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ON THE LAZER-MCKENNA CONJECTURE INVOLVING
CRITICAL AND SUPERCRITICAL EXPONENTS*

E. N. DANCER! AND SHUSEN YAN?

Abstract. We prove the Lazer-McKenna conjecture for an elliptic problem of Ambrosetti-Prodi
type with critical and supercritical nonlinearities by constructing solutions concentrating on higher
dimensional manifolds, under some partially symmetric assumption on the domain.
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1. Introduction. In this paper, we consider the following elliptic problem:
—Au=[uf - spi(a), inQ W
u =0, on 01,

where (2 is a bounded domain in RN with C' boundary, p > 1, ¢ is a positive first
eigenfunction of —A in Q with Dirichlet boundary condition. Here the eigenvalues of
—A in Q with Dirichlet boundary condition are denoted by 0 < Ay < Adg < A3 < ---.

Problem (1.1) is a special case of the following elliptic problem of Ambrosetti-
Prodi type:

{—Au =g(u) — sp1(z), inQ, (1.2)

u =0, on 0%,

where ¢(t) satisfies lim;—, _ o @ =v <A <limy_yo0 @ = L.

It is well known that the number of the solutions of (1.2) depends on the number of
the eigenvalue \; that the interval (v, 1) contains. See [3, 17, 25], and also [6, 9, 15, 18,
19, 23, 24]. A conjecture raised by Lazer and McKenna in [18] is that if © = oo (that
is, (v, 1) contains all the eigenvalues A;) and the nonlinearity g(t) does not grow too
fast at infinity, then the number of the solutions for (1.2) is unbounded as s — +oo.
If g(t) = t? and Q is a unit square in R?, Bruer, McKenna and Plum [5] showed
that (1.2) has at least four solutions. In [11], we proved that the Lazer-McKenna
conjecture is true for (1.1) in the subcritical case p < % by constructing solutions
with sharp peaks (point concentration solutions) near the maximum point of @1 (y).
A natural question is whether this conjecture is still true for (1.1) if p is critical, or
even supercritical. It is almost impossible to construct point concentration solutions
for (1.1) as in [21, 22, 26] for the critical case p = Jt2. Therefore, we need to find
different kind of solutions for (1.1) in order to prove the Lazer-McKenna conjecture for
(1.1) in the critical and supercritical cases. In this paper, by constructing solutions

concentrating on higher dimensional manifolds, we prove that the Lazer-McKenna
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98 E. N. DANCER AND S. YAN

conjecture is true for (1.1) if p is critical or supercritical under the following partially
symmetric assumption on the domain €2:

(Q): there is an integer m, 1 < m < N, such that y € Q, if and only if (|y'],y") €
D, where y = (v',9"), ¥ € R™, v € RN=™, D is a bounded domain in Rf‘m"’l,
and

Rf_m-‘rl = {Z = (21722” : 7ZN—7TL+1) BEa Z O}

The main result of this paper is the following:

THEOREM 1.1. Suppose that Q) satisfies the condition (), and p € (1, J]\\;:z"_'%)
ifl<m<N-=2,pe(l,+00) if m= N —1,N. For any positive integer k, there

exists an s > 0, such that for s > sy, (1.1) has at least k different solutions.

Results on the Lazer-McKenna conjecture for (1.2) can be found in [12, 14, 21, 22,
26] for the case g(t) = t% + At, in [10] for the case g(t) =t} +t%, T2 >p>¢>1,
and in [16] for the case g(t) = ¢! and N = 2. Let us point out that [14] also contains
results on the super-critical case.
Before we close this introduction, let us outline the proof of Theorem 1.1.
Let €2 = s~ ®=1/P_ Then it is easy to see that solving (1.1) is equivalent to
solving the following elliptic problem:
—&2Au = |[ulP — ¢1(z), inQ, (13)
u =0, on 0f).

In view of the assumption on 2, we will work on the following subspace of Hg (2):

Hy = {u:ue Hy(Q),uly) = u(ly'],y")}

It is easy to prove that the first eigenfunction ¢1(y) belongs to H. Since the first
eigenfunction p; € Hy, there is a function @1 (t,y”), such that v1(y) = @1(|y'|,y").
For simplicity, we still use the same notation ¢; for this function ¢;. Note that
s — 400 if and only if € — 0.

In Appendix A, we will show that if £ > 0 is small, (1.3) has a negative solution
u, € H,, satisfying
U, = —@i/p + 5205(1)7

£

where O,(1) is uniformly bounded in any compact subset of .
Let a > 0 be a constant. Consider the following elliptic problem:

~AU =|U —a'/P|P —a, U >0, in RN-™F1,
U(O) = maX,cpN-m+1 U(Z), (14)
Ue HY (RN-m+1),

Since p is subcritical in RN ~™%1, using the standard concentration compactness
argument of P.L.Lions, we can prove that (1.4) has a positive solution U,. It is easy
to see that U, decays exponentially at infinity, and is radially symmetric. Moreover,

Ua(z) = al/pU(a(p_l)/sz), (1.5)
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where U = U;. )
In Appendix B, we will calculate the energy of Uy, () (‘ — ) 7= (y],y"),z € D.
lg—3|

We show that the main term in the energy expansion for U, ( ) is given by

+1_ N—m+1
AEmeJrla—:m—l (- 1)(p =)
1

(),
where A > 0 is a constant.
Noting that

R (171)(L+1,M)

e, Tt () =0, VIedD,

we conclude that its maximum set .S is compactly contained in D.
In section 2, we will use the reduction argument to prove that for € > 0 small,
(1.3) has a solution

o +Z P %’j') (1.6)

where x. ; € D satisfying that as ¢ — 0,

|Tej — 2e,i

Tej — Tj € S, B

— 400, j #i.

Solution with the form (1.6) concentrates as ¢ — 0 at some m — 1 dimensional
spheres. In the subcritical case p < %*3, (1.1) also has a point concentration solution,
concentrating near the maximum set of ¢1. See [11]. As we pointed out earlier, in
the critical case p = £42, (1.1) may not have any point concentration solution. So,
it is necessary to look for solutlons concentrating at higher dimensional manifolds in
order to prove the Lazer-McKenna conjecture for (1.1) in the critical case.

If the domain € is a ball, then, for the critical case p = %42, (1.1) has solutions
concentrating at n-dimensional spheres forn =1,--- N — 1 Moreover, combining
the result in [11] and Theorem 1.1, we conclude that if the domain Q is a ball, then
for any p > 1, the number of the solutions for (1.1) is unbounded as s — +o0.

Results on the solutions concentrating on higher dimensional manifolds for the
singularly perturbed Dirichlet problems can be found in [8, 1, 2] in the radially sym-
metric case, and in [13, 4] for domains with partial symmetry, and the references
therein.

In this paper, we will use the following notations. For any & € D, we use Bs(T)
to denote the ball in RV ~™+! centred at Z with radius §. We define

Bi@ ={y: y=y") e RN, (|y'|.y") € Bs(z)}.

2. Solutions concentrating on manifolds. Let u, be the negative solution
obtained in Theorem A.1l. In this section, we will find solution u for (1.3), with the
form u = u, +v. Then, v satisfies

—e2Av + plu [P~ = fo(y,v), yeQ,
v =0, on 01,

where

fe(y,t) = [t +u P — |uc|P + plu[P~'t. (2.2)
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The functional corresponding to (2.1) is

1

—/@thm@w%%—/a@m,vem, (2.3)
Q Q

I.(v) = 5

where

t
Fw0) = [ flws)ds
0 ) (2.4)
p _
Zmﬁ Fu Pt +u)+ m|ﬂa|p+l = Ju [Pt + §|ﬂa|p 2,
Firstly, we need to define an approximate solution for (2.1).
For any y = (y',y") € RN,y € R™, y" € RN™™, we denote § = (|y'[,y") €
RN-m+1
Let W, (y) = Ua(§), where U, is defined in (1.4). For any # € D, let We 5 .(y) =
Ua(‘y_jl). Then, W, z ., satisfies

€

- - 1| -z -
— AW, 50 = [Weza — a/PPP —a+ e v = 71 U;(|y Il), nQ.  (25)
' [y -zl 2

Since the function in the right hand side of (2.5) may have singularity, we need to
further modify W z ,. Choose § > 0 small enough. Let £(¢) > 0 be a smooth function,
such that () = 0if t < 4§, £(t) =1 if ¢ > 2§. Define

Ws,i,a(y) = 5(|3/|)W5ia(y)
Then W, z,, satisfies

2 AWe g0 = (W) ((Wezo — a/PIP —a) + fez(y) inQ, (2.6)
where
7 m=1y[-21_, |77 [y — 7| o (17— 7
fez(y) =&e ——— U/ —2eDEDU, —£2U, AE.
( ) |y/| |y _ $| ( € ) ( e ) ( e )

Since & = 0 for |y/| < 4, it is easy to see that f. ; is a smooth function in both y and
Z, and satisfies

|fa,i| < CEUa(ly ; JJ|)
For any z € D, let P. oW, z. . be the solution of
—E2A'U + pa(p_l)/pv

=&y ([Wewa — a/P[P — a) + pa® V/PW_ 5 o + foz(y), inQ,
v =0, on 0f2.

It is easy to see that P. oW z o € Hs. By the exponential decay of U,, we have

_ (p—1)/2
|Pa,QW€,5c,a - Wa,i,al S Ce \/;Ea d(z,@D)/E'
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The approximate solution for (2.1) which we will use in this paper is defined as
Vez = PeaWe 3 0,(3)- (2.7)
Denote
F@.0 =1t =" @ — 1) +pet” " @)t (238)
Then, V; z satisfies
—€2AV +p¢(p 1)/1)( Wes

fN(I Wam«m(m)) +O((5+ |§ - 1|) €,%,p1(T ))7 in Qv (29)
Vez on 0.

1_

Using Theorem A.1 and the exponentially decay of the function W, z ,, (z), we
can deduce that for any Z € D with d(Z,0D) > 0 > 0,

‘fN(ga Wa,i,sm(;i))( ) fs(ya &,x gal(m)( ))‘ < CE2W5119¢1(1)(y) v Yy € Qv (210)

where 0 > 0 is any small constant, f.(y,t) is the function defined in (2.2).

Denote
(u,v) _/(€2DUD’U—|— lu [Pt uw),  lull = (u, u>1/2
9 £ - o p_s 9 e — .
Set
_ F el e
S={z: ze€D, v, (Z) = M}, (2.11)
where
_1y(ptl_ N-—m+1
M = max z7" 19051 PG 2 )(z) (2.12)
z€D
(- - 2o
From 2" ¢ > ’(2) =01in 9D, we know that S CC D.
Let
L e .
Dkﬁ:{x: .I:(.Il,"', ) | Y1 (‘Ij)_M|SE ) (213)
511( ) _Tu 17&]7 iajzla"'ak}a

where 7 > 0 is a small constant. The set Dy . is not empty, because for z; € D,
satisfying

2nL
|z; — xo| = Le|Inel, |a:l-—a:j|Zﬂ-T5|1n5|, i# g i i =1,k

where zo € S and L > 0 is large, (21, ,2k) € D .
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Let H be the completion of the space C§°(2) N H, with respect to the norm ||v||c,
and let

Wea,
8le

E.or={weH: (v, ).=0,1=1,-- , N—m+1,j=1,--- ,k}.

In this section, using the reduction argument, we will prove

THEOREM 2.1. Let k > 0 be an integer. There is an € > 0, such that for any
e € (0,ex), (2.1) has a solution of the form

k
e =Y Vea., +we, (2.14)
j=1
where x. ; € Dy ., and w. € E, ;. satisfies

/ (£%|Dwe|® + plu [P~ Hwe|?) = o(sN’mH).
Q

Before we can carry out the reduction procedure, we need to do some prepara-
tion. We have the following non-degeneracy result for U, which is essential for us to
construct solutions concentrating at some higher dimensional manifolds:

PROPOSITION 2.2. Let U be a solution of (1.4) with a = 1. Then U is unique

and non-degenerate. That is, the kernel of the operator —Au — p|U — 1|P=2(U — 1)u

in HY(RN—m%1) is spanned by {g—g, e ,#[;H}.

Proof. The readers can refer to Proposition 3.2 in [11] for the proof of this
proposition. O

LEMMA 2.3. Let
k
ls-,z(w) = Z/ (52DVs,mij +p|ﬂs|p_lvs,mjw) _/ fE(y7Z‘/€,Ij)w7
=179 £ j=1

where f-(y,t) is defined in (2.2). Then, l. 4(w) is a bounded linear operator from
E. .k to RY. Moreover, there is a constant o > 0, such that

lleselle = €020 (e 4 3V @))).
i#£]

In particular, there is al. » € Ee 5, such that

<l€,gc,w>6 =l.,(w), Ywé€ Eyk.

Proof. Let
QF = U§:1B§ (;)-

Note that

/ W2 < Cp / lu [P lw? < Owll?,

Qp Qo
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because |u | > ¢ > 0if y € Q.
Noting that V., is exponentially small outside B} (x;), using (2.9), we have

leo(w)

k
:pZ/ (|HE|P*1 _Sogp—l)/P(xj))‘/aij
e
k
_/(fs(yaz‘/szj
Q =1

since for any ¢ € [1, 2],

M;r

x]) EI]W’I(%J)))M+€(N_m+1)/20(6)||w||55
j=1
e 1 o) m
2 ([ wl) " < Cemoloe o]l = <Y HI20() ol
Q
By Theorem A.1,
/Q(|y€|p—1 _ cpgpfl)/p(xj))i/;@jw
/ (| |- 1_ (p 1)/10@))‘/87mjw
t [ (@) = ) Voo O [ ol
Qg 2\ Qe
1/2 m o
([ 17-2iPV2,)" 4 SN2 ] = N0 o]
0

Similarly, using (2.10), we find
k ko
/ (fs(ya Z ‘/s,mj) - Zf(xjv Wa,mj,sal(mj)))w
Q j=1 j=1
k ko
N /Q (Lo, Y Vew,) = > Flaj, Vo)) w + Ole™ /%) ||w]|c
j=1 j=1
k k k )
[0 Vo) = Yl Ve ot Y [ (el Vo) = 3, Ve )
Q = = Pt
k k
:/Q<fa<y, D Vew)) = D Jely Veuw))w + eV THDROE
j=1 j=1
and
k k
S 3o Ver) =3 el Ve,

:0(2/5 ‘/8<1Ja>/2v<1+g>/2|w|) _ E<zv4n+1>/2o(z ‘/Egleg>/2(xi))||w||5,

i#j 7S i#j
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Denote fsﬁt(y, t) = %fs(ya t)
LEMMA 2.4. Let

k
Qa,m(w,n)=/Q(62D77Dw+plus|”_lnw) —/Qfa,t(y,ZVa,mj)nw
=1

Then, we have

Qe (w, )| < Cllwllelmlle-

In particular, there is a bounded linear operator Qe 5 from Eg y i to E. 5 1, such that

<Q€,ww7 77>5 = Qe,z(w, 7).
Proof. Tt is easy to see that
[ ©DuDe + plupne)| < ol
Q

On the other hand, we have

k

}/ fs,t(yaZPE,QUs,mj)nW’
Q =
k 1/2 1/2
< ‘ —o/e 2 2
_‘ - fs,t(yijIPs,QU&mJ)nw‘ + 0(6 )(/QW ) (/Q77 )

=l /Qe A /Q 9 )" + el [ ) ( /Q o)

p—1, .2 1/2 p—1,2 1/2 —o/e\.—2
<O( [ ) ([ pluln?) T+ O ) e
Qg Qe
<Cllwllllnlle-
Thus the result follows. O

LEMMA 2.5. There is a constant p > 0, independent of € and x € Dy ., such that

1Qeawlle = pllwlle;  Vw € Eeak, @ € Die

Proof. The proof of this lemma is standard. We just sketch the proof.
We argue by contradiction. Suppose that there are €, — 0, zj, € Dy . with
Tjn — 25 €S, wp € B¢, 4, k, such that

(N—m+1)/2

||wn||5n =é&n ’

and

1Qc 0 wnlle, = o(eNTmHI2), (2.15)
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We claim that for any fixed R >0, j=1,--- ,k

)

/ lwm[2 = o(eN—m+1). (2.16)
B*HR(;E] n)

In fact, for any fixed j = 1,--- ,k, let @, (2) = wp(enz + xjn), Dn = {2 :

enz + Tjn € D}. Uin(y) = Ve, 0s. (6n + Tjn), Then we may assume that there is
an w; € HY (RN~ such that

D&j .y — Dwj, weakly in L2(RN 1),

and

~. N—m-+1
Win = Wy, in LIOC(R )a

as n — +00.
From (2.15), we can prove that w; satisfies

1 — 1 . —m
—Aw; = plUp )y — 21/ @) 2 Uy ay) — 91/ 7 (2))wj = 0, in RN+ (2.17)

By Proposition 2.2, we have
N—m-+1

Z CEENChY (2.18)

8zh

for some by, € R".
On the other hand, differentiating (2.9), we find

Ve n.
(Temsn )
6{Ejh €
OVe z; (p—1)/ OVz .
— D ) ],’ﬂD n P p i yTjn n
/Q (D= Deon + oot P ajn) =5 Zomom)
OVe o
p—1 _ (p—l)/p . €,Tj,n
+p/ﬂ(|g5| 71 (25n))n 0z

= [ s e +0( [ )
= A t(l'],na €,%j,n,p1(Tjn) axjh Wn, €Zjm,1(xj,n) %N

_ oU.
__N—m / 2 1/ P11z n) ~
- p/RN—wn+1| e1(win) IJ n ‘ (U‘/’l(%‘,n) — ¥ p(x%n))ThJWﬂ}"
oU.
N-m (p=1/p¢,.. p1(wy, n) ~ O(eN-m+1
e p/RN m41 1 (Ij’n) Ozp Wim + ( )’
from which, together with w,, € E;,, .., &, we deduce
oU, . oU, .
Dw. D 2=#1(5) (p-D/p,.. \  YYei(;)
/}%N7m+1( wj ozn + pey (zj)w; dzn )
1 -2 1 —1
=wémwfwmm A @) Uy — 01 (@) + 6 (@y)) (219)
U, (x
% p1(z;) ;= 0.
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Combining (2.18) and (2.19), we find that w; = 0. Thus, (2.16) follows.
It follows from (2.16) that

0(€N7m+1)

= Qe wulle, lwalle, 2 |(Qeswnwn),

k
2nl, = [ ot 3 Ve, )k
j=1
k

Wn + + fn7 y7 V#E'n w’n
[lwnllZ, A R PSP fent®: 2 Vel

7151? j=1"enR j=1

o, ~ 01) ~ on(1) [ W2+ ofeN )
Qo\UJ_, BZ, g(z5n)

1
:”Wn”gn _ O( —o/a) —i—O( N—m+1) > §€N—m+1'

This is a contradiction. O
The following proposition allows us to reduce the problem of finding a solution
with the form (2.14) to a finite dimensional problem.

PROPOSITION 2.6. There is an e, > 0, such that for each € € (0,¢ey], there is a
C'-map Wez! Die — H, such that we » € Ee 5, and

k k N—m+1
/ Ve zJ
TOSNERES ol oI (220
Jj=1 Jj=1 h=
where A, are some constants, j = 1,--- k, h =1,--- N —m + 1. Moreover, we

have

|wezlle = 5(N_m+1)/20(5)7 T € D

Proof. Since p may be supercritical, I(u) may not be well defined in the whole
space H. To carry out the reduction argument, we first need to choose a subset of
E. 2 1. Define

Es,m,k = {w TwE an,k, ||W||a < E(N*m+1)/2€1/2,
k
w(z)] <2, |w(z)] < Y e fmmlle 2 e Uk By(ay),

j=1

lw(z)] < kefe‘s/s, z€ D\ U?ZlBg(xj)},

where 8 > 0 is a fixed small constant.

Let
k
K(z,w) = I(Z Vee; Tw), € Dype, w€ B gy
j=1
Because u, > ¢ > 0 in U5 Bs(z;), and 1 < p < N=mt3 'it is easy to check K (z,w)

is well defined in z € Dy ., w € E’gmk



LAZER-MCKENNA CONJECTURE 107
Expand K (7,w) near w = 0 as follows:
_ _ 1
R0, = R0 {leas), + 5 Qi) + Relo)

where [ ;, and ., are defined in Lemma 2.3 and Lemma 2.4 respectively, and

k
RE(W) = _/ (FE(yJZVE,Ij +w) _FS(Q;ZV;;@]-)
Q =

- fE (yv Z ‘/E,Ij )w - %f&t(y5 Z ‘/E,Ij )w2) .

j=1 j=1
Thus, finding a critical point for K (x,w) in E; . 1 is equivalent to solving
lex + Qe aw + RL(w) = 0. (2.21)
Denote p = min(3,p + 1). Then
[Re(w)| < C [ |wlP.
Q

For any w € E. 4, we have

/ Wl < e—(ﬁ—2)95/8/ wf?
\Uj_1 B3 (5) Q\US_, B} (25)

(2.22)
§€7(572)96/6/ |w|2 SCvef(;572)«95/s€72||w||§7
Q
/ ol o] < o200 ol
UF_ B; (25) O\UY_, Bj (z) (2.23)
<Ce~P=205/ec=2 ||,
and
/ (P2l l2| < Ce= (P20 / i)
DU, Bj () Q\UK_, Bj () (2.24)

<Cem P22 iy e

Since u, > ¢o >0 and |y'| > ¢o > 0 in U¥_, B} (x),, it is easy to check that

/. gy [T =TT ),

j=1Ds(Tj

/ |W|ﬁfl77 — E(meJrl)/2O(Ef(ﬁfl)(meJrl)/2”WH;‘;?fl)||77||57
U?*lBg(mj)

/ . WP~ 2 = O (e PN =mEDR G 272) || |72
@]

?:1 }‘(%)
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So, we obtain

R.(w) = N0 (e PN =D 2y 2) (2.25)
(RLw),n), = eN =020 (e (N miD D2 gz g, (2.26)
RY (@), m2) = O(e= V=m0 E=2/2)[2-2) [y . o (2.27)

On the other hand, using Lemma 2.5, we see that ., is invertible in E, ; j, and
there is a constant C, independent of € and z, such that

Q- < C. (2.28)
Rewrite (2.21) as
w=—Qglew — Q- RL(W). (2.29)
Let
Gw) = —Q3l — Q3 RL(w), Vwe Eeypp.

We now prove that for each [ with ||I]|. < Ce(W=m*1/2¢ G is a contraction map from
Es,m,k to Es,m,k- 5 5
Step 1. For any wy € E; ;1 and wo € E. 4 1, we see from (2.27) that,

1G(w1) = G(wa)lle < ClIRL(w1) = Ri(w2)]|e < Ce7[lwr — wa, (2.30)

where & > 0 is a constant. Thus, G is a contraction map.
Step 2. For each w € E, ; ,

1G(@)]le < Cllllle + ClIRL (W)l

2.31
SCHZHE_'_OEUHWHE < CS(N—m+1)/2€1/2+<7 < E(N—m+1)/251/2. ( )
Step 3. For each w € Es,m,k, we show that w; =: G(w) satisfies
k
()] <22, (o) < S el e U By(ey),  (232)
and
lwi(z)| < ke™%/¢, ze D\ U?ZlB[;(xj). (2.33)

Note that w; satisfies

Qe,zwl = _le,m - R; (w)ﬂ
which is equivalent to

k N—m+1

<Q€,1W1;§> <am;§> Z Z G]h sm] >8 (234)
j=1 h=1
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for some G, € R'.
We claim that there is a ¢ > 0, such that

|Gyn| < Ce7*3/2 j=1,-- k, h=1,--- ,N—m+1. (2.35)

In fact, letting £ = ;; in (2.34), we can solve the linear system to obtain

|Gjn| < C'=NTHEI (| + |llez e + 1B (@)]]e)
SOEI—(N—m+1)/26%+a+(N—m+l)/2 < Ceo13/2,

Using (2.9), we can rewrite (2.34) as

k
—e2Awy +p|ﬂg|p_l — feut Zvam]

Jj=1
(03 Ve +) 2530V ) (530 e Y
j=1 j=1 j=1
k k
+ e (y; Ver;) = ; (25 Wersio0) (2.36)

k
+pZ(| @) ) Ve, + O((e + QYD = 1) Wes rce))

j=1
k
J

= (gv )

y (2.35), we have the following estimate for G. ,(y,w):

Mi—

+

A Ve, L
G ( a’Ejh +p|ga| a.’L‘j7h)

)

1

k
(Gearly )] < ClolP ™! +Ce37 3 VA2 4 O VA v
= 7 (2.37)

<Clw|P~t + Ce3to ZVl/Q Ve D,

€,
Jj=1

Let 4 be fixed. For any function w(z), we denote @(z) = w(ez + ;). Then, @,
satisfies

Ead

m—1 zl~

A —e—————
ely'| +zia |2 |

VPl P o — fer (O Ve, )1 = Gen(ef+m:,0). (2.38)

From [jwi . < CeW=—m+2+0)/2 e find

/ 01> < Ce'™7, ¥ z € By (0).
B2(Z)
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Using the Moser iteration for (2.38), and using (2.37), we can deduce

|01(2)| < Cll@rll2(Bi(2)) + CllGeu(€d + @i, @) L2(B, (2))
SCE(0+1)/2 + 5(:572)/2||U~)||L2(Bl(z)) < Celot)/2 < 51/2, ez +x; € B(;(:Z?i).

So, we have proved
lwi(2)] <e'/?, ze Bs(xy), i=1,--- k. (2.39)

By (2.39), we can deduce

k
fert (Z Vs,zj)wl = 0(61/2) Zeffflzfmj\/s, z €D,
=1 j=1
for some o > 0. As a result, (2.36) becomes
k
—e?Awr + plu [P o = O(EC’ > emolemle 4 lepfl)- (2.40)
j=1

There is a constant b > 0, such that

plulP™! > 20 >0, in Uiy Bis(z;).

Denote G. (Y, y) be the Green’s function of —e?A+b? in Q with Dirichlet bound-
ary condition. Then

0< Gep(Yyy) < Ce PV ulle,

Consider the following problem:

k - 0)|j—x; .
{—52Aw+b2wzzj_le 0a+100)|g—2;il/e o € Q; (2.41)

w =0, y € 09,

where 6 > 0 is a small constant with 0 < § << ¢. Then the solution w; of (2.41)
satisfies

k

k
0<wi(y) = | Gep(Vyy) Zefe(1+1oe)|yfzj\/s dy < Czefe(uge)\gfmj\/s'

@ j=1 j=1

Denote v = £7/2w; — w;. Then, from (2.40),

— e?Av + plu [P
k ) k
:EO’/Q 2679(14»109)\7}711-\/5 + 50/2 (p|28|p71 _ b2)w1 _ O(Eozefa\zfzj\/s + |w|ﬁfl)

j=1 j=1

:3§€(y)-
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Choose n € CZ(Q) with n = 1 in U?ZlBZ‘ke—)J(Ij), n=20in D\ U?ZlBg(Ij),
0 <n < 1. Let v; be the solution of

{—52AU +plu P =nge(y), in (2.42)

v=20 on 01,

and let vy be the solution of

{—m +plucP o= (1= n)ge(y), n € (2.43)

v=0 on 0f).

Since for any y € U?:13§ (25),

k
)P = @) ()| < P22 Y o
j=1

we see 11g:(y) > 0. As a result, v; > 0.
On the other hand, by Lemma A.2, we have

ce2(P=1)/(Bp—1) /Q vs < |lv2)2 = /Q(l —1)Je(y)v2

<Ce—00+90)(1-0)6 /e (/ 03)1/2 < 06—9(1+8§)6/€(/ vg)l/Q'
Q Q

So,

/ v% < Ce200+70)/2,
Q

Thus, using the Moser iteration, similar to (2.39), we find

| < Ce=N/2—0(1+70)5 /< < Clo—0(1+60)5/¢
As a result,

w1 = &7 Pwy — v < 7wy — vy < ey + Ce0(1+60)d/c
< Ce 004600/ i \ U?ZlB:; (x;).

Similarly,
—wy < Ce 004605/ iy \ U?ZlB§ (x;).
As a result,
lwr] < Ce—6(1+66)5/¢ <e % inQ \ Ué?:lBg‘(:vj). (2.44)
Finally, we have

plu.(y)[P~1 > 202 >0, d(y,00) > 6.
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Let 11 € C2(Q) with 7y = 1 for any y € Q with d(y,dQ) < 0. Replacing 7 in (2.42)
and (2.43) by 71, we can prove that

wi(y)] < e”2wi(y) + |ve]

with
k —
|v2(y)| < 02670(1+69)d(1j,89)/5'
j=1
So,
k Y ~
oa(y)]| < ey e 0O ml/E -y e UF | By (xy).
j=1
Thus,
k i k i
|lwi(y)| < Ce/? Zefelyfzj‘/s < Zefmyfmj‘/s, y € uleBg(:cj). (2.45)
j=1 j=1

From (2.39), (2.44) and (2.45), we finish the proof of (2.32) and (2.33).

Combining Step 1-Step 3, we see that G(w) is a contraction map from E. , ; to
E. oy, for any | € E. . with [|[I[|. < CeN=m+1)/2c. By the contraction mapping
theorem, we know that for any [ € E. ,  with [|I||c < CeN="+1)/2¢ there is a unique
wE Eaml“ such that

w=Gw).

On the other hand, for any = € Dy, we have eelle < Ce(N-—m+1)/2: Ag a
result, for each € Dy ., there is we, € E: 4k, such that (2.29) holds. Moreover,
from (2.31), we have

”Ws,r”s < OHls,m”s < CeN=—m+D)/2¢,

O

Proof of Theorem 2.1. We need to choose x € D, j, such that all the constants
Ajp in (2.20) are zero. It is easy to check that if x € D,y is a critical point of the
following function:

k
K(‘T) = I(Z ‘/E,I]‘ + Ws,m)v
j=1

where w, , is the function obtained in Proposition 2.6, then, A;, =0, j =1,--- ,k,
h=1,---,N —m+1.
Consider
max K(x).

IED}C,E
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Then it follows from Propositions 2.6 and B.2, we have for any z € Dy, .,

k
K(z) :I(Z Vea,) + O(HZEJHEH‘U&HE + ||W8||§ + Rs(wa,ws))

j=1
k
:I(Z Vew,) +V"H0(e)
j=1

1

1)(

p+1

N7m+1)
p—1 2

k
1
:EN_mHAZIj,fl%’g ()
i=1

_ gN-m+1 Z(C(xz) + 0(1))‘/51%_ (xz) + O({:‘N—m-|-2)7

i#£]
Let x. € Dy . is a maximum point of K (x) in Dy, .. Choose Z. = (%1, -

such that

- 1 .

d(%e,8)=Leln—, j=1,---k,
€

and

- - L r

|Tej = Teyl 2 peln=, i # ],

where L > 0 is large. Then if L > 0 is large, we see that Z. € Dy, and

N—m+1
~m—1 2 )

~ e 1
Tej1 ¥ (Zej) = M +O(eN "2 1n -),

€
and

Ve, (Zeq) =O(eN 1),

So, it follows from (2.46), (2.47) and (2.48) that

1
K(ic) =N "M EkAM + eV O(eln g)'

(From K(Z.) < K(x.), together with (2.49) and (2.46), we obtain

k
m—1 (1=5)(BEy —F=+0)
Z(.Is,jdl 1 1 2 (e j) — M) — ZC(Is,i)Vs,za,j (we4) > 0(
=1 i
Thus,
0< M m—1 (1 %)(%7N7;n+1) N < Cel 1—r
SM =T 519 (zc;) < Ce n-<el
and
Vs,zg i (xs,i) <Celn-< El_T
’ €

(2.46)

756,]6)5

(2.47)

(2.48)

(2.49)

1
Elng).
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That is, z. is an interior point of Dy .. Hence, z. is a critical point of K (z). O

Appendix A. Existence of a local minimizer. In this section, we show that
(1.3) has a negative solution, which is a function in Hj, and is a local minimizer of
the corresponding functional in H,. One can use the subsolution and supersolution
techniques as in [7] to find a negative solution for (1.3). But it is not easy to find a good
asymptotic estimate for the solution obtained via the subsolution and supersolution
techniques. In this section, we will proceed as in [20, 11].

THEOREM A.l. There is an g9 > 0, such that for each € € (0,e¢], (1.3) has a
solution u,, such that 0 > u, > —w}/p, VyeQ, u € Hy, and
1
2 A@l/p(y)

u.(y) = 1" (y) — s

—1—0527
PPy (v) )

where e~20(2) — 0 uniformly on any compact subset of Q as ¢ — 0.

Proof of Theorem A.1. Let u = —w. Then (1.3) becomes

—2Aw = ¢ (y) — |JwfP, inQ, (A1)
w =0, on 0f. '
Let
0, t> o7 (y),
h(y,t) = pi(y) — 17, 0<t</"(y),
e1(y), t<0.
Consider
—e2Aw = h(y,w), inQ, (A.2)
w =0, on 0f2. '

It is easy to check that any solution of (A.2) is positive. Direct calculation shows

that w}/p(y) > 0 is a supersolution of (A.2). As a result, we obtain that any solution
we of (A.2) satisfies

0<w: < goi/p.
Thus w, is also a solution of (A.1). On the other hand, since % < 0foranyy €

and ¢ € (0, cpi/p(y)], we see that the solution of (A.2) is unique. Denote

82

Je(w) = | 1DwP ~ | Hiyw),

where H(y,t) = fg h(y,7)dr.

Let we be a minimizer of

min{J. (w) : w € Hy(Q)}. (A.3)
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Then, w, is a solution of (A.2). On the other hand, J.(w) also has a minimizer in
H,. By the uniqueness, w. € H,. Moreover, the asymptotic expansion follows from
Theorem 2.1 in [11]. O

Let u_ be the solution obtained in Theorem A.1. Consider the following eigenvalue
problem:

—2An+plu P~y =y, inQ,
n e Hy(Q).

We have
LEMMA A.2. Let A: be the first eigenvalue of (A.4). Then

Ao > 0052(17—1)/(317—1)7

where cg > 0 is a constant, independent of €.

Proof. For the proof of this lemma, the readers can refer to the proof of Lemma 3.6
n [11]. O

REMARK A.3. Lemma A.2 shows that u, is a local minimizer of the corresponding
functional.

REMARK A.4. We need to assume that the boundary of Q is C' to prove
Lemma A.2. This is the only place that we need this assumption.

Appendix B. Energy expansion. Let V; z be define in (2.7) and let I.(v) be
the functional defined in (2.3). In this section, we will expand I.(Vz ;).

LEMMA B.1. We have

ptl _ N—m+41

1—1
Ia(%,mj) N m—i—lA m— 1905 $) (5= 2 )(,Tj)+€N_m+10(€),

where A > 0 is a constant.

Proof. Firstly, let recall the deﬁnition of the function f(7,t) in (2.8) and the
function f.(y,t) in (2.2). Define F(j,t fo
Using the exponential decay of VE,I]7 (2.9) and (2 10), we obtain

1 _
I( € m]) 25 |:f(‘r]7 e,xj,p1(x;) ) + O(EWE,zj,am(zj) + |§(|y/|) - 1|WE,$]‘7<P1($]‘)>:| V;-“»ﬂﬂj
u P! gog”*l)/p(wj))‘/fzj — /QFE(y, Veyz;)

f(xj7W5,zj,<p1(zj))V:€,mj _‘/Qﬁ‘(ya‘/;:,mj) + O(EN_m+2)

S— 5 w|»~;o\

f(xj7W5-,Ij7§91(1j))W5-,1j#71(Ij) _/QF(QCJWWE zj,01(x;) )+O( N m+2)'
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Using (1.5), we find

f('rjav aw],gal(;ﬂj))wa zj,01(x;)

1 —7N m+1
:ameJrller ( +1) 5 / (e21 + 250)™ 71(|U—1|p—1—|—pU)U

Nemt1, m—1 (=5 (Fg-S=+ m“) P N—m+2
€ T %1 (@) | o U= =14pU)U +O(e )
__N—m+1_m-—1 (1_%)(%_W) N—m+2
= Tl (x5) f(U)+O(£ ),
’ RN—-—m+1

where D. ., = {z:ez+x; € D}, and

f@)=1t—1P =1+ pt.

Similarly,

/F(‘TjaWa,mj,g;l(mj))
Q
p+l _ N—m+1

= Nomt gt TGS )(%‘)/ F(U)+O(eN7m+2),
RN m—+1

where F(t fo
So we have proved

e )

I(Ve,) =" Aaf gy 7 () + Y7 HO0(e),

where

A= /RN%H FUU — /RN%H F(U) > 0.

Here, we have used f(¢) > 0 and the Pohozaev identity

N -2

[ sowen [ Fw.

PROPOSITION B.2. For any positive integer k, we have

(2l N—miily
2

k
1 Vi) - NmHAzz ian

j=1
eN- m+1z Iz —I—O Vszj( 1)
i#£]
+ N0 (e + 3V (),
i#£]

(z5)

where o > 0 is some constant, o(1) — 0 as € — 0, and

xlml_l f(xi’ Utpl(mi)) > >0.

1
C(xl) o 5 ’ RN-—m+1
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Proof. We have
IO Vew)) =D 1(Vew,) + Z/ (£2DVe o, DV oy + pluc [P~ Ve, Veoa,)
- — izl Q
! = 7 (B.1)

_ /Q(Fa(y,ilva@j) - ilFs(yaVa@j))

On the other hand,

—Z/ (e°DVe0, DVe o) + pluc’ ' Voo, Vera,)
i#j 79

__Z f i, We zy o1 (20)) Vez; + 5 Z/ |Ea|p 1_ (p 1)/1)(3:1))\/511‘/5%

i#] i#£]

+o( / (e 160D = D) Wern 10 Ve,
:_Z/‘f‘r“ ca)Vea, €M7 m“o(s+ZV1+o :17)

i#£j i£]
(B.2)
and
k k
/ (FE(yqu;:,mj) - ZFa(ya‘/;:,mj))
@ j=1 j=1
k k
:/ (Fs (y, Z Vs.,zj) - Z F (y7 Vs.,zj) - Z fs(y7 Vszl)vszj)
e =1 i (B.3)
+ Z/ fs Y, Ve o, sm]
i#£]
=3 [ VeV, 42104 VA ),
i#] i#]
Combining (B.1), (B.2) and (B.3), we are led to
k
IO Vew) = I(Vew))
Jj=1 j=1
12/ Fl@i, Vew Ve, +N~ m+1o(a+ZV1+°’ 2 ) (B.4)
i#] i#]
= gN-m+l Z(C(%) +0(1)) Ve, (zi) + N7 m+10(5 + Z V1+" Z)),
i#]

i#]
where



118
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Since

Flwit) = [t — 0P (@) — (@) — P~ P (i,

~AUy(a) = Uy — 01/ (@)|P — (23,

we see

1 _
c(x;) = 595;?1_1/ cpgp 1)/p(xi)Ug,(mi) > >0.
Rme#»l

Thus, the result follows from Lemma B.1 and (B.4). O
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