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1. Introduction. Let N ≥ 3, 1 ≤ k < N and R
N

= R
k × R

N−k
. Write

x = (y, z) ∈ R
k × R

N−k
. We are concerned with classifying non-negative solutions of

−∆u =
u2

∗
(t)−1

(x)

|y|t , x ∈ R
N , (1.1)

where 0 < t < min{2, k}, 2
∗
(t) =

2(N−t)
N−2

.

We will use D1,p
(R

N
), 1 ≤ p < N , to denote the completion of

C∞
c (R

N
), the set of C∞

functions with compact support in R
N

, under the norm

‖u‖D1,p
(RN

)
:=

(
∫

RN

|∇u|p
)

1

p

. By the Gagliado-Nirenberg-Sobolev inequality,

‖u‖
L

pN
N−p

(RN
)

≤ C(N, p)‖u‖D1,p
(RN

)
.

Thus we use D1,2
loc(R

N
) to denote those functions u which satisfy, on all compact

subsets K of R
N

, u ∈ L
2N

N−2 (K) and ∇u ∈ L2
(K). It is the same as H1

loc(R
N

), another

standard notation which denotes the set of functions u satisfying u,∇u ∈ L2
(K) for

all compact subsets K of R
N

.

A D1,2
loc(R

N
) solution of (1.1) is in L∞

loc. This can be proved by arguments similar

to those used by Trudinger in [19] in proving the L∞
regularity of H1

solutions to the

Yamabe equation, see [8] and [16] where Hölder regularity of solutions of (1.1) were

also studied. Clearly a positive solution u of (1.1) is C∞
in {(y, z) | y 6= 0}. See [1],

[4], [5], [7], [8], [10], [11], and the references therein for related studies.

Since u is superharmonic, non-negative and nonzero, it follows from the maximum

principle (see, e.g. [13]) that

inf
|x|≤2

u(x) > 0, inf
|x|≥1

(|x|N−2u(x)) > 0. (1.2)

Our first result is
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Theorem 1.1. For N ≥ 3, 2 ≤ k < N , and t = 1, let u ∈ D1,2
loc(R

N
) \ {0} be a

non-negative solution of (1.1). Then

u(y, z) = µ
N−2

2 u0(µy, µz + z0)

for some µ > 0 and z0 ∈ R
N−k, where

u0(y, z) = cN,k

(

(1 + |y|)2 + |z|2
)−N−2

2

with cN,k =
(

(N − 2)(k − 1)
)

N−2

2 .

Remark 1.1. If u is in D1,2
(R

N
), the result was proved by Mancini, Fabbri and

Sandeep in [16]. Theorem 1.1 does not make any assumption on u near infinity.

We make the following

Conjecture 1. For N ≥ 3, 1 ≤ k < N and 0 < t < min{2, k}, there exists
some positive U = UN,k,t ∈ D1,2

(R
N

) ∩ C0
(R

N
) such that all non-negative solutions

u ∈ D1,2
loc(R

N
) \ {0} of (1.1) must be of the form

u(y, z) = µ
N−2

2 U(µy, µz + z0)

for some µ > 0 and z0 ∈ R
N−k.

We present some partial results towards proving the above conjecture. In particu-

lar, we prove that D1,2
loc(R

N
) non-negative solutions of (1.1) must belong to D1,2

(R
N

).

We also prove that if if we replace the exponent 2
∗
(t)− 1 by some p < 2

∗
(t)− 1, then

D1,2
loc(R

N
) non-negative solutions of the equation must be identically zero.

Theorem 1.2. For N ≥ 3, 1 ≤ k < N , 0 < t < min{2, k} and p < 2
∗
(t) − 1, let

u ∈ D1,2
loc(R

N
) be a non-negative solution of

−∆u =
up

(x)

|y|t , x ∈ R
N . (1.3)

Then u ≡ 0.

Define for x ∈ R
N

and λ > 0 the Kelvin transform of u by

ux,λ(x̃) =
( λ

|x̃ − x|
)N−2

u
(

x +
λ2

(x̃ − x)

|x̃ − x|2
)

, x̃ ∈ R
N .

Theorem 1.3. For N ≥ 3, 1 ≤ k < N and 0 < t < min{2, k}, let u ∈
D1,2

loc(R
N

) \ {0} be a non-negative solution of (1.1). Then

For every x = (0, z) ∈ {0} × R
N−k, (1.4)

there exists λ̄(x) ∈ (0,∞) such that ux,¯λ(x)
≡ u,

For every x̄ = (ȳ, z̄) ∈ (R
k \ {0})×R

N−k, 0 < λ ≤ |ȳ|, ux̄,λ ≤ u in R
N \Bλ(x̄). (1.5)

Consequently,

u ∈ D1,2
(R

N
),
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and, for some positive constant µ and some z̄ ∈ R
N−k,

û(y, z) := µ
N−2

2 u(µy, µz + z̄) (1.6)

satisfies, for some constant d > 0,

û(0, z) =
( 1

d2 + |z|2
)

N−2

2 , z ∈ R
N−k, (1.7)

and, with w(s, τ) := û(s, 0, · · · , 0, τ, 0, · · · , 0) where (s, 0, · · · , 0) ∈ R
k and

(τ, 0, · · · , 0) ∈ R
N−k,

û(y, z) = w(|y|, |z|), ∀ (y, z) ∈ R
N , (1.8)

∂sw(s, τ) < 0, ∂τw(s, τ) < 0, ∂s

(

sN−2w(s, τ)
)

≥ 0, ∀ s, τ > 0. (1.9)

2sτ∂sw(s, τ) + (d2

+ τ2 − s2

)∂τw(s, τ) + (N − 2)τw(s, τ) ≡ 0, (1.10)

Moreover, for P = (−d, 0, · · · , 0) ∈ R
N , the Kelvin transformation of û,

v(x̃) :=
( 2d

|x̃ − P |
)N−2

û
(

P +
4d2

(x̃ − P )

|x̃ − P |2
)

,

satisfies

v(ỹ1, ỹ2, · · · , ỹk, z̃) = v(

√

|ỹ1 − d|2 + |z̃|2, ỹ2, · · · , ỹk, 0). (1.11)

Note that (1.8) implies

w(−s, τ) ≡ w(−s,−τ) ≡ w(s,−τ) ≡ w(s, t).

Note also that a standard calculation shows that the equation of v is

−∆v(x̃) =
( 4d2

∣

∣|x̃ − Q|2 − 4d2

∣

∣

)t
v(x̃)

2
∗
(t)−1, in R

N , (1.12)

where Q = −P .

If k = 1, v is a radially symmetric (with respect to Q) solution of (1.12)

The proofs of our results make use of ideas in the new proof of the Liouville-

type theorem of Caffarelli, Gidas and Spruck ([6]; see also Gidas, Ni and Nirenberg

[12] for the result under some decay assumption near infinity) given in [15] and [14],

which is based on the method of moving planes and full exploitation of the conformal

invariance of the problem.

2. Preliminary results. In this section we present some results which will be

used in the proofs of Theorem 1.1 and Theorem 1.3.

Denote Br(x) = { ξ ∈ R
N | |ξ−x| < r } for r > 0 and write Br(x) as Br if x = 0.

Let u ∈ D1,2
loc(R

N
) \ {0} be a non-negative solution of (1.1).

Lemma 1. For any x = (0, z) ∈ R
k × R

N−k, there exists λ0(x) > 0 such that for
any λ ∈ (0, λ0(x))

ux,λ ≤ u, in R
N\Bλ(x).
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Proof. Without loss of generality, we assume x = 0 and write u0,λ as uλ.

Step 1. We prove that there exist 0 < λ1 < λ2, which may depend on x, such

that

uλ(ξ) ≤ u(ξ), ∀ 0 < λ < λ1, λ < |ξ| < λ2. (2.1)

Indeed, for ξ ∈ ∂Bλ2
, λ2ξ
|ξ|2 ∈ Bλ2

. Thus

uλ(ξ) =
(

λ
|ξ|

)N−2

u
(

λ2ξ
|ξ|2

)

< (
λ1

λ2
)
N−2

supξ∈Bλ2

u(ξ)

< inf∂Bλ2
u (by choosing λ1 = λ1(λ2) small)

≤ u(ξ).

The above inequality, together with uλ = u on ∂Bλ implies that

uλ ≤ u on ∂(Bλ2
\Bλ) (2.2)

for all λ ∈ (0, λ1(λ2)).

We will show, for sufficiently small λ2, that for λ ∈ (0, λ1(λ2))

uλ ≤ u in Bλ2
\Bλ. (2.3)

In the proof of (2.3) as well as in the proofs of Lemma 2 and Lemma 6, we make

use of the “narrow domain technique” of Berestycki and Nirenberg [2].

For ξ = (ξ1, ξ2) ∈ R
k × R

N−k
, we have

−∆u(ξ) =
u2

∗
(t)−1

(ξ)

|ξ1|t
, in R

N ,

−∆uλ(ξ) =
u

2
∗
(t)−1

λ (ξ)

|ξ1|t
, in R

N \ {0},

which yield

−∆(u(ξ) − uλ(ξ)) =
1

|ξ1|t
(u2

∗
(t)−1

(ξ) − u
2
∗
(t)−1

λ (ξ))

=
2
∗
(t)−1

|ξ1|t
(θu + (1 − θ)uλ)

2
∗
(t)−2

(u(ξ) − uλ(ξ)).
(2.4)

Multiplying both sides of (2.4) by (u − uλ)− := −min{0, u− uλ} we obtain

∫

Bλ2
\Bλ

|∇(u − uλ)−|2

= (2
∗
(t) − 1)

∫

Bλ2
\Bλ

1

|ξ1|t
(θu + (1 − θ)uλ)

2
∗
(t)−2|(u(ξ) − uλ(ξ))−|2

≤ (2
∗
(t) − 1)

(

∫

Bλ2
\Bλ

(θu + (1 − θ)uλ)
2N

N−2

)
2−t
N

(

∫

Bλ2
\Bλ

|(u − uλ)−|
2N

N+t−2

|ξ1|
tN

N+t−2

)
N+t−2

N

≤ C
(

∫

Bλ2
\Bλ

(|u| + |uλ|)
2N

N−2

)
2−t
N

∫

Bλ2
\Bλ

|∇(u − uλ)−|2. (2.5)
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Suppose that
∫

Bλ2
\Bλ

|∇(u − uλ)−|2 6= 0 then we have, for some constant C

independent of λ2,

1 ≤ C
(

∫

Bλ2
\Bλ

(|u| + |uλ|)
2N

N−2

)

2−t
N ≤ C

(

∫

Bλ2

|u| 2N
N−2

)

2−t
N ,

which is a contradiction if λ2 is chosen to be small enough.

Thus, for small λ2,
∫

Bλ2
\Bλ

|∇(u−uλ)−|2 = 0. So (u− uλ)− ≡ 0 on Bλ2
\Bλ and

(2.3) is proved.

The values of λ1 and λ2 are fixed by now.

Step 2. We show that for some small λ0(x) ∈ (0, λ1),

uλ(ξ) ≤ u(ξ), ∀ 0 < λ < λ0(x), |ξ| ≥ λ2.

Let ϕ(ξ) =
(

λ2

|ξ|

)N−2

inf∂Bλ2
u. Since ϕ is harmonic on R

N\{0} and ϕ ≤ u when

|ξ| = λ2 we have

u(ξ) ≥
(λ2

|ξ|
)N−2

inf
∂Bλ2

u, |ξ| ≥ λ2. (2.6)

Denote λ0 = inf{λ1, λ2

( inf∂Bλ2
u

supBλ2

u

)
1

N−2 }. For any 0 < λ < λ0, |ξ| ≥ λ2 we have

uλ(ξ) =
( λ

|ξ|
)N−2

u(
λ2ξ

|ξ|2 ) ≤
(λ0

|ξ|
)N−2

sup

Bλ2

u ≤
(λ2

|ξ|
)N−2

inf
∂Bλ2

u ≤ u(ξ),

where in the last inequality (2.6) has been used. Lemma 1 is thus proved.

With Lemma 1, we can define, for x = (0, z) ∈ R
k × R

N−k
,

λ̄(x) = sup
{

µ > 0 | ux,λ ≤ u in R
N \ Bλ(x), ∀ 0 < λ ≤ µ

}

.

Lemma 2. If λ̄(x) < ∞ for some x = (0, z) ∈ R
k × R

N−k, then

u ≡ ux,¯λ(x)
. (2.7)

Proof. Without loss of generality we assume x = 0 and denote u0,λ by uλ and

λ̄(0) by λ̄. By the definition of λ̄(0) we know

u¯λ ≤ u in R
N \ B¯λ.

This is equivalent to

u¯λ ≥ u in B¯λ.

If (2.7) does not hold, then by the strong maximum principle

inf
Bλ̄−ǫ′\({0}×RN−k

)

(u¯λ − u) > 0, ∀ 0 < ǫ′ < λ̄. (2.8)
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To see (2.8) we make use of

−∆u(ξ) =
1

|ξ1|t
u2

∗
(t)−1

(ξ), ξ = (ξ1, ξ2) ∈ B¯λ,

−∆u¯λ(ξ) =
1

|ξ1|t
u

2
∗
(t)−1

¯λ
(ξ), ξ = (ξ1, ξ2) ∈ B¯λ \ {0}.

Using u¯λ ≥ u, and using the fact that {0} has zero (Newtonian) capacity, we

obtain in the sense of distribution that

∆(u − u¯λ) ≥ 0, in B¯λ. (2.9)

So if u−u¯λ ≡ 0 does not hold, we must have (2.8). So, for 0 < δ < λ̄, there exists

some c(δ) > 0 such that

inf
Kδ

(u¯λ − u) ≥ c(δ), (2.10)

where

Kδ =
{

x ∈ B¯λ | dist
(

x, ∂
(

B¯λ \ ({0} × R
N−k

)
))

≥ δ
}

.

By the uniform continuity of u on the compact set Kδ, there exists small ǫ1 = ǫ(δ) ∈
(0, δ) such that

uλ − u ≥ c(δ)/2, on K2δ, ∀ λ̄ ≤ λ ≤ λ̄ + ǫ1. (2.11)

Using the “narrow domain technique” as in the proof of Lemma 1, we can show that

for some small δ > 0,

uλ − u ≥ 0, on Bλ \ K2δ, ∀ λ̄ ≤ λ ≤ λ̄ + ǫ1.

This and (2.11) lead to a contradiction to the definition of λ̄. Lemma 2 is established.

Lemma 3. Either λ̄(x) = ∞ for all x = (0, z) in {0} × R
N−k or λ̄(x) < ∞ for

all x = (0, z) in {0} × R
N−k.

Proof. Suppose that there is a point x̄ = (0, z̄) ∈ R
k × R

N−k, such that 0 <
λ̄(x̄) < ∞, then by Lemma 2

u(ξ) ≡
( λ̄(x̄)

|ξ − x̄|
)N−2

u
(

x̄ +
λ̄2

(x̄)(ξ − x̄)

|ξ − x̄|2
)

. (2.12)

Multiplying (2.12) by |ξ|N−2
and sending |ξ| to ∞, we obtain

lim
|ξ|→∞

|ξ|N−2u(ξ) = λ̄N−2

(x̄)u(x̄) < ∞. (2.13)

On the other hand, for all x = (0, z),

ux,λ(ξ) ≤ u(ξ), ∀ |ξ − x| > λ, 0 < λ < λ̄(x),
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leading to

lim inf
|ξ|→∞

|ξ|N−2u(ξ) ≥ λN−2u(x), ∀ 0 < λ < λ̄(x). (2.14)

Letting λ → λ̄(x) in (2.14), we have

lim inf
|ξ|→∞

|ξ|N−2u(ξ) ≥ λ̄N−2

(x)u(x),

which implies, in view of (2.13), that λ̄(x) < ∞ for all x = (0, z). Lemma 3 is

established.

Lemma 4. For 1 ≤ k < N , ȳ 6= 0, x̄ = (ȳ, z̄) ∈ R
k × R

N−k, and λ ∈ (0, |ȳ|), we
have the following inequality

( λ

|x − x̄|
)

2 |y|
|ȳ +

λ2
(y−ȳ)

|x−x̄|2 |
≥ 1, ∀ 0 < |x− x̄| ≤ λ, x = (y, z) ∈ R

k ×R
N−k. (2.15)

Proof. It is easy to see that (2.15) is equivalent to

λ2|y| ≥ |λ2y + (|x − x̄|2 − λ2

)ȳ|,

which is equivalent to

−2λ2〈y, ȳ〉 ≤ (λ2 − |x − x̄|2)|ȳ|2,

which is equivalent to

−2λ2〈y − ȳ, ȳ〉 ≤ (3λ2 − |x − x̄|2)|ȳ|2. (2.16)

Inequality (2.16) follows from the following simple calculation:

−2λ2〈y − ȳ, ȳ〉 ≤ 2λ2|y − ȳ||ȳ| ≤ 2λ2

(λ|ȳ|) ≤ 2λ2|ȳ|2 ≤ (3λ2 − |x − x̄|2)|ȳ|2.

Lemma 4 is established.

Lemma 5. Let x̄ be as in Lemma 4. Then there exists λ0(x̄) ∈ (0, |ȳ|) such that
for any λ ∈ (0, λ0(x̄))

ux̄,λ(x) ≤ u(x), ∀ξ ∈ R
N\Bλ(x̄).

Proof. Given (1.2), and given the smoothness of u near x̄, the proof is the same

as that of lemma 2.1 in [14].

Let

λ̄(x̄) := sup
{

µ | 0 < µ < |ȳ|, ux̄,λ ≤ u in R
N \ Bλ(x̄), , ∀ 0 < λ ≤ µ

}

.

Lemma 6. Let x̄ = (ȳ, z̄) be as in Lemma 4. Then λ̄(x̄) = |ȳ|. Namely

ux̄,λ(x) ≤ u(x), ∀ x = (y, z) ∈ R
N \ Bλ(x̄), ∀ 0 < λ ≤ |ȳ|. (2.17)
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Consequently, with w̃(s, z) := u(s, 0, · · · , 0, z),

u(y, z) = w̃(|y|, z), ∀ (y, z) ∈ R
N , (2.18)

∂sw̃(s, z) < 0, ∂s

(

sN−2w̃(s, z)
)

≥ 0, ∀ s > 0, z ∈ R
N−k. (2.19)

Proof. Without loss of generality we assume that z̄ = 0. We prove it by contra-

diction argument. Suppose the contrary, then 0 < λ̄(x̄) < |ȳ|. Using Lemma 4 we

have, for any λ ∈ (0, |ȳ|),

−∆ux̄,λ(x) ≥ 1

|y|t ux̄,λ(x)
2
∗
(t)−1, ∀ 0 < |x − x̄| < λ. (2.20)

Indeed, for |x − x̄| < λ,

−∆ux̄,λ(x) =
( λ

|x − x̄|
)N+2

(−∆u)(x̄ +
λ2

(x − x̄)

|x − x̄|2 )

=
( λ

|x − x̄|
)N+2 1

|ȳ +
λ2

(y−ȳ)

|x−x̄|2 |t
u2

∗
(t)−1

(x̄ +
λ2

(x − x̄)

|x − x̄|2 )

=
( λ

|x − x̄|
)

2t( |y|
|ȳ +

λ2
(y−ȳ)

|x−x̄|2 |
)t · 1

|y|t
(

ux̄,λ(x)
)

2
∗
(t)−1 ≥ 1

|y|t
(

ux̄,λ(x)
)

2
∗
(t)−1

,

where in the last inequality Lemma 4 has been used.

By the definition of λ̄(x̄),

u − ux̄,¯λ(x̄)
≥ 0, in R

N \ B¯λ(x̄)
(x̄).

This is equivalent to

ux̄,¯λ(x̄)
− u ≥ 0, in B¯λ(x̄)

(x̄) \ {x̄}. (2.21)

With this, we derive from (2.20) and the equation of u that

∆

(

ux̄,¯λ(x̄)
− u

)

≤ 0, in B¯λ(x̄)
(x̄) \ {x̄}.

Since {x̄} has zero (Newtonian) capacity, we deduce from this and (2.21) that

∆

(

ux̄,¯λ(x̄)
− u

)

≤ 0, in B¯λ(x̄)
(x̄), in the distribution sense. (2.22)

Since λ̄(x̄) < |ȳ|, both u and ux̄,¯λ(x̄)
are smooth near ∂B¯λ(x̄)

(x̄). Also, ux̄,¯λ(x̄)
is

smooth near {(0, z) | z ∈ R
N−k}, and therefore, in view of the equation of u, ux̄,¯λ(x̄)

can not be equal to u. Thus, by the maximum principle,

inf
Bλ̄(x̄)−ǫ′ (x̄)

(ux̄,¯λ(x̄)
− u) > 0, ∀ 0 < ǫ′ < λ̄(x̄).

With the above information, essentially the same arguments as in the proof of Lemma

1 and Lemma 2 yields, for some ǫ > 0, ux̄,λ ≥ u in Bλ(x̄) \ {x̄} for all λ̄ ≤ λ ≤ λ̄ + ǫ.
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This is equivalent to u ≥ ux̄,λ in R
N \Bλ(x̄) for all λ̄ ≤ λ ≤ λ̄ + ǫ, which violates the

definition of λ̄. (2.17) is proved.

For y1 < 0 < ȳ1, ȳ = (ȳ1, 0, · · · , 0), λ = |ȳ| = ȳ1, (2.17) with y = (y1, 0, · · · , 0),

z ∈ R
N−k

and x = (y, z) leads to, after sending ȳ1 → ∞,

u(−y1, 0, · · · , 0, z) ≤ u(y1, 0, · · · , 0, z).

By the symmetry of the problem, uO(y, z) := u(Oy, z) satisfies the same equation for

all orthogonal matrix O ∈ O(k), so we also have

uO(−y1, 0, · · · , 0, z) ≤ uO(y1, 0, · · · , 0, z),

which implies that u is radially symmetric about the origin in the y−variables. Namely

(2.18) holds.

For 0 < y1 < a < ȳ1, ȳ = (ȳ1, 0, · · · , 0), x̄ = (ȳ, 0), ŷ = (a, 0, · · · , 0), λ = |ȳ− ŷ| =

ȳ1 − a, (2.17) with y = (y1, 0, · · · , 0), z ∈ R
N−k

and x = (y, z) leads to, after sending

ȳ1 → ∞,

u(2a − y1, 0, · · · , 0, z) ≤ u(y1, 0, · · · , 0, z), ∀ z ∈ R
N−1. (2.23)

which implies w̃(s, z) ≤ w̃(τ, z) for s ≥ τ > 0, z ∈ R
N−k

. Thus ∂sw̃(s, z) ≤ 0. Since

∂sw̃ satisfies a linear second order elliptic partial differential equation, by applying

∂s to the equation satisfied by w̃, and since w̃ must depend on s, a fact easily seen

from the equation of u, we obtain the first inequality in (2.19) by using the strong

maximum principle.

For
s
2

< y1 < s < ŷ1, let λ = s − y1 ∈ (0, y1), y = (y1, 0, · · · , 0), x = (y, 0), ŷ =

(ŷ1, 0, · · · , 0), x̂ = (ŷ, 0). Clearly |x̂− x| = ŷ1 − y1 > λ. By Lemma 6, ux,λ(x̂) ≤ u(x̂),

i.e.

(
ŷ1 − y1

λ
)
N−2w̃(ŷ1, 0) − w̃(y1 +

λ2

ŷ1 − y1

, 0) ≥ 0.

Since the left hand side is equal to 0 for ŷ1 = s = y1 + λ, so the derivative of the left

hand side in ŷ1 at s is ≥ 0. Namely

2∂sw̃(s, 0) +
N − 2

s − y1

w̃(s, 0) ≥ 0.

Sending y1 to
s
2

in the above leads to

∂

∂s

(

sN−2w̃(s, 0)
)

= sN−2

(

∂sw̃(s, 0) +
N − 2

s
sw̃(s, 0)

)

≥ 0, ∀ s > 0.

Since the problem is invariant under translation in z−variables, we obtain the second

inequality in (2.19). Lemma 6 is established.

Lemma 7. For α > 0, θ ∈ (0, 1],

−f ′′
(y) =

1

yθ
f(y)

α, f(y) > 0, y > 0 (2.24)

has no solution.
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Proof of Lemma 7. We write h(f) = fα. First we claim that

f ′
(y) > 0, for any y > 0.

Indeed, if for some y0 > 0 we have f ′
(y0) ≤ 0, then by the mean value theorem

f ′
(y) = f ′

(y0) + f ′′
(ŷ)(y − y0) < 0, ∀y > y0.

So for all y > y1 > y0,

f ′
(y) < f ′

(y1) < 0

and therefore

f(y) = f(y1) +

∫ y

y1

f ′
(s)ds ≤ f(y1) + f ′

(y1)(y − y1).

Sending y to ∞ and using f ′
(y1) < 0 we have

f(y) → −∞ as y → ∞,

contradicting the positivity of f .

Now since f is increasing and h is non-decreasing

h(f(t)) ≥ h(f(s)), ∀t > s > 0.

Thus

−f ′′
(t) =

1

tθ
fα

(t) ≥ 1

tθ
fα

(s), ∀t > s > 0.

It follows by integrating over (s, t) and using f ′ > 0, we have

f ′
(s) ≥ f ′

(s) − f ′
(t) ≥ h(f(s))

∫ t

s

y−θdy.

Sending t to ∞, we get f ′
(s) ≥ ∞. A contradiction.

Lemma 8. For α > 0, t < 2,

{ − 1

r (rf ′
)
′
=

1

rt f
α, f(r) > 0, r > 0,

∫

1

0
r(f ′

(r))2 < ∞ (2.25)

has no solution.

Proof. We first show that

lim
r→0

+

(rf ′
(r)) = 0. (2.26)

Since (rf ′
)
′ < 0, limr→0

+(rf ′
(r)) exists. If the limit is not 0, then there exists

some constant b > 0 such that r|f ′
(r)| > b for small r > 0. It follows that r|f ′

(r)|2 ≥
b2r−1

for small r, violating
∫

1

0
r(f ′

(r))2 < ∞. (2.26) is proved.
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Since (rf ′
)
′ < 0, we know from (2.26) that

f ′
(r) < 0 ∀ 0 < r < ∞. (2.27)

Integrating the equation of f , we have, in view of (2.26),

−rf ′
(r) =

∫ r

0

s1−tf(s)αds.

Another integration gives

f(1) ≥ f(1) − f(R) =

∫ R

1

∫ r

0

r−1s1−tf(s)αdsdr, ∀ 1 < R < ∞.

Sending R to ∞ in the above gives

∫ ∞

1

∫ r

0

r−1s1−tf(s)αdsdr < ∞.

Interchanging the order of integration (Fubini theorem), we obtain

∫

1

0

∫ ∞

1

r−1s1−tf(s)αdrds < ∞.

A contradiction. Lemma 8 is established.

Lemma 9. (1.4) holds.

Proof. By Lemma 3, we only need to rule out the possibility that λ̄(x) = ∞ for

all x = (0, z) ∈ {0} × R
N−k

. Indeed if this occurs, then, by lemma 11.3 of [14],

u(y, z) = u(y, 0), ∀ y ∈ R
k.

By Lemma 6, u(y, z) is radially symmetric in the y−variables, so v(y) := u(y, 0)

is a radially symmetric positive solution of

−∆v(y) =
v2

∗
(t)−1

|y|t , y ∈ R
k. (2.28)

We also know that

∫

|y|≤1

(|∇v|2 + v
2N

N−2 ) < ∞. (2.29)

For k = 1, we know from Lemma 7 that (2.28) has no positive radially symmetric

solution.

For k = 2, we know from Lemma 8 that (2.28) has no positive radially symmetric

solution satisfying (2.29).

For 3 ≤ k < N , (2.28) has no positive radially symmetric solution satisfying

(2.29). Indeed, let

ℓ =
k + 2 − 2t

k − 2
, p = 2

∗
(t) − 1, α =

2 − t

p − 1
.
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It is easy to check that p < ℓ. Thus, according to proposition 5.2 in [18] by Serrin and

Zou, radially symmetric positive solutions of (2.28), if any, satisfy limy→0 |y|αu(y) =

λ, for some positive constant λ. But α(
2N

N−2
) = N , and therefore u does not satisfy

(2.29). This leads to a contradiction. Lemma 9 is established.

Lemma 10. There exist some µ > 0 and z̄ ∈ R
N−k such that û, defined by (1.6),

is radially symmetric in the z−variables. Moreover, for w defined in Theorem 1.3,
∂τw(s, τ) < 0, ∀ s, τ > 0.

Proof. Applying lemma 11.1 in [14] to u(0, z) we know that there exist a ≥ 0, d̃ > 0

and z̄ ∈ R
N−k

such that

u(0, z) =
( a

d̃2 + |z − z̄|2
)

N−2

2 .

For µ = a,

û(y, z) := µ
N−2

2 u(µy, µz + z̄) (2.30)

satisfies the same equation as u, and

û(0, z) =
( 1

d2 + |z|2
)

N−2

2 , (2.31)

where d = a−1d̃.

By Lemma 9, applied to û, (1.4) holds for û. For any x = (0, z), multiplying

ûx,¯λ(x)
(x̃) ≡ û(x̃) by |x̃|N−2

and sending |x̃| to infinity lead to, in view of (2.31)

λ̄(x) = û(x)
− 1

N−2 =

√

d2 + |z|2. (2.32)

For z̃1 < 0 < z1, z̃ = (z̃1, 0, · · · , 0), ỹ ∈ R
k
, x̃ = (ỹ, z̃), z = (z1, 0, · · · , 0), x = (0, z) ∈

R
N

, we have, in view of Lemma 9 and (2.32),

ûx,¯λ(x)
(x̃) = û(x̃),

where λ̄(x) =

√

d2 + |z1|2.
Sending z1 to ∞ in the above leads to

û(ỹ,−z̃1, 0, · · · , 0) = û(ỹ, z̃1, 0, · · · , 0).

Namely û(y, z) is symmetric with respect to the hyperplane plane {z1 = 0}. Since

the problem is rotationally invariant with respect to the z−variables, we obtain the

radial symmetry of û in the z−variables.

For a > 0, 0 < z̃1 < a < z1, ỹ ∈ R
k
, x̃ = (ỹ, z̃), z = (z1, 0, · · · , 0), x = (0, z) ∈ R

N
,

we have

ûx,λ(x̃) ≤ û(x̃),

where λ = |z1 − a| < λ̄(x) =

√

d2 + |z1|2. Sending z1 to ∞, we have

û(ỹ, 2a − z̃1, 0, · · · , 0) ≤ û(ỹ, z̃1, 0, · · · , 0).

It follows that ∂τw(s, τ) ≤ 0 for s, τ > 0. Since ∂τw(s, τ) satisfies a linear second

order elliptic partial differential equation, we deduce by using the strong maximum

principle that ∂τw(s, τ) > 0 for s, τ > 0. Lemma 10 is established.
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3. Proofs of Theorem 1.1 and Theorem 1.3. First we give

Proof of Theorem 1.1. By Lemma 9, (1.4) holds. Thus u ∈ D1,2
(R

N
), and the

result follows from [16]. Theorem 1.1 is established.

Now we give the

Proof of Theorem 1.3. We have proved in the last section that (1.4), (1.5), (1.2),

(1.7), (1.8), (1.9), and u ∈ D1,2
(R

N
). As shown in the proof of Lemma 10, for some

µ > 0 and z̄ ∈ R
N−k

, û defined in (2.30) satisfies (2.31). Furthermore, for any

x = (0, z),

ûx,¯λ(x)
≡ û, (3.33)

where λ̄(x) is given in (2.32).

Let P1 = (−d, 0, · · · , 0) ∈ R
k
, P = (P1, 0) ∈ R

N
, and Q = (Q1, 0) = −P .

By (2.32), the spheres {∂B¯λ(x)
(x)}x=(0,z)∈{0}×RN−k are exactly the set of spheres

going through the (k − 1)−dimensional sphere {(y, 0) ∈ R
k × R

N−k | |y| = d} ∈
R

k × {0}.
Consider the Kelvin transformation of û with respect to the Möbius transforma-

tion x → P +
4d2

(x−P )

|x−P |2
which maps B2d(P ) to (R

N \ B2d(P )) ∪ {∞} :

v(x̃) :=
( 2d

|x̃ − P |
)N−2

û
(

P +
4d2

(x̃ − P )

|x̃ − P |2
)

.

We know from (3.33) that û is symmetric with respect to

{∂B¯λ(x)
(x)}x=(0,z)∈{0}×RN−k , and the Möbius transformation maps the

(k − 1)−dimensional sphere {(y, 0) ∈ R
k × R

N−k | |y| = d} ∈ R
k × {0} to

the (k − 1)−dimensional plane

Mk−1

= {(ỹ, 0) ∈ R
k × R

N−k | (ỹ − Q1) · Q1 = 0}.

For k = 1, M0
= {Q}; while for 2 ≤ k < N , Mk−1

= {(0, y2, · · · , yk, 0)}.
If k = 1, then v is, see e.g. [3], symmetric with respect to all hyperplanes in R

N

which go through Q. Thus v is radially symmetric with respect to Q, i.e. v(x̃) = v(x̂)

if |x̃ − Q| = |x̂ − Q|.
If k ≥ 2, then v is symmetric with respect to all hyperplanes in R

N
which go

through Mk−1
. Thus v satisfies (1.11).

Now we prove (1.10). Write ŵ = w−2/(N−2)
. For s, τ, s̃, τ̃ ∈ R, let z =

(τ, 0, · · · , 0), x = (0, z), ỹ = (s̃, 0, · · · , 0), z̃ = (τ̃ , 0, · · · , 0), x̃ = (ỹ, z̃). By (3.33),

evaluated at x̃, i.e.

( |s̃|2 + |τ̃ − τ |2
d2 + |τ |2

)

ŵ

(

(d2
+ |τ |2)s̃

|s̃|2 + |τ̃ − τ |2 , τ +
(d2

+ |τ |2)(τ̃ − τ)

|s̃|2 + |τ̃ − τ |2
)

≡ ŵ(s̃, τ̃). (3.34)

For (s̃, τ̃ ), τ̃ 6= 0, let

τ∗
= τ∗

(s̃, τ̃) =
s̃2

+ τ̃2 − d2

2τ̃
.

It is easy to see that

|s̃|2 + |τ̃ − τ∗
(s̃, τ̃ )|2 = d2

+ |τ |2,
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τ̃ − τ =
d2

+ τ̃2 − s̃2

2τ̃
. (3.35)

Applying
∂
∂τ to (3.34) and evaluating it at τ = τ∗

(s̃, τ̃ ) lead to

−ŵ(s̃, τ̃ ) + s̃∂s̃ŵ(s̃, τ̃) + (τ̃ − τ∗
)∂τ̃ ŵ(s̃, τ̃ ) = 0,

which, together with (3.35), yields (1.10). Theorem 1.3 is established.

4. Proof of Theorem 1.2. In this last section we give the

Proof of Theorem 1.2. The ideas of the proof are already in the proof of Theorem

1.3. We only need to point out some changes.

Note that (1.2) holds if u is not identically zero for the same reason, and we still

have u ∈ L∞
loc(R

N
).

Lemma 1 still holds but we need to make the following changes.

Proof of Lemma 1. Follow the proof of Lemma 1 until (2.3). To prove (2.3), we

note that the equation of uλ becomes

−∆uλ(ξ) =

(

λ

|ξ|

)N+2−2t−(N−2)p
up

λ(ξ)

|ξ1|t
≤ up

λ(ξ)

|ξ1|t
, in R

N \ Bλ. (4.36)

Thus, using (1.2) and the fact that u ∈ L∞
loc(R

N
),

−∆(u(ξ) − uλ(ξ)) ≥ O(1)

|ξ1|t
(u(ξ) − uλ(ξ)), in R

N \ Bλ.

Multiplying both sides of the above by (u − uλ)− and integrating by parts, we find,

following (2.5) with obvious modification, that

∫

Bλ2
\Bλ

|∇(u − uλ)−|2 ≤ C

∫

Bλ2
\Bλ

|(u − uλ)−|2
|ξ1|t

≤ C|Bλ2
\Bλ|

2−t
N

∫

Bλ2
\Bλ

|∇(u − uλ)−|2.

We reach a contradiction by taking λ2 small enough. In (2.5), we did not use the

fact that u ∈ L∞
loc(R

N
).

Lemma 2 and Lemma 3 can be put together as

Lemma 11. λ̄(x) = ∞ for all x = (0, z) in {0} × R
N−k.

Proof of Lemma 11. Lemma 2 still holds, and the proof is essentially the same,

since the differential inequality (4.36), instead of an equality, is really what is needed

in the proof. Lemma 3 still holds and the proof is the same. Now, since p < t∗(t)− 1,

i.e. the exponent N + 2 − 2t− (N − 2)p in (4.36) is positive, there is no way to have

u ≡ ux,¯λ(x)
. Indeed that would lead to

up
(ξ)

|ξ1|t
= −∆u(ξ) = −∆ux,¯λ(x)

(ξ) =

(

λ̄(x)

|ξ − x|

)N+2−2t−(N−2)p up

x,¯λ(x)
(ξ)

|ξ1|t

=

(

λ̄(x)

|ξ − x|

)N+2−2t−(N−2)p
up

(ξ)

|ξ1|t
, ∀ ξ.
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This is impossible since N + 2 − 2t − (N − 2)p > 0. Therefore λ̄(x) = ∞ for all x.

Lemma 11 is proved.

As before, λ̄(x) ≡ ∞ implies that u(y, z) is independent of the z−variables. But,

for the same reasons given in the proof of Lemma 9, equation (1.3) does not have any

positive radially symmetric solutions in D1,2
loc(R

N
). Therefore u ≡ 0. Theorem 1.2 is

established.

Added to the proof: We have recently been informed, by the authors, of the

following related works: [9] and [17].
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