(r) in (0,∞). Then u(rk) is decreasing in k, since

(4.10) F (u(rk+1)) ≥ F (u(rk)), u(rk) > 0.

Hence lim
k→∞

u(rk) = α > 0. We can then prove

(4.11) ‖u(rk+1 + r) − Pα(r)‖C2,α([0,Tα]) → 0 as k → ∞.
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On the other hand, (4.3) leads to

F (u(rk)) − F (u(rN )) =

∫ rk

rN

n − 1

r
|u′(r)|2dr(4.12)

= (n − 1)
k−1
∑

i=N

∫ ri+1

ri

(u′(r))2

r
dr

≥ n − 1

2

∫ Tα

0

|P ′
α(r)|2dr

k−1
∑

i=N

1

ri+1
,

when N is sufficiently large. Letting k → ∞, we have a contradiction. Hence Lemma
4.1 is proven.

Let mk = u(rk). We know that mk is decreasing in k and tends to 0 as k goes to
infinity. Next we shall show

Lemma 4.2. For any fixed ǫ > 0, we have

(4.13) mk ≤ Ck−n−1
2

+ǫ.

Hence

(4.14) u(r) ≤ Cr−
n−1

2
+ǫ, r > 0

Proof. Let β2 = −F ′′(0). First we note u(rk + r)/mk converges to cos(βr)
uniformly in any bounded interval as k tends to infinity. Indeed we have

||u(r) − mk cos
(

β(r − rk)
)

||C1[rkrk+T0] = o(1)mk

where T0 = 2π
β

and

rk+1 − rk = T0 + o(1).

Furthermore, we have

F (0) − F (mk) =
1

2
(β2 + o(1))m2

k.

and
∫ rk+1

rk

n − 1

r
|u′(r)|2dr

=

∫ T0

0

n − 1

k(T0 + o(1))
m2

kβ2 sin2(βx)dx

= (
n − 1

2
+ o(1))β2 m2

k

k
.

Since

F (0) − F (mk) =

∫ ∞

rk

n − 1

r
|u′(r)|2dr.
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Then, for any fixed small constant ǫ and k large enough we have

(4.15) m2
k ≥ (n − 1 − 2ǫ)

∞
∑

i=k

m2
i

i
.

This leads to (4.13) by the following calculus lemma.

Lemma 4.3. Let {ak} be sequence of nonincreasing positive numbers and satisfies

(4.16) ak ≥ p

∞
∑

i=k

ai

i

for some positive constant p. Then for some positive constant C there holds

(4.17) ak ≤ Ck−p.

Proof. Define

Ak =

∞
∑

i=k

ai

i
, k ≥ 1.

Then

k(Ak − Ak+1) ≥ pAk, k ≥ 1.

Hence

Ak

Ak+1
≥ k

k − p
, k > p.

Let N0 > p fixed. For any integer N > N0, we have

AN0

AN

≥
k=N−1

∏

k=N0

k

k − p
≥

k=N−1
∏

k=N0

(1 +
p

k
).

Then

ln(AN−0) − ln(AN ) ≥
N−1
∑

k=N0

ln(1 +
p

k
) ≥ p ln(N) − c, N > N0

where c is a constant independent of N . Therefore we obtain

AN ≤ CN−p, ∀N > 0

where C is a constant independent of N . Since ai is nonincreasing, we obtain

Ak − A2k+1 =
2k
∑

i=k

ai

i
≥ 1

2
a2k, ∀k.

Hence the lemma is proven.
Now we apply Theorem 3.1 to obtain
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Theorem 4.4. Assume f(u) = F ′′(0)u − F ′(u) satisfies (3.4). Then when
|u0| < 1, the solution u(r) to (4.1) has asymptotic behavior

(4.18) u(r) = (γ̃1 + o(1))u1(r) + (γ̃2 + o(1))u2(r)

where u1, u2 are defined in (2.10).

Proof. Just note that we choose R large enough. Define γ1, γ2 by the following
relation

(4.19)

{

γ1u1(R) + γ2u2(R) = u(R)

γ1u
′
1(R) + γ2u

′
2(R) = u′(R)

Following Lemma 4.2 with ǫ < n−1
2 − 1

α
, we see that (γ1, γ2) satisfies (3.9) when R is

large enough. Hence (3.2) with (γ1, γ2) has a solution ū(r) with asymptotic behavior
(4.18). On the other hand, by the uniqueness of initial value problem for (4.1), we
have u(r) = ū(r), the theorem is proved.

Remark 4.5. In the typical Allen-Cahn equation, we have f(u) = −u3, which
satisfies (3.4) when n ≥ 3. However, when n = 2 the condition (3.4) is not satisfied.
It would be interesting to show that (4.18) still holds in this case. Similarly, if we
consider f(u) = |u|p−1u with p > 1, it would be interesting to show that (4.18) still
holds for n ≥ 2. Note that when n = 1, the solution may not vanish, hence (4.18)
does not hold in general.

5. Application to the thin film equation. We return to the study of the thin
film equations. Consider

(5.1)







u′′ +
n − 1

r
u′ = g(u) r > 0

u(0) = u0 > 0, u′(0) = 0.

where the nonlinear term g(u) satisfies

(5.2) g′(1) < 0, g(1) = 0, g(u) > 0 for 0 < u < 1, g(u) < 0 for u > 1.

Let G(u) =
∫ u

1
g(s)ds, then G(u) is non increasing for u > 1 and non decreasing for

u < 1. Note that g(u) = u−p − u−q with p > q ≥ 0 is a typical example.
It is easy to see that

Lemma 5.1. u is bounded above and below away from 0.

Proof. Note that

(5.3)

(

u′2

2
− G(u)

)′

= −n − 1

r
(u′)2 ≤ 0, r > 0.

Then

(5.4) G(u(r)) > G(u0) +
u′(r)2

2
≥ G(u0), r ≥ 0.

By (5.2), we know 0 < δ < u(r) < C < ∞, ∀ r for some δ, C > 0.
We can also obtain the limit of u easily.
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Lemma 5.2. There holds

(5.5) lim
r→∞

u(r) = 1.

Proof. Consider v(r) = u(r) − 1, then it satisfies

(5.6) v′′ +
n − 1

r
v′ − g′(1)v + f(v) = 0 r > 0,

where

(5.7) f(v) = −g(1 + v) + g′(1)v, −g′(1) = β2 > 0.

Then the arguments in Lemma 4.1 leads to (5.5).

Theorem 5.3. Assume (5.2) and (3.4) where f(v) is given by (5.7). Then the
solution u of (5.1) has the following asymptotic behavior

(5.8) u(r) = 1 + (γ̃1 + o(1))u1(r) + (γ̃2 + o(1))u2(r), as r → ∞.

Proof. The proof is similar to proof of Theorem 4.4. The detail is omit.

Remark 5.4. In the typical thin film equation, we have g(u) = u−p − 1 and
f(v) = −(1+ v)−p +1− pv, which satisfies (3.4) when n > 3. However, when n = 2, 3
the condition (3.4) is not satisfied. It would be interesting to investigate if (4.18) still
hold in this case.
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(No. 10671071) of China and the ”basic research project (973, No. 2006CB805902)
of China”.

Note added at galley proof. Similar results for the cases n = 2, 3 as in
Remark 4.5 and Remark 5.4 have been proven by Changfeng Gui, Xue Luo and Feng
Zhou in a forthcoming paper.
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