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Abstract. We consider the Yamabe flow of a conformally Euclidean manifold for which the

conformal factor’s reciprocal is a quadratic function of the Cartesian coordinates at each instant in

time. This leads to a class of explicit solutions having no continuous symmetries (no Killing fields)

but which converge in time to the cigar soliton (in two-dimensions, where the Ricci and Yamabe

flows coincide) or in higher dimensions to the collapsing cigar. We calculate the exponential rate

of this convergence precisely, using the logarithm of the optimal bi-Lipschitz constant to metrize

distance between two Riemannian manifolds.
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1. Introduction. We consider explicit solutions to the Yamabe flow on certain

asymmetric non-compact manifolds, and analyze their long-term behavior. The man-

ifolds are conformally flat and cigar-shaped, with a positively curved cap and one

end. The end is asymptotic to an infinite cylinder, which is symmetric under transla-

tion but in general not symmetric under rotation, and whose curvature assumes both

positive and negative values. These solutions are interesting both because explicit

solutions are rare — especially in the absence of symmetries, and because we are able

to compute the rate of symmetrization quite explicitly, using the optimal bi-Lipschitz

constant to metrize the distance between two Riemannian manifolds. Though the

optimal bi-Lipschitz correspondence remains unknown, we estimate enough about

it to complete our rate calculation by studying its behavior on the asymptotically

cylindrical ends of our manifolds.

The Yamabe flow was introduced by Hamilton in the late 1980’s as a parabolic

analogue of the Yamabe problem [12] (see [4]). It deforms a given Riemannian mani-

fold of dimension n ≥ 2 by evolving its metric gij according to

∂gij

∂t
= − 1

n− 1
Rgij , (1)

where R is the scalar curvature. If the manifold is conformally flat, and its metric

is given by gij = u(x)δij , then the conformal factor satisfies the partial differential
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equation

∂u

∂t
= ∆ log u+

n− 2

4
|∇ log u|2 . (2)

Like the Ricci flow, which also describes the evolution of the metric by a curvature-

driven nonlinear heat equation, the Yamabe flow expands regions of negative curvature

while contracting regions of positive curvature. In the special case of a two-manifold,

the curvature term Rgij on the right hand side of equation (1) is just twice the Ricci

curvature, and the Yamabe flow agrees with the Ricci flow. An important difference

in dimensions n > 2 is that the Yamabe flow preserves the conformal class of the

metric, while the Ricci flow generally does not.

On a compact manifold, the average value R̄ of the scalar curvature determines

whether the total volume increases (R̄ < 0) or decreases (R̄ > 0) under the Yamabe

flow. In particular, a sphere, where R̄ is positive, collapses after a finite time. One

usually normalizes the flow by setting

∂gij

ds
= − 1

n− 1

(

R− R̄(s)
)

gij , (3)

which amounts to rescaling the solutions of (1) so that the volume of the manifold is

held constant, and reparametrizing time. The normalized Yamabe flow starting from

an arbitrary smooth initial metric on a compact connected manifold is immortal, in

the sense that it exists for all positive times and never develops singularities. For large

classes of initial metrics, in particular for every conformally flat metric, it converges to

a solution of the Yamabe problem, i.e., a metric of constant curvature in the conformal

class of the initial metric [12, 4, 33, 24, 3].

Less is known about the Yamabe flow on non-compact manifolds. For smooth

complete conformally flat metrics on R
2

that have uniformly bounded curvature and

finite width (as defined in [6]), the Ricci flow has a unique solution. As t → ∞
it converges to the so-called cigar soliton [31, 32, 15, 16], which is the only eternal

solution in that class [6]. The cigar soliton is a fixed point of the flow that has

everywhere positive, radially decreasing curvature. For the Yamabe flow on non-

compact manifolds in dimension n > 2, solutions are guaranteed to exist at least for

a short time, if the Ricci curvature is initially bounded below [20].

Our starting point is a family of closed-form solutions to the porous medium

equation

∂v

∂t
=

1

m
∆
(

vm
)

(4)

that was first discovered some twenty years ago by Titov and Ustinov [26] and Tar-

tar [25] (see [30]), and later rediscovered independently several times [19, 22, 9]. They

are relevant for the Yamabe flow, because solutions of equation (2) in dimension

n > 2 are transformed into positive solutions of equation (4) with m =
n−2

n+2
by setting

u = v
4

n+2 . For equation (2), the solutions look like

u(x, t) =
1

a(t) + 〈x, P (t)x〉 , (5)

where a(t) is a positive real-valued function and P (t) is a diagonal matrix with positive

entries. We will use the detailed analysis of these solutions by Denzler and McCann [9].
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In two dimensions, equation (2) reduces to the log-diffusion equation

∂u

∂t
= ∆ log u , (6)

which can also be formally derived from the porous medium equation (4) by differen-

tiating at m = 0. The analysis of Denzler and McCann [9] does not directly apply to

the log-diffusion equation in two dimensions, but the quadratic ansatz in equation (5)

remains valid, and again leads to a system of ordinary differential equations that can

be solved by quadratures.

We are interested in the geometric evolution of the cigar-shaped manifolds that

correspond to these closed-form solutions of the porous medium equation. The rota-

tionally symmetric solutions in the family are the Barenblatt profiles, also known as

self-similar solutions since they evolve by time-dependent homothety. In the case of

the log-diffusion equation in two dimensions, the Barenblatt profile gives rise to the

cigar soliton mentioned above. In each dimension n > 2, it produces an analogue

of the cigar soliton that collapses in finite time. However, most of the solutions in

the family are not rotationally symmetric and evolve not by self-similar scaling and

dilation but rather by a more complicated affine self-similarity. Below we describe

how asymmetric cigar-shaped manifolds converge to the cigar solitons.

An interesting question that we do not address is to what extent the special

solutions considered here model more general solutions of the porous medium equa-

tion. The exponent m =
n−2

n+2
that is relevant for the Yamabe flow in n > 2 di-

mensions lies in the fast-diffusion regime 0 < m < 1, where compactly supported

initial data immediately develop everywhere positive tails. The Cauchy problem

for the fast-diffusion equation is well-posed in L1

loc if the initial data are given by

a measure that is not too concentrated on small sets [21]. The behavior of finite-

mass solutions is well understood in the range 1 − 2

n < m < 1, where mass is con-

served (see [28, 18, 2] and the references there). For m =
n−2

n+2
, which lies below this

range, it is known that solutions of finite mass vanish identically after a finite time,

and that their asymptotic behavior is governed by a rotationally symmetric solution

with profile v ∼ (1 + |x|2)−n+2

2 [10, 8, 29]. In contrast, the closed-form solutions

of [26, 25, 19, 22, 9], including the Barenblatt profile v ∼ (1 + |x|2)−n+2

4 , have infinite

mass.

The Cauchy problem for the log-diffusion equation in dimension n = 2 is not well-

posed even for radially symmetric smooth positive data. Solutions with initial values

dominated by (|x| log |x|)−2
and solutions in L1∩Lp

are non-unique and become iden-

tically zero in finite time [17]. Finite-mass solutions can be determined uniquely by

imposing boundary conditions at infinity that fix the flux [27], which is a geometric

quantity related to the total curvature of the corresponding manifold. On the other

hand, if the initial condition is sufficiently positive to be non-integrable then the solu-

tion is unique [17]. In particular, a solution constructed under the quadratic ansatz in

equation (5) uniquely solves the corresponding initial-value problem. The Barenblatt

profile attracts large classes of non-negative solutions with infinite mass [15, 16].

2. Statement of the results. By a cigar manifold we denote a conformally flat

manifold that can be parametrized over R
n

(n ≥ 2) with a conformal factor of the

form

u(x) =
1

a+ 〈v, x〉 + 〈x, Px〉 , (7)
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where a is a positive constant, v is a vector in R
n
, and P is a positive definite

symmetric matrix. The cigar manifold is symmetric or round if P is a multiple of

the identity matrix, and asymmetric or fluted otherwise. The standard cigar is the

conformally flat manifold that can be parametrized over R
n

with

u(x) =
1

1 + |x|2 .

One can replace the constant a in equation (7) with 1 by scaling the coordinates,

remove the linear part by a translation, and diagonalize the quadratic form by a

rotation in such a way that the eigenvalues of P appear in increasing order. These

coordinate changes represent isometries of the manifold. Dilating the manifold by a

factor λ amounts to replacing P with λ−2P . Two cigar manifolds are isometric, if and

only if the corresponding quadratic forms have the same eigenvalues with the same

multiplicities.

In two dimensions, every cigar manifold is homothetic to Mp = (R
2, gij = upδij)

for some p ∈ (0, 1]. The parameter p determines the shape of the manifold through

the conformal factor

up(x, y) =
1

1 + px2 + p−1y2
. (8)

Specifically, equation (7) describes λMp, where λ = (detP )
−1/4

, and p is the smaller

eigenvalue of the matrix (detP )
−1/2P .

For each value of p ∈ (0, 1], Mp is complete and has infinite area. In polar

coordinates (x, y) = eρ
(cos θ, sin θ), the end of Mp is asymptotic to the cylinder Cp =

(R × S
1, gij = wpδij), with the conformal factor given by

wp(θ) =
1

p cos2 θ + p−1 sin
2 θ

. (9)

If p < 1, then Cp is symmetric under translations along its axis but not under ro-

tations, and contains two infinite strips of negative curvature. In Mp, the region of

negative curvature consists of two lobes that stretch from the cylindrical end towards

the center of the cap, where the curvature assumes its maximum. As p approaches 1,

the variation of the curvature decreases and the lobes recede. The limiting case M1

is the standard cigar. It is symmetric under a one-parameter group of rotations, has

everywhere positive, radially decreasing curvature, and its end is asymptotic to the

flat cylinder C1 = (R × S
1, δij).

The cigar soliton and its dilates, given by λM1 for any λ > 0, are steady-state

solutions of the two-dimensional Ricci flow. Our first result provides a closed-form

expression for non-constant solutions Mp(t), which shows that the family of two-

dimensional cigar manifolds is preserved by the Ricci flow.

Theorem 1 (Ricci flow of asymmetric cigars). Consider the Ricci flow starting
at time t = 0 from the two-dimensional fluted cigar manifold λMp0

whose size and
shape are determined by λ > 0 and p0 ∈ (0, 1). Set t0 = − 1

2
tanh

−1

(p0) < 0 and
define

p(t) = tanh
(

2(t− t0)
)

.

Then λMp(λ−2t) solves the Ricci flow for all t > λ2t0.
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This solution is immortal but not ancient, in the sense that it exists for all positive

times but cannot be followed beyond time tα = λ2t0 into the past. As t→ ∞, we see

that p(t) → 1, and hence the solution approaches a multiple of the cigar soliton.

Different topologies have been used in the literature to define the convergence of

manifolds. In the spirit of [7], we consider two manifolds to be close if there exists a bi-

Lipschitz map between them whose Lipschitz constant is close to one. The Lipschitz
distance between two metric spaces M and N is defined by

dLip(M,N) = inf
f :M→N

log max
{

Lip(f),Lip(f−1

)
}

,

where the infimum extends over all bi-Lipschitz maps f : M → N , and Lip(f) denotes

the Lipschitz constant of f .

Similar to the Gromov-Hausdorff distance, this defines a metric on isometry

classes of abstract metric spaces (see [13, 23]). If M and N are dilated simulta-

neously by the same factor λ, the Lipschitz distance remains unchanged, while the

Gromov-Hausdorff distance is multiplied by λ. By definition, dLip(M,N) < ∞ if

M and N are bi-Lipschitz equivalent, and dLip(M,N) = 0 if and only if they are

isometric. The triangle inequality is satisfied, because the composition of Lipschitz

maps is again Lipschitz, with a constant no larger than the product of the individual

Lipschitz constants.

Our second result describes the rate at which Mp(t) converges to M1.

Theorem 2 (Rate of convergence of a fluted cigar to the standard cigar). Let
p0 ∈ (0, 1) be given, and consider the Ricci flow Mp(t) that starts at time t = 0 from the
two-dimensional asymmetric cigar manifold Mp0

, as described in Theorem 1. Then
Mp(t) converges exponentially to the standard cigar M1 as t→ ∞, and

b

4
e−4t ≤ dLip

(

Mp(t),M1

)

+O
(

e−8t
)

≤ be−4t

holds with b =
1−p0

1+p0
.

Since the Lipschitz distance between bounded metric spaces dominates the

Gromov-Hausdorff distance (see, for example, [13, 23]), it follows that Mp(t) con-

verges exponentially to M1 with respect to the Gromov-Hausdorff metric on compact

subsets.

We have formulated Theorem 2 for the Lipschitz distance because the standard

parametrizations of the cigar manifolds provide convenient bi-Lipschitz maps between

them. This allows us to bound the Lipschitz distance from above by the relative
error between the conformal factors, which was introduced by Vázquez in [28]. The

difference is that the Lipschitz distance does not distinguish between isometric spaces.

For the Gromov-Hausdorff metric, the lack of compactness causes technical issues.

Although the Gromov-Hausdorff distance from any cigar manifold λMp to M1 is

finite, it is not clear to us whether it converges to zero as p → 1. It is also not

easy to bound the Gromov-Hausdorff distance from below, because it is defined as

an infimum over the large set of isometric embeddings into abstract metric spaces.

Similar considerations apply to the notion of convergence defined in Chapter 8 of [7].

The theorem suggests, but does not imply, that there should be a constant b∗ ∈
[

b
4
, b
]

such that dLip(Mp(t),MI) = b∗e−4t
+ O(e−8t

). It is interesting to speculate

on whether the symmetrizing flow of the asymmetric cigar models the convergence

of a more general class of solutions to the standard cigar. For perturbations of the
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conformal factor which depend on angle only, linearization of the Yamabe flow around

the standard cylinder suggests that the fluted cylinder converges with the second

slowest mode. The slowest mode involves only one oscillation in the amplitude of

the curvature around the circumference of the cylinder, instead of two. This leads us

to conjecture that any conformally Euclidean manifold whose single end is isometric

or asymptotic to a translation-invariant cylinder, will converge to the cigar soliton

at least as quickly as our asymmetric cigars do, provided only that the cross-section

of the asymptotic cylinder possesses an isometric involution to exclude the slowest

mode.

In higher dimensions n ≥ 2, every cigar manifold can be parametrized over R
n

with a conformal factor

uP (x) =
1

1 +
∑n

i=1
pix2

i

, (10)

where P is a diagonal matrix whose entries 0 < p1 ≤ ... ≤ pn determine the size and

the shape of the manifold MP = (R
n, uP δij). The end of MP is asymptotic to a

cylinder CP = (R × S
n−1, gij = wP δij), with conformal factor

wP (σ) =
1

∑n
i=1

piφi(σ)2
, (11)

where φ is the standard isometric embedding of S
n−1

into R
n
. The standard cylinder

CI has constant scalar curvature given by 4(n− 1)(n − 2). Two cigar manifolds are

isometric, if and only if their matrices agree; they are homothetic with MP = λMQ,

if and only if P = λ−2Q.

As in two dimensions, the family of cigar manifolds is preserved by the Yamabe

flow. Closed-form solutions MP (t) in n > 2 dimensions are provided by positive

solutions of the porous medium equation (4) within the family of [26, 25, 19, 22, 9].

These solutions exist on a maximal time interval that depends on the initial value of

P . They can be ancient, but collapse at some finite time tω < ∞. The diameter of

the sphere at infinity shrinks asymptotically with (tω − t)1/2
, while the shape of the

manifold approaches a thin round cigar.

To emphasize the analogy with two dimensions, we avoid the collapse by rescaling

the flow so that it conserves the Riemannian (n − 1)-surface area of the sphere at

infinity, as defined by the conformal factor in equation (11). The normalized flow

satisfies equation (3), where R̄(s) is the average of the scalar curvature of MQ(s) over

the sphere at infinity with respect to this Riemannian measure. The rescaling slows

down the evolution, so that s→ ∞ logarithmically as t→ tω. The standard cigar MI

is a time-invariant solution of the normalized flow, and asymmetric cigar manifolds

converge exponentially to MI .

Theorem 3 (Rate at which normalized Yamabe flow symmetrizes a fluted cigar).
Fix n ≥ 2, and let Q0 be a n× n diagonal matrix with positive entries that satisfies

∫

Sn−1

wQ0
(σ)

n−1

2 dσ = |Sn−1| .

Let MQ(s) be a solution of the normalized Yamabe flow in equation (3), where R̄(s) is
the average of the scalar curvature of MQ(s) over the sphere at infinity with respect to
the Riemannian measure defined by the conformal factor wQ(s). If MQ(s) starts from
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MQ0
at time s = 0, then

b

2n(n− 1)
e−(n+2)s ≤ dLip

(

MQ(s),MI

)

+O
(

e−2(n+2)s
)

≤ be−(n+2)s

as s→ ∞ with some constant b > 0 that depends only on Q0.

We note that the surface area of the sphere at infinity in a cigar manifold can be

characterized intrinsically as the value of the isoperimetric profile of the manifold, i.e.,

the minimal surface area that is needed to enclose a subset of given Riemannian n-

volume, in the limit where the volume goes to infinity. In two dimensions, this agrees

with the aperture defined in [31, 32] and is closely related with the width defined in [6].

In dimension n = 2, the cigar soliton is a steady-state solution of both equa-

tion (1) and the normalized equation (3). Moreover, the rate of convergence given by

Theorem 2 agrees to leading order with the rate of convergence for the normalized

flow in Theorem 3. The reason is that under the two-dimensional Ricci flow, the

length of the loop at infinity in Mp(t) converges exponentially to 2π, and hence as

t → ∞ the solution of equation (1) is asymptotic, up to a constant time-shift, to the

solution of equation (3) where the length of this loop has been normalized to 2π.

3. Ricci flow on two-dimensional asymmetric cigars. We use the method

of [9] to construct the Ricci flow on two-dimensional cigar manifolds. If u solves

equation (6), then π =
1

u satisfies

∂π

∂t
= π∆π − |∇π|2 .

In the context of the porous medium equation, −π plays the role of the pressure. We

look for positive solutions in two dimensions that are quadratic in x,

π(x, y, t) = a(t) + (x, y)P (t)(x, y)t .

Here, a(t) is a positive function, and P (t) is a 2 × 2 diagonal matrix with positive

entries. This ansatz results in the matrix equation

dP

dt
= 2(trP )P − 4P 2, (12)

coupled with a differential equation for a(t) that is geometrically irrelevant for the

Ricci flow. Thus the Ricci flow preserves the set of two-dimensional cigar manifolds.

Proof of Theorem 1. Let P (t) be a diagonal 2 × 2 matrix with positive entries

p(t) ≤ q(t) that solves equation (12). The first line of Eq. (12) reads

dp

dt
= 2(detP − p2

) . (13)

The key observation is that detP is constant,

d

dt
log detP = tr

{

P−1
dP

dt

}

= 0 .

The parameter λ = detP−1/4
determines the size of the corresponding asymmetric

cigar manifold. Scaling the solution by P̃ (t) = λ2P (λ2t), we consider only detP = 1

and p ∈ (0, 1]. The constant solution p(t) ≡ 1 of equation (13) corresponds to the
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cigar soliton. For 0 < p < 1, the solution is given by p(t) = tanh
(

2(t − t0)
)

, where

t0 is determined by the initial value of p. By construction, λMp(λ−2t) solves the Ricci

flow with initial value λMp0
.

We turn to the bi-Lipschitz estimates claimed in Theorem 2. It is easy to bound

the Lipschitz distance between two cigar manifolds from above:

Lemma 1 (Maximum bi-Lipschitz distance of a fluted cigar to the standard cigar).
For any value of p ∈ (0, 1],

dLip

(

Mp,M1

)

≤ 1

2
| log p| .

Proof. The identity map on R
2

defines a map from Mp to M1 via the standard

coordinate charts. To estimate its Lipschitz constant L, consider the ratio

u1(x, y)

up(x, y)
=

1 + px2
+ p−1y2

1 + x2 + y2
∈
[

p, p−1
]

.

This means that tangent vectors at any point (x, y) ∈ R
2

are dilated by factors that

lie between p1/2
and p−1/2

, and thus

dLip

(

Mp,M1

)

≤ logL ≤ 1

2
| log p| .

The complementary inequality requires a lower bound on the Lipschitz constants

of all bi-Lipschitz maps from Mp to M1 as p → 1. We simplify this problem by

restricting the maps to the cylindrical ends Cp and C1. The next lemma shows that

the distance between any two cigar manifolds is at least as large as the distance

between their cylindrical ends.

Lemma 2 (Cigars are at least as dissimilar as their ends). For any choice of
0 < p, q ≤ 1 and λ, µ > 0,

dLip

(

λMp, µMq

)

≥ dLip

(

λCp, µCq

)

.

Proof. Let f : λMp → µMq be a bi-Lipschitz map with Lipschitz constant L. We

will construct a bi-Lipschitz map g : λCp → µCq by conjugating f near the cylindrical

end with auxiliary functions ψk, adding a suitable translation, and passing to a limit.

In polar coordinates on Mp, the conformal factor from equation (8) becomes

ũp(ρ, θ) =
1

e−2ρ + p cos2 θ + p−1 sin
2 θ

. (14)

On the annulus in Cp that corresponds to parameter values (ρ, θ) ∈ [−k, k] × S
1
,

define a map into Mp by ψk(ρ, θ) = e2k+ρ
(cos θ, sin θ). The same formula also defines

a bijection ψ̃k : µCq −→ µMq \ {0q}, where 0q denotes the point corresponding to the

origin (x, y) = (0, 0) in µMq. If k is large, then the image of ψk is an annulus far up

in the cylindrical end of Mp. Comparing equation (14) with equation (9), we see that

ψk is bi-Lipschitz with constant bounded by 1 + O(e−2k
) as k → ∞. This remains

true if we dilate both Mp and Cp by λ.
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Let Op ∈ λMp be the point corresponding to (x, y) = (0, 0) and denote the dis-

tance from f−1
(Oq) to 0p in λMp by δ. Since the distance dk = λp1/2

sinh
−1

(p1/2ek
)

of the image of ψk from Op grows without bound as k → ∞, taking k large enough

ensures dk > δ. It then follows from the Lipschitz continuity of f−1
that the image

of f ◦ψk does not intersect a ball of radius (dk − δ)/L about Oq. On the complement

of this ball, the bi-Lipschitz constant of ψ̃−1

k is bounded by 1 +O
(

e−2(dk−δ)/L
)

.

To complete the construction, we choose a translation τk along the ρ-direction in

µCq such that gk = τk ◦ ψ̃−1

k ◦ f ◦ ψk maps the point corresponding to (ρ, θ) = (0, 0)

in λCp to a point on the loop parametrized by ρ = 0 in µCq. This ensures that the

maps gk are pointwise bounded. Then gk is bi-Lipschitz, with constant bounded by

L+O(e−2k
+ e−2(dk−δ)/L

) as k → ∞. On any compact subset of λCp, the coordinate

functions of gk are defined for k sufficiently large, and the Arzelà-Ascoli theorem

allows us to choose a subsequence gkj
that converges locally uniformly to a limiting

function g : λCp → µCq. Clearly, g is bi-Lipschitz with constant at most L.

Finally, we estimate from below the bi-Lipschitz distance of a slightly fluted cylin-

der to a round one.

Lemma 3 (Bi-Lipschitz distance of a slightly fluted cylinder to a round one). As
p→ 1,

inf
λ>0

dLip

(

Cp, λC1

)

≥ 1

8
| log p| +O(p − 1)

2 .

Proof. Consider an annulus A ⊂ Cp that corresponds under polar coordinates to

(ρ, θ) ∈ [0, r] × S
1
. The area of the annulus is given by

v(r) =

∫ r

0

∫

2π

0

1

p cos2 θ + p−1 sin
2 θ

dθdρ = r ·
(

2π +O(p− 1)
2
)

.

Since the conformal factor wp in equation (9) does not depend on ρ, the loops para-

metrized by ρ = const. are geodesics, and have length

c =

∫

2π

0

(

1

p cos2 θ + p−1 sin
2 θ

)

1/2

dθ = 2π +O(p− 1)
2

as p→ 1. We have used that the first order term in the Taylor expansion of c about

p = 1 vanishes because the value of the integral does not change if p is switched with

p−1
. The shortest geodesics that join the upper with the lower boundary of A occur

at θ = π/2 and θ = 3π/2 and have length

h(r) = r · p1/2 .

It follows that the distance between any pair of points on the upper and lower bound-

ary of the annulus cannot exceed h(r) + c.
Let now g be a bi-Lipschitz map from Cp to λC1, and let L be its Lipschitz

constant. Then g(A) is topologically an annulus, which is bounded by non-contractible

loops in λC1. Since g is Lipschitz continuous, these loops have length at most L · c,
and the distance between any pair of points on upper and lower loop is bounded by

L ·
(

h(r) + c
)

. It follows that the area of g(A) in the flat cylinder λC1 is bounded by

L2 · c ·
(

h(r) + c
)

. Since g−1
is also Lipschitz continuous, the area of A satisfies

v(r) ≤ L4 · c ·
(

h(r) + c
)

.
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By taking r → ∞, this forces

L4 ≥ v(r)

c · h(r)
= p−1/2

(

1 +O(p− 1)
2
)

,

and we conclude that

inf
λ>0

dLip

(

Cp, λC1

)

≥ logL ≥ 1

8
| log p| +O(p− 1)

2 .

Proof of Theorem 2. We insert the explicit solution from Theorem 1 into Lemma 1

and into Lemmas 2 and 3 with λ = µ = 1. Since tanh
(

2(t− t0)
)

= 1 − 2e−4(t−t0) +

O
(

e−8t
)

as t→ ∞, and e4t0 =
1−p0

1+p0
, the theorem is proved.

We remark that the proof of Theorem 2 did not take full advantage of Lemma 3,

since we fixed the dilation factor to be λ = 1. Together with Theorem 2, Lemma 3

shows that

inf
λ>0

dLip

(

Mp(t), λM1

)

≥ 1

4
dLip

(

Mp(t),M1)
)(

1 + O
(

e−4t
))

as t → ∞. This means that the solution {Mp(t)}t>0 meets the curve of round cigars

{λM1}λ>0 at the point λ = 1 transversally, avoiding a cone of opening angle sin
−1

(
1

4
)

whose axis is tangent to the curve.

4. Yamabe flow on cigar manifolds in dimension n > 2. We next describe

the closed-form solutions of the porous medium equation (4) that were constructed

in [26, 25, 9]. We specialize the derivation of Denzler-McCann to the case m =
n−2

n+2
,

γ = −n+2

4
, and choose different normalizations constants and sign conventions.

We write the partial differential equation (2) in terms of the function π =
1

u as

∂π

∂t
= π∆π − n+ 2

4
|∇π|2 ,

see the pressure formulation of the porous medium equation in equation (3) of [9].

The quadratic ansatz π(x) = a(t) + 〈x, P (t)x〉 yields

dP

dt
= 2(trP )P − (n+ 2)P 2 , (15)

which agrees with equation (8) of [9] except for a constant factor of 2γ. Here, a(t) is

a positive function that has no relevance for the Yamabe flow, and P (t) is a diagonal

matrix with positive entries. According to [9], the general solution of this equation is

given by

P (t) = det
(

B + τI
)

2

n+2
(

B + τI
)−1

,
dt

dτ
=

1

n+ 2
det(B + τI)

−2

n+2 ,

where B is a diagonal matrix with trB = 0, and τ = τ(t) is an increasing real-valued

function defined on a maximal interval (tα, tω). The entries of B and the function τ
are determined by the initial conditions. The value of tα may be finite or infinite, but

tω is always finite, and

τ(t) =
(

(n− 2)(tω − t
)

)
− n+2

n−2 +O(tω − t
)

n+2

n−2 ,
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see equation (16) in [9]. Setting

λ(t) =
(

(n− 2)(tω − t)
)

1/2

, (16)

shows that

P (t) = λ(t)−2

{

I −
(

(n− 2)(tω − t)
)

n+2

n−2B +O(tω − t)2
n+2

n−2

}

(17)

as t→ tω. The case B = 0 gives the symmetric solutions P (t) = λ(t)−2I.
The proof of Theorem 3 also requires bounds on the distance from an asymmet-

ric cigar manifold to the standard cigar. The upper bound from Lemma 1 extends

immediately to higher dimensions:

Lemma 1’. (Maximum bi-Lipschitz distance of a fluted cigar to the standard

cigar). Let n ≥ 2. For any diagonal matrix P with entries 0 < p1 ≤ · · · ≤ pn,

dLip

(

MP ,MI

)

≤ 1

2
max

{

| log p1|, | log pn|
}

.

For the complementary lower bound, we consider the cylindrical end of MP .

Let φ be the standard isometric embedding of S
n−1

into R
n
. In polar coordinates

x = eρφ(σ) on MP , the conformal factor uP from equation (10) becomes

ũP (ρ, σ) =
1

e−2ρ +
∑n

i=1
piφi(σ)2

.

The distance between cigar manifolds is bounded by the distance between their cylin-

drical ends also in higher dimensions:

Lemma 2’. (Cigars are at least as dissimilar as their ends). For n ≥ 2,

dLip

(

MP ,MQ

)

≥ dLip

(

CP , CQ

)

.

The lower bound on the distance between cylinder manifolds is a bit more involved

than for n = 2:

Lemma 3’. (Bi-Lipschitz distance of a slightly fluted cylinder to a round one).

Let n ≥ 2. For any diagonal matrix P with entries 0 < p1 ≤ · · · ≤ pn,

inf
λ>0

dLip

(

CP , λCI

)

≥ 1

4n
log

pn
1

n

∑n
i=1

pi

.

Proof. Let g : CP → λCI be a map with bi-Lipschitz constant L. As in the proof

of Lemma 3, we apply g to an annulus A ⊂ CP that is parametrized by coordinates

(ρ, σ) ∈ [0, r] × S
n−1

. The shortest geodesics joining the two boundary spheres have

length

h(r) = r · p−1/2

n .
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The Riemannian (n− 1)-surface area of the cross section of A is given by

c =

∫

Sn−1

wP (σ)
n−1

2 dσ ,

where the integration is with respect to the standard measure on S
n−1

. For the

n-volume of A we compute

v(r) = r

∫

Sn−1

wP (σ)
n
2 dσ .

The last two quantities are related by Jensen’s inequality
v(r)

r·|Sn−1|
≥
(

c
|Sn−1|

)
n

n−1

.

We argue as in the proof of Lemma 3 that for large r

L2n ≥ v(r)

c · h(r)
≥ r

h(r)

(

c

|Sn−1|

)
1

n−1

.

Another application of Jensen’s inequality brings us to

L2n ≥ p1/2

n

(

1

|Sn−1|

∫

Sn−1

n
∑

i=1

piφi(σ)
2 dσ

)− 1

2

=

(

pn

1

n

∑n
i=1

pi

)
1

2

.

The claim follows upon taking logarithms.

The next lemma shows that under the Yamabe flow in n > 2 dimensions, the

shape of a cigar manifold approaches the shape of a round cigar at least twice as fast

as the width of the cigar is collapsing, and much faster than that in low dimensions.

Lemma 4 (Rate of symmetrization of a fluted cigar collapsing under Yamabe

flow). Consider a solution MP (t) of the Yamabe flow in dimension n > 2, where
P (t) is a diagonal matrix with entries 0 < p1(t) ≤ · · · ≤ pn(t). Let tω be the time of
collapse of MP (t), and define λ(t) as in equation (16). There exists a constant b0 > 0

such that

b0
2n(n− 1)

(tω − t)
n+2

n−2 ≤ dLip

(

MP (t), λ(t)MI

)

+O(tω − t)2
n+2

n−2 ≤ b0(tω − t)
n+2

n−2

as t→ tω.

Proof. The function P (t) is given by equation (17), where B is traceless and

diagonal with entries b1 ≥ · · · ≥ bn. It follows from Lemma 1’ that

dLip

(

MP (t), λ(t)MI

)

= dLip

(

λ(t)−1MP (t),MI

)

≤ 1

2
max

{∣

∣log
(

λ(t)2p1(t)
)∣

∣,
∣

∣log
(

λ2

(t)pn(t)
)∣

∣

}

=
1

2
max{|b1|, |bn|}

(

(n− 2)(tω − t)
)

n+2

n−2
+O(tω − t)2

n+2

n−2 .

Similarly, Lemmas 2’ and 3’ imply

dLip

(

MP (t), λ(t)MI

)

≥ inf
λ
dLip

(

CP (t), λCI

)

≥ 1

4n
log

pn(t)
1

n

∑n
i=1

pi(t)

=
1

4n
|bn|
(

(n− 2)(tω − t)
)

n+2

n−2
+O(tω − t)2

n+2

n−2 .
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Since
∑

bi = 0, we must have |b1| ≤ (n − 1)|bn|, and the claim follows by setting

b0 =
(n−1)

2
(n− 2)

n+2

n−2 |bn|.
5. Normalized Yamabe flow on cigar manifolds. Let P be a diagonal ma-

trix with entries 0 < p1 ≤ · · · ≤ pn, and denote the Riemannian (n − 1)-surface area

of the cross section of MP at infinity by

cP =

∫

Sn−1

wP (σ)
n−1

2 dσ .

Note that cP is positive homogeneous of degree (1−n)/2, and its gradient with respect

to (p1, . . . , pn) is non-vanishing.

Assume that MP (t) solves the Yamabe flow in equation (1), i.e., P (t) solves equa-

tion (15). Let P0 = P (0) be the initial value of P . Using equation (1) in the form
∂w
∂t = − 1

n−1
Rw, the chain rule yields

d

dt
cP (t) = −1

2

∫

Sn−1

RP (t)(σ)w
n−1

2

P (t) (σ) dσ .

Normalizing the cross section to its initial value and adjusting the speed accordingly,

Q(s) =

(

cP (t)

cP0

)
2

n−1

P (t) ,
ds

dt
=

(

cP (t)

cP0

)

−2

n−1

, (18)

we see that cQ(s) ≡ cP0
, and MQ(s) solves the normalized Yamabe flow in equation (3)

with

R̄(s) =
1

cP0

∫

Sn−1

RQ(s)(σ)w
n−1

2

Q(s) dσ

by the chain rule. Equation (15) transforms into

dQ

ds
= f(Q)Q− (n+ 2)Q2

(19)

where f is a real-valued function given by f(Q) = 2trQ− ¯R(s)
n−1

.

Heuristically, we would like to explain the precise exponential rate of convergence

of MQ(s) to the cigar soliton that is claimed in Theorem 3 by linearizing equation (19)

about Q = I. Since f is smooth away from Q = 0, positive homogeneous of degree

one, and symmetric in the eigenvalues q1, . . . qn of Q, its Taylor expansion takes the

form

f(Q) =
(n+ 2)

n
trQ+O(Q− I)2

as Q→ I. Inserting this back into equation (19) gives

dQ

ds
= (n+ 2)

{

1

n
(trQ)I −Q

}

+O(Q− I)2 .

It follows that the linearization of equation (19) about Q = I has a simple eigenvalue 0

(associated with the dilation invariance) and an eigenvalue −(n + 2) of multiplicity

(n−1) (governing the dynamics on the hypersurface cQ = |Sn−1|). By Lemmas 1’, 2’,

and 3’, this yields the exponential rate of convergence claimed in Theorem 3, but
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without the error estimate. We will obtain the error estimate by rescaling the closed-

form solutions of Denzler-McCann [9].

Proof of Theorem 3. Consider first the case n > 2. Assume that Q0 is a diagonal

matrix with positive entries such that cQ0
= |Sn−1|. Let Q(s) be a solution of equa-

tion (19) with Q(0) = Q0. If P (t) is the corresponding solution of equation (15) with

P (0) = Q0, then

dLip

(

MQ(s),MI

)

= dLip

(

MP (t),

(

cP (t)

|Sn−1|

)
1

n−1

MI

)

.

We will replace the dilation factor on the right hand side by λ(t) and control the error

with the triangle inequality. Using the scaling properties of cP and the fact that the

linear term in its Taylor expansion about P = I is proportional to tr (P − I), we

obtain from the expression for P (t) in equation (17)

cP (t) = λ(t)(n−1)

{

|Sn−1| +O(tω − t)2
n+2

n−2

}

.

It follows that

dLip

(

MQ(s),MI

)

= dLip

(

MP (t), λ(t)MI

)

+O
(

(tω − t)2
n+2

n−2

)

as t → tω. Lemma 4 bounds the right hand side from above and below by constant

multiples of (tω − t)
n+2

n−2 .

It remains to express the rate of convergence and the errors in terms of the new

time variable s. We integrate the relationship between the variables in equation (18)

to obtain for t < tω

s =

∫ t

0

λ(t)−2

{

1 +O(tω − t)2
n+2

n−2

}

dx

= s0 −
1

(n− 2)
log(tω − t) +O

(

(tω − t)2
n+2

n−2

)

.

The claim follows by solving

tω − t = e−(n−2)(s−s0)
{

1 +O
(

e−2(n+2)s
)}

,

and applying Lemma 4.

If n = 2, let p0 be the smaller eigenvalue of (detQ0)
−1/2Q0, and compare MQ(s)

with the solution Mp(t) of equation (1) given by Theorem 1. The loop at infinity in

Mp(t) has length

2π
{

1 +O
(

1 − p(t)
)

2
}

= 2π +O(e−8t
) .

In this case, the relationship in equation (18) implies

Q(s) = P (t)
{

1 +O(e−8t
)
}

, s = s0 + t+O(e−8t
) ,

and the claim follows from Theorem 1.
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