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Abstract. In this paper we study the problem of parallel transport in the Wasserstein spaces

P2(R
d
). We show that the parallel transport exists along a class of curves whose velocity field is

sufficiently smooth, and that we call regular. Furthermore, we show that the class of regular curves

is dense in the class of absolutely continuous curves and discuss the problem of parallel transport

along geodesics. Most results are extracted from the PhD thesis [8].
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1. Introduction. In the last few years, starting from the seminal papers [14, 4,

12, 9], the geometric and differential properties of the space P2(R
d
) of probability

measures in R
d

with finite quadratic moments, endowed with the quadratic optimal

transportation distance, have been deeply investigated. Motivations for this analysis

come from PDE’s, Functional Inequalities, Riemannian Geometry. We refer to [16]

for a comprehensive presentation of this wide and continuously expanding research

field.

A complete theory of the first-order differential properties of P2(R
d
) has been

estabilished in [1] (starting from the heuristics developed in [14]), without any extra

regularity assumption, either on the measures involved, or on the velocity fields. These

results lead to a complete theory of gradient flows in P2(R
d
) which extends, as a

matter of fact, also to the case when R
d

is replaced by more general spaces (see for

instance [3, 13, 15]), for instance an infinite-dimensional Hilbert space. We recall the

basic facts of the first-order theory in Section 2.

On the other hand, much less is known on the second-order properties of P2(R
d
):

the only paper we are aware of is [10], where the parallel transport equation and the

curvature tensor of P(M) are computed, mostly at a formal level, when M is a

compact Riemannian manifold; in Section 7 we borrow some computations of the

sectional curvature of P2(R
d
) from [10].

In this paper, whose content is essentially extracted from Chapter 6 of [8], we

focus on some analytic aspects: we introduce a class of curves µt in P2(R
d
) along

which the parallel transport of tangent vectors can be defined. In the case when

µt = ρtL
d

(L
d

being the Lebesgue measure), the PDE corresponding to the parallel

transport of a gradient vector field ∇ϕt is, in accordance with [10],

∇ ·
(

(∂t∇ϕt + ∇2ϕt · vt)ρt

)

= 0. (1.1)

Existence and uniqueness for this evolution problem can presumably studied by direct

PDE methods, although difficulties obviously are due to the degeneracy of ρt, which

results in a lack of uniform ellipticity. Moreover, additional difficulties appear if one

is willing to consider unbounded densities ρt, and even (in the same spirit of the

theory in [1]) measures µt that have a singular part with respect to L d
. For these
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reasons, using a suitable Riemannian analogy described in Section 3, we provide a

geometric construction of solutions to (1.1). The advantage of this construction is that

it provides easily the properties that parallel transport should have. Nevertheless, our

construction still requires some regularity condition on the tangent velocity field to

µt. However, we prove in Section 6 that our class of “regular” curves is dense in

the class of all absolutely continuous curves. We discuss also in detail the problem

of parallel transport along geodesics, see Proposition 5.19 for a positive result in the

case of “forward” transport, and Example 5.20 for a counterexample in the case of

“backward” transport.

Finally, in Section 7 we introduce the covariant derivative starting from the par-

allel transport (in contrast with the usual procedure on manifolds) and explain why

this covariant derivative should be qualified as the Levi-Civita derivative on P2(R
d
).

Finally, we discuss the possibility of defining a distance in the tangent bundle of

P2(R
d
).

2. First order differentiable calculus in Wasserstein spaces. In this sec-

tion we recall the main features of the first order differentiable calculus in Wasserstein

spaces. We assume that the reader is already familiar with the basic facts regarding

optimal transportation and Wasserstein distance, and we shall denote by

Γ(µ, ν) :=
{

γ ∈ P(R
d × R

d
) : γ(A× R

d
) = µ(A), γ(R

d ×B) = ν(B)
}

the set of admissible plans between µ, ν ∈ P2(R
d
), and by Γ0(µ, ν) the set of optimal

plans, i.e.

γ ∈ Γ0(µ, ν) ⇐⇒ γ ∈ Γ(µ, ν) and

∫

|x− y|2dγ(x, y) = W 2

2
(µ, ν).

We shall denote by Id the identity map, and use the notation T# for the push-forward

operator from P(X) into P(Y ) induced by a Borel map T : X → Y . We also use

extensively the short notation L2

µ and ‖u‖µ for L2
(µ; R

d
) and ‖u‖L2

(µ;Rd
)
respectively.

Let (E, d) be a metric space. Recall that a curve xt : [0, T ] → E is said to be

absolutely continuous if there exists g ∈ L1
(0, T ) satisfying

d(x(s), x(t)) ≤
∫ t

s

g(r)dr ∀s, t ∈ [0, T ], s ≤ t.

It turns out that for absolutely continuous curves there exists a minimal function

g (of course up to Lebesgue negligible sets) with this property, the so-called metric
derivative, given for a.e. t by (see for instance [1, 1.1.2])

|x′|(t) := lim
h→0

d(x(t+ h), x(t))

|h| .

In order to describe the differentiable structure of the Wasserstein space we start

with purely heuristic considerations, as in [14]: the continuity equation

d

dt
µt + ∇ · (vtµt) = 0 (2.1)

describes the evolution of a time-dependent mass distribution µt under the action of

a velocity field vt. In this perspective Otto suggested to consider the tangent space

at µ as −∇ · (vµ), where v runs in L2

µ; furthermore, since optimal transport maps
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are gradients, when looking for “minimal” velocity fields it is natural to restrict the

admissible velocities to be gradients only. Otto suggested to endow the tangent bundle

with the metric inherited from L2

µ:

〈−∇ · (vµ),−∇ · (wµ)〉µ :=

∫

〈v, w〉 dµ.

We shall consider the tangent space at µ directly as a subset of L2

µ, retaining the link

with the continuity equation. The following result, proved in [1, 8.3.1], provides a

complete differential characterization of the class of absolutely continuous curves in

the Wasserstein space and makes rigorous this picture.

Theorem 2.1. Let µt : [0, T ] → P2(R
d
) be an absolutely continuous curve. Then

there exists a velocity field vt ∈ L2

µt
with ‖vt‖µt

∈ L1
(0, T ) such that the continuity

equation (2.1) holds and

‖vt‖µt
≤ |µ′

t| for a.e. t ∈ (0, T ). (2.2)

Conversely, if (µt, vt) satisfy (2.1) and ‖vt‖µt
∈ L1

(0, T ), then µt is absolutely con-
tinuous and

‖vt‖µt
≥ |µ′

t| for a.e. t ∈ (0, T ). (2.3)

The previous result shows that, among all velocity fields vt compatible with µt

(in the sense that the continuity equation holds) there exists a distinguished one, of

minimal L2

µt
norm. This vector field is clearly unique (up to a negligible set of times),

thanks to the linearity with respect to vt of the continuity equation and to the strict

convexity of the L2

µt
norms.

It turns out that the “optimal” vector field constructed in the proof of the first

statement of Theorem 2.1 satisfies, besides (2.2), also

vt ∈ {∇ϕ : ϕ ∈ C∞
c (Rd)}L2

µt
for a.e. t ∈ (0, T ). (2.4)

This, and the previous heuristic remarks, motivate the following definition.

Definition 2.2 (Tangent bundle of P2(R
d
)). Let µ ∈ P2(R

d
). We define

Tanµ(P2(R
d
)) := {∇ϕ : ϕ ∈ C∞

c (Rd)}L2
(µ)

.

We shall call tangent velocity field the vector field vt provided by Theorem 2.1

and we shall denote by Pµ : L2

µ → Tanµ(P2(R
d
)) the orthogonal projection.

It turns out that vt, besides the metric characterization based on (2.2), has also

a differential characterization based on (2.4).

Proposition 2.3. Let (µt, vt) be such that (2.1) holds and ‖vt‖µt
∈ L1

(0, T ).
Then vt is tangent if and only if vt ∈ Tanµt

(P2(R
d
)) for a.e. t ∈ (0, T ).

Proof. We already said that the tangent vector field satisfies vt ∈ Tanµt
(P2(R

d
))

for a.e. t ∈ (0, T ). Conversely, if this property holds and wt is the tangent velocity

field, then ∇ · ((vt −wt)µt) = 0 as a space-time distribution. This easily implies that

∇ · ((vt − wt)µt) = 0 in R
d
, for a.e. t ∈ (0, T ),
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so that vt − wt is orthogonal in L2
(µt) to all functions ∇ϕ, ϕ ∈ C∞

c (R
d
). But since

vt − wt ∈ Tanµt
(P2(R

d
)), this proves that vt = wt.

Having defined a tangent velocity field, a satisfactory theory of evolution prob-

lems in P2(R
d
) based on these concepts can be built on these grounds. We refer

to Chapters 10 and 11 of [1] (see also [5, 16]) and we just mention in particular the

characterization of gradient flows for convex functionals F : P2(R
d
) → R ∪ {+∞},

based on the evolution variational inequalities

d

dt

1

2
W 2

2
(µt, σ) + F (µt) ≤ F (σ) in (0, T ), for all σ ∈ P2(R

d
).

The link between this formulation and the most classical ones is provided by the

following purely geometric results (see [1, 8.4.6] and [1, 8.4.7]). The first result relates

the tangent field to the infinitesimal behaviour of optimal transport maps (or plans)

along the curve; the second result, which is actually a consequence of the first one,

provides an explicit formula for the derivative of the Wasserstein distance.

Theorem 2.4. Let µt be an absolutely continuous curve and let vt be its tangent
velocity field. Then:

(i) for a.e. t ∈ (0, T ), for any choice of plans γh ∈ Γ0(µt, µt+h), the rescaled
transport plans

γ̃h := (x,
y − x

h
)#γh

converge in P2(R
d × R

d
) to (Id× vt)#µt.

(ii) for all σ ∈ P2(R
d
) and a.e. t ∈ (0, T ) we have

d

dt

1

2
W 2

2
(µt, σ) =

∫

〈vt(x), x − y〉dγ(x, y) ∀γ ∈ Γ0(µt, σ).

In the particular case when the transport plans γh are induced by transport maps

Th (i.e. (Id× Th)#µt = γh), statement (i) is equivalent to

lim
h→0

Th − Id

h
= vt in L2

µt
. (2.5)

3. The case of a manifold embedded in R
d
. Throughout this section, M

will be a C∞
manifold embedded in R

d
with the induced Riemannian structure. We

describe a possible construction of the parallel transport in M , in order to exemplify

the construction that will be performed in the Wasserstein space.

Let γ(t) : [0, 1] →M be a fixed C∞
curve and let v(t) = γ̇(t) ∈ Tγ(t)M , t ∈ [0, 1],

be the velocity vector of γ(t). We will think to the tangent space Vt := Tγ(t)M at the

point γ(t) as a linear subspace of R
d

(i.e. we translate it to let the origin be included)

and we denote by Pt : R
d → Vt the orthogonal projection of R

d
onto Vt.

Let u(t) : [0, 1] → Vt be a regular vector field along the curve. In this setting the

Levi-Civita derivative of u(t) along v(t) is given by:

∇v(t)u(t) := Pt

(

du

dt
(t)

)

. (3.1)

More generally, if u, v are vector fields in M and Px denotes the orthogonal projection

on TxM , ∇vu(x) can be defined as Px(ũ′(0)), where ũ(t) = u(γ(t)) and γ(t) is

uniquely determined by the conditions γ(0) = x and γ̇(t) = v(γ(t)).
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Recall that this covariant derivative is uniquely identified, among the other con-

nections, by the following two properties, called compatibility with the metric and

torsion free identity:

d

dt
〈u1

(γ(t)), u2

(γ(t))〉
γ(t) = 〈∇v(t)u

1

(γ(t)), u2

(γ(t))〉
γ(t)

+ 〈u1

(γ(t)),∇v(t)u
2

(γ(t))〉
γ(t), (3.2a)

∇u1u2 −∇u2u1

= [u1, u2

], (3.2b)

where u1, u2
are tangent vector fields. The fact that there is at most one connection

∇vu for which the previous equations are satisfied is a consequence of the Koszul

formula:

2〈∇vu,w〉 = v(〈u,w〉) + u(〈v, w〉) − w(〈u, v〉) + 〈[u, v], w〉 − 〈[u,w], v〉 − 〈[v, w], u〉,

valid for any vector fields u, v, w defined on the whole of M , and any connection ∇vu
satisfying equations (3.2). Given that the formula expresses the covariant derivative

in terms of the Riemannian metric and the Lie bracket only, the uniqueness follows.

The vector field u(t) is said to be the parallel transport of the vector u(0) along

γ(t) if

Pt

(

du

dt
(t)

)

= 0. (3.3)

Observe that it is easy to prove the uniqueness of the solution of this equation: indeed

by linearity it is sufficient to show that the norm is preserved in time, and this follows

by:

d

dt
|u(t)|2 = 2〈 d

dt
u(t), u(t)〉 = 2〈Pt

( d

dt
u(t)

)

, u(t)〉 = 0.

Therefore the problem is to show the existence of a solution of (3.3) for a given

initial datum u(0). This is usually done by using coordinates and solving an appro-

priate system of differential equations. However, this technique cannot be applied to

the space P2(R
d
) (we have neither Christoffel symbols, nor coordinates). Here we

are going to show how the parallel transport can be constructed using tools which

have a Wasserstein analogous.

Let us start with a useful concept.

Definition 3.1 (Angle between subspaces). Let V0, V1 ⊂ R
d be two given sub-

spaces, and let Pi, i = 0, 1, be the orthogonal projections of R
n onto Vi. Then the

angle θ(V0, V1) ∈ [0, π/2] is defined by:

cos θ(V0, V1) = inf
v0∈V0

|v0|=1

|P1(v0)|.

It is not difficult to see that, letting V ⊥
i , i = 0, 1, be the orthogonal complement

of Vi, it holds

sin θ(V0, V1) = sup
v0∈V0

|v0|=1

|v0 − P1(v0)| = ‖P⊥
1 |V0

‖

= sup
v0∈V0, |v0|=1

v⊥
1

∈V ⊥
1

, |v⊥
1

|=1

〈v0, v⊥1 〉 = sin θ(V ⊥
1
, V ⊥

0
),



6 L. AMBROSIO AND N. GIGLI

where P⊥
i , i = 0, 1, is the projection onto V ⊥

i .

In general θ(V0, V1) = θ(V1, V0) does not hold: for instance, if V0 ⊂ V1 we have

θ(V0, V1) = 0, while θ(V1, V0) = π/2 if the inclusion is strict. By applying this concept

to a smooth curve on M , we clearly have that both functions (t, s) 7→ θ(Vt, Vs),

(t, s) 7→ θ(Vs, Vt) are Lipschitz. Therefore, for some constant C depending on γ, we

have:

|u− Ps(u)| ≤ C|u||s− t|, ∀t, s ∈ [0, 1] and u ∈ Vt, (3.4a)

|Ps(u
⊥

)| ≤ C|u⊥||s− t|, ∀t, s ∈ [0, 1] and u⊥ ∈ V ⊥
t . (3.4b)

The idea of the construction is based on the identity:

∇v(0)
Pt(u) = 0, ∀u ∈ V0. (3.5)

That is: the vectors Pt(u) are a first order approximation at t = 0 of the parallel

transport. Taking (3.1) into account, (3.5) is equivalent to

|P0(u− Pt(u))| = o(t), u ∈ V0. (3.6)

Equation (3.6) follows by applying inequalities (3.4) (note that u− Pt(u) ∈ V ⊥
t ):

|P0(u − Pt(u))| ≤ Ct|u− Pt(u)| ≤ C2t2|u|.

Now, let P be the direct set of all the partitions of [0, 1], where, for P , Q ∈ P, P ≥ Q
if P is a refinement of Q. For P = {0 = t0 < t1 < · · · < tN = 1} ∈ P and u ∈ V0

define P(u) ∈ V1 as:

P(u) := PtN
(PtN−1

(· · · (Pt0 (u))).

Our first goal is to prove that the limit P(u) for P ∈ P exists. This will naturally

define a curve t→ ut ∈ Vt by taking partitions of [0, t] instead of [0, 1]: the final goal

is to show that this curve is actually the parallel transport of u along the curve γ.

The proof is based on the following lemma.

Lemma 3.2. Let 0 ≤ s1 ≤ s2 ≤ s3 ≤ 1 be given numbers. Then it holds:

∣

∣Ps3
(u) − Ps3

(Ps2
(u))

∣

∣ ≤ C2|u||s1 − s2||s2 − s3|, ∀u ∈ Vs1
.

Proof. Since Ps3
(u) − Ps3

(Ps2
(u)) = (Ps3

(Id − Ps2
))(u), the proof is a straight-

forward application of inequalities (3.4).

From this lemma, an easy induction shows that for any 0 ≤ s1 < · · · < sN ≤ 1

and u ∈ Vs1
we have

∣

∣PsN
(u) − PsN

(PsN−1
(· · · (Ps2

(u)))

∣

∣

≤
∣

∣PsN
(u) − PsN

(PsN−1
(u))

∣

∣+

∣

∣PsN−1
(u) − (PsN−1

(· · · (Ps2
(u)))

∣

∣

≤ · · ·

≤ C2|u|
N−1
∑

i=2

|s1 − si||si − si+1| ≤ C2|u||s1 − sN |2. (3.7)

With this result, we can prove existence of the limit of P (u) as P varies in P.

Theorem 3.3. For any u ∈ V0 there exists the limit of P(u) as P varies in P.
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Proof. We have to prove that, given ε > 0, there exists a partition P such that

|P(u) −Q(u)| ≤ |u|ε, ∀Q ≥ P . (3.8)

In order to do so, it is sufficient to find 0 = t0 < t1 < · · · < tN = 1 such that
∑

i |ti+1−ti|2 ≤ ε/C2
, and repeatedly apply equation (3.7) to all partitions induced by

Q in the intervals (ti, ti+1) (see Section 5 for a more detailed proof in the Wasserstein

setting).

Now, for s ≤ t we can introduce the maps T t
s : Vs → Vt which associate to the

vector u ∈ Vs the limit of the process just described (taking into account partitions

of [s, t]).

Theorem 3.4. For any t1 ≤ t2 ≤ t3 ∈ [0, 1] it holds

T t3
t2 ◦ T t2

t1 = T t3
t1 . (3.9)

Moreover, for any u ∈ V0 the curve t → ut := T t
0
(u) ∈ Vt is the parallel transport of

u along γ.

Proof. We consider those partitions of [t1, t3] which contain t2 and pass to the

limit first on [t1, t2] and then on [t2, t3]. To prove the second part of the statement,

observe that due to (3.9) it is sufficient to check that the covariant derivative vanishes

at 0. Note that from (3.7) it follows that |Pt(u) − ut| ≤ C2t2, therefore the thesis

follows from (3.5).

4. Angle between tangent spaces in P2(R
d
). The construction we did on

regular manifolds embedded in R
d

shows that the key step which allows to prove

the existence of the parallel transport is the Lipschitz property of the angle between

tangent spaces. In this section we introduce the analogous notion of angle for the

space P2(R
d
) and analyze its properties.

An important difference with the case of a manifold embedded in R
d

is that the

two spaces Tanµ(P2(R
d
)) and Tanν(P2(R

d
)) are not (affine) subspaces of a larger

Hilbert space, therefore we cannot directly imitate the definition of angle given in

the previous section. However, a natural way to embed L2

ν into L2

µ is given by the

composition with a map T pushing µ into ν. Thus, we give the following general

definition.

Definition 4.1 (Translation of vectors through a map). For any pair of measures
µ, ν ∈ P2(R

d
) and any transport map T between µ and ν we define the translation

τT of a vector f ∈ L2

ν into the vector τT (f) ∈ L2

µ as the map τT (f) := f ◦ T .

Clearly the translation through a map T is an isometry from L2

µ to L2

ν . The

definition of angle comes out naturally.

Definition 4.2 (Angle between tangent spaces through a map). Let µ, ν ∈
P2(R

d
) and let T be a transport map from µ to ν. Then the angle θT (µ, ν) ∈ [0, π/2]

between the tangent spaces at µ and ν through the map T is given by

cos θT (µ, ν) := inf ‖Pµ(v ◦ T )‖µ,

where the infimum is taken among all v ∈ Tanν(P2(R
d
)) such that ‖v‖ν = 1.

It is important to note that the angle between the tangent spaces at two measures,

strongly depends on the transport maps used. Observe also that, even if we assume
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that the transport map T is invertible, the angle θT (µ, ν) is in general not equal to

the angle θT−1(ν, µ): this corresponds to the fact that there exist two angles between

subspaces V1 and V2 of R
d
, depending on whether we are considering projections from

V1 onto V2 or from V2 to V1.

The fundamental bound on the angle we are going to use in the sequel is given

by the following proposition: the key requirement is the Lipschitz property of the

transport map, while there is no regularity assumption on the measures involved.

Proposition 4.3. Let µ, ν ∈ P2(R
d
) and let T ∈ L2

µ be a transport map from
µ to ν. Suppose that T is Lipschitz. Then it holds

sin θT (µ, ν) ≤ Lip(T − Id). (4.1)

Proof. The statement is equivalent to

‖∇ϕ ◦ T − Pµ(∇ϕ ◦ T )‖µ ≤ ‖∇ϕ‖ν Lip(T − Id), ∀ϕ ∈ C∞
c (R

d
). (4.2)

Let us suppose first that T − Id ∈ C∞
c (R

d
). In this case the map ϕ ◦T is in C∞

c (R
d
),

too, and therefore ∇(ϕ ◦ T ) = ∇T · (∇ϕ) ◦ T belongs to Tanµ(P2(R
d
)). From the

minimality properties of the projection we get:

‖∇ϕ ◦ T − Pµ(∇ϕ ◦ T )‖µ ≤ ‖∇ϕ ◦ T −∇T · (∇ϕ) ◦ T ‖µ

=

(
∫

|(I −∇T (x)) · ∇ϕ(T (x))|2dµ(x)

)

1/2

≤
(
∫

|∇ϕ(T (x))|2‖∇(Id− T )(x)‖2

opdµ(x)

)

1/2

≤ ‖∇ϕ‖ν Lip(T − Id),

where I is the identity matrix and ‖∇(Id−T )(x)‖op is the operator norm of the linear

functional from R
d

to R
d

given by v 7→ ∇(Id− T )(x) · v.
Now turn to the general case. Find a sequence (Tn − Id) ⊂ C∞

c (R
d
) such that

Tn → T uniformly on compact sets and limn Lip(Tn − Id) ≤ Lip(T − Id). It is clear

that for such a sequence it holds ‖T − Tn‖µ → 0, and we have

‖∇ϕ ◦ T − Pµ(∇ϕ ◦ T )‖µ ≤ ‖∇ϕ ◦ T −∇(ϕ ◦ Tn)‖µ

≤ ‖∇ϕ ◦ T −∇ϕ ◦ Tn‖µ + ‖∇ϕ ◦ Tn −∇(ϕ ◦ Tn)‖µ

≤ Lip(∇ϕ)‖T − Tn‖µ + ‖∇ϕ ◦ Tn‖µ Lip(Tn − Id).

Letting n→ +∞ we get the thesis.

5. Regular curves and parallel transport along them. In this section we

introduce a class of sufficiently regular curves in the Wasserstein space along which a

parallel transport can be defined.

Having the Riemannian analogy in mind (see in particular (3.6)), we would like to

say that ut ∈ Tanµt
(P2(R

d
)) is a parallel transport if ‖P h

t (u(t+h))−u(t)‖µt
= o(h),

where P h
t are suitable projections from Tanµt+h

(P2(R
d
)) to Tanµt

(P2(R
d
)) induced

by maps pushing µt to µt+h, as in Definition 4.1. It is natural to relate these maps

to the tangent vector of the curve, see also Remark 5.15.

We know from the classical Cauchy-Lipschitz theory that, if the tangent vector

vt of µt satisfies
∫

1

0
Lip(vt)dt < +∞, then the flow maps exist and are Lipschitz
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functions of the space variable. More precisely, there exists a unique family of maps

T(s, t, x) : [0, T ] × R
d → R

d
, which we call the flow of the curve µt, absolutely

continuous with respect to t and Lipschitz with respect to x, satisfying



























T(s, s, x) = x,

d

dτ
T(s, τ, x)|τ=t

= vt(T(s, t, x)),

T(t, r,T(s, t, x)) = T(s, r, x),

T(s, t, ·)#µs = µt.

(5.1)

Here all the equations except the second one hold for all x ∈ R
d

and s, t ∈ [0, 1].

The second one holds, given x ∈ R
d

and s ∈ [0, 1], for a.e. t; it can be written in a

pointwise way, including also the first one, as T(s, t, x) − x =
∫ t

s
vτ (T(s, τ, x))dτ .

Definition 5.1 (Regular curves). Let µt : [0, 1] → P2(R
d
) be an absolutely

continuous curve and let vt ∈ L2

µt
be its tangent velocity field. We say that µt is

regular if

∫ T

0

Lip(vt)dt < +∞.

Observe that we are making no regularity assumption on the measures µt. Strictly

speaking, in the definition of regularity we mean that vt has, for almost every t, a

Lipschitz continuous version, and that the (smallest) Lipschitz constant of this version

is integrable in time (recall that vt are uniquely determined only up to µt-negligible

sets).

In the following we will always assume (this is not really restrictive, up to a

reparameterization) that the regular curve is parameterized in [0, 1].

The key property of regular curves needed to prove the existence of the parallel

transport is the following bound on the Lipschitz constant of T(s, t, ·) − Id:

Lip(T(s, t, ·) − Id) ≤ exp

(∣

∣

∣

∣

∫ s

t

Lip(vr)dr

∣

∣

∣

∣

)

− 1, t, s ∈ [0, 1]. (5.2)

This inequality is a simple consequence of equations (5.1), and we recall its proof for

the sake of completeness.

Proposition 5.2. Let T(s, t, ·) be the flow maps of a regular curve µt. Then:

Lip(T(s, t, ·)) ≤ exp

(∣

∣

∣

∣

∫ s

t

Lip(vr)dr

∣

∣

∣

∣

)

, t, s ∈ [0, 1],

Lip(T(s, t, ·) − Id) ≤ exp

(∣

∣

∣

∣

∫ s

t

Lip(vr)dr

∣

∣

∣

∣

)

− 1, t, s ∈ [0, 1].

Proof. The first equation follows by a direct application of Gronwall lemma to

the differential inequality

d

dt
|T(s, t, x) − T(s, t, y)|2 =2〈T(s, t, x) − T(s, t, y), vt(T(s, t, x)) − vt(T(s, t, y))〉

≤2|T(s, t, x) − T(s, t, y)|2 Lip(vt).
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For the second one, observe that

d

dt
|T(s, t, x) − x− T(s, t, y) + y|2

≤ 2〈T(s, t, x) − x− T(s, t, y) + y, vt(T(s, t, x)) − vt(T(s, t, y))〉
≤ 2|T(s, t, x) − x− T(s, t, y) + y||x− y|Lip(vt) Lip(T(s, t, ·)),

therefore the conclusion follows by integrating from s to t the inequality

d

dt
|T(s, t, x) − x− T(s, t, y) + y| ≤ |x− y|Lip(vt) exp

(∣

∣

∣

∣

∫ s

t

Lip(vr)dr

∣

∣

∣

∣

)

.

Definition 5.3 (Absolutely continuous vector fields). Let µt be a regular curve
and let ut ∈ L2

µt
be a vector field along it. We say that ut is absolutely continuous

if the maps ut ◦ T(s, t, ·) ∈ L2

µs
are absolutely continuous for any s ∈ [0, 1], where

T(s, t, ·) are the flow maps of µt.

For an absolutely continuous vector field ut, we will write
d
dtut ∈ L2

µt
for its

derivative, defined by:

d

dt
ut := lim

h→0

ut+h ◦ T(t, t+ h, ·) − ut

h
=

d

dr
(ur ◦T(s, r, ·))|r=t

◦T(t, s, ·), ∀s ∈ [0, 1].

(5.3)

Given that the right composition with T(s, t, ·) is an isometry from L2

µt
to L2

µs
, it

is clear that a vector field ut is absolutely continuous if and only if for some s ∈ [0, 1]

the curve t 7→ ut ◦T(s, t, ·) ∈ L2

µs
is absolutely continuous. Using the second identity

in (5.3) one can easily prove the chain rules

d

dt
〈u1

t , u
2

t 〉µt
= 〈 d

dt
u1

t , u
2

t 〉µt
+ 〈u1

t ,
d

dt
u2

t 〉µt
, (5.4)

d

dt
〈∇η, ut〉µt

= 〈∇2η · vt, ut〉µt
+ 〈∇η, d

dt
ut〉µt

∀η ∈ C∞
c (R

d
). (5.5)

for a.e. t ∈ (0, 1), whenever u1, u2, u are absolutely continuous. Notice also that

t 7→ ‖ut‖µt
is absolutely continuous whenever ut is absolutely continuous.

It is important to underline that the definition of derivative of an absolutely

continuous vector field allows us to take derivative of a function ut whose range

belongs to different L2
spaces as t varies: actually these spaces can be quite different

from each other, if the support of µt does depend on time.

In the following we will use, without explicit mention, the fact that for any ϕ ∈
C∞

c (R
d
) the vector field t 7→ ∇ϕ ∈ L2

µt
is tangent and absolutely continuous. Its

derivative in the sense of the above definition is easily seen to be equal to ∇2ϕ · vt.

We now give a precise definition of parallel transport along a regular curve.

Definition 5.4 (Parallel transport along regular curves). Let µt be a regular
curve and let ut ∈ Tanµt

(P2(R
d
)) a vector field defined along the curve. We say that

ut is a parallel transport if it is absolutely continuous and

Pµt

(

d

dt
ut

)

= 0 for a.e. t ∈ (0, 1). (5.6)
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Equation (5.6) may be equivalently written as:

lim
h→0

Pµt

(

ut+h ◦ T(t, t+ h, ·) − ut

h

)

= 0 in L2

µt
, for a.e. t ∈ (0, 1). (5.7)

Another equivalent characterization, thanks to (5.5), is:

d

dt
〈∇η, ut〉µt

= 〈∇2η · vt, ut〉µt
for a.e. t ∈ (0, 1), for all η ∈ C∞

c (R
d
), (5.8)

or, in integral form

〈∇η, us〉µs
−〈∇η, ut〉µt

=

∫ s

t

〈∇2η · vr, ur〉µr
dr for all t < s ∈ (0, 1), η ∈ C∞

c (R
d
).

(5.9)

Observe that this equations makes sense even if the underlying curve µt is not

regular, but only absolutely continuous. We will come back to this point at the end

of section 7.

It is also easy to check that also the concept of parallel transport is invariant

under reparameterization: if µt is a regular curve, ut is a parallel transport along it

and r : [0, R] → [0, 1] is a Lipschitz reparameterization of [0, 1], then µ̃s := µr(s) is

regular in [0, R] and ũs := ur(s) is a parallel transport along it.

Proposition 5.5 (Linearity and conservation of norm). Let ut, u
1

t , u
2

t be parallel
transports along a regular curve µt and let λ1, λ2 ∈ R. Then ‖ut‖µt

is constant and
λ1u1

t + λ2u2

t is a parallel transport.

Proof. The claim on λ1u1

t + λ2u2

t follows directly by the linearity of equation

(5.6). To prove that the norm is constant, just recall that t 7→ ‖ut‖2

µt
is absolutely

continuous and that, thanks to (5.4), its derivative is given by

d

dt
‖ut‖2

µt
= 2〈ut,

d

dt
ut〉µt

= 2〈ut, Pµt

(

d

dt
ut

)

〉µt
= 0.

As a direct consequence we get the uniqueness of the parallel transport and the

conservation of the scalar product.

Corollary 5.6 (Uniqueness of parallel transport). Let µt be a regular curve and
let u0 ∈ Tanµ0

(P2(R
d
)). Then there exists at most one parallel transport ut along µt

such that u0 = u.

Corollary 5.7 (Conservation of scalar product). Let u1

t , u
2

t be parallel trans-
ports along the regular curve µt. Then t 7→ 〈u1

t , u
2

t 〉µt
is constant.

Observe that for parallel transports we have an explicit bound on the norm of
d
dtut which depends only on the Lipschitz constant of the vectors vt.

Proposition 5.8. Let µt be a regular curve and let ut be a parallel transport
along it. Then

∥

∥

∥

∥

d

dt
ut

∥

∥

∥

∥

µt

≤ ‖u0‖µ0
Lip(vt) for a.e. t ∈ (0, 1). (5.10)
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Proof. We will prove that equation (5.10) is fulfilled at any Lebesgue point t of

the function s→ Lip(vs). Fix such t and observe that

‖us ◦ T(t, s, ·) − ut‖µt
≤ ‖Pµt

(us ◦ T(t, s, ·)) − ut‖µt
+ ‖P⊥

µt
(us ◦T(t, s, ·))‖µt

.

Dividing by |s− t| and letting s→ t we have that the first term goes to 0 by definition

of parallel transport, while for the second one we have the following estimate, based

on Proposition 4.3 and Proposition 5.2:

lim sup

s→t+

‖P⊥
µt

(us ◦ T(t, s, ·))‖µt

s− t
≤ lim sup

s→t+

1

s− t
‖ut‖µt

Lip(T(t, s, ·) − Id)

≤ lim sup

s→t+
‖u0‖µ0

e
R

s

t
Lip(vr)dr − 1

s− t
= ‖u0‖µ0

Lip(vt).

The case s→ t− is analogous.

Now we turn to the proof of the existence of the parallel transport: µt will be

a fixed regular curve, vt its tangent vector field and T(t, s, x) its flow. In order to

enlighten the notation we define

D(t, s) := e
R

s

t
Lip(vr)dr − 1, 0 ≤ t ≤ s ≤ 1,

D(t, s) := D(s, t) 0 ≤ s ≤ t ≤ 1.

Then we denote by τs
t be the linear isometry from L2

µt
to L2

µs
given by the right

composition with T(s, t, ·). Note that from the group property of T(s, t, ·) it follows

τr
t = τr

s ◦ τs
t , ∀t, s, r ∈ [0, 1]. (5.11)

Moreover we define

P
s
t (u) := Pµs

(

τs
t (u)

)

.

Observe that the maps Ps
t are non-expansive and that, by inequality (5.2) and Propo-

sition 4.3 we get:

‖Pt
s(w)‖µt

≤‖w‖µs
D(t, s), t, s ∈ [0, 1], w ∈ Tan

⊥
µs

(P2(R
d
)), (5.12a)

‖τs
t (u) − P

s
t (u)‖µs

≤‖u‖µt
D(t, s), t, s ∈ [0, 1], u ∈ Tanµt

(P2(R
d
)). (5.12b)

To prove the existence of the transport we proceed as in the first section: let P be the

direct set of all partitions of [0, 1], where, for P , Q ∈ P, Q ≥ P if Q is a refinement

of P . For P = {0 = t0 < t1 < · · · < tN = 1} ∈ P and u ∈ Tanµ0
(P2(R

d
)) define

P(u) ∈ Tanµ1
(P2(R

d
)) as:

P(u) := P
1

tN−1
(P

tN−1

tN−2
(· · · (Pt1

0
(u)))).

Finally, we set D2
(P) :=

∑

i D
2
(ti, ti+1).

We will prove first that there exists a unique limit T 1

0
(u) ∈ Tanµ1

(P2(R
d
)) of

P(u) as P varies in P; then we will define a curve ut with ut = T t
0
(u) ∈ Tanµt

(P2(R
d
))

by considering partitions of [0, t], and finally prove that this curve is the parallel

transport of u along the curve µt.
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Lemma 5.9. It holds

D(t1, s1) ≤ D(t2, s2), ∀[t1, s1] ⊂ [t2, s2] ⊂ [0, 1], (5.13a)

n−1
∑

i=1

D(ti, tt+1) ≤ D(t, s), t = t1 < . . . < tn = s, (5.13b)

lim
s→t

D2
(t, s)

|s− t| = 0 for a.e. t ∈ [0, 1], (5.13c)

lim
P∈P

D2

(P) = 0. (5.13d)

Proof. Equation (5.13a) is clear. For (5.13b) we need to prove that ea−1+eb−1 ≤
ea+b − 1 for positive a, b, which is obvious.

The convexity of c→ ec − 1 in [0,
∫

1

0
Lip(vr)dr] gives

D(t, s) ≤
(

e
R

1

0
Lip(vr)dr − 1

∫

1

0
Lip(vr)dr

)

∫ s

t

Lip(vr)dr, (5.14)

from which, taking the integrability of Lip(vt) into account, (5.13c) follows at every

Lebesgue point of t 7→ Lip(vt). Finally, from (5.14) we get

N−1
∑

i=0

D2

(ti+1, ti) ≤ C

N−1
∑

i=0

(
∫ ti+1

ti

Lip(vr)dr

)

2

≤ Cmax
i

{
∫ ti+1

ti

Lip(vr) dr

}
∫

1

0

Lip(vr) dr,

from which (5.13d) follows, taking the absolute continuity property of the integral

into account.

The following lemma corresponds to Lemma 3.2:

Lemma 5.10. Let 0 ≤ s1 ≤ s2 ≤ s3 ≤ 1 and let u ∈ Tanµs1
(P2(R

d
)). Then:

∥

∥P
s3

s1
(u) − P

s3

s2
(P

s2

s1
(u))

∥

∥

µs3

≤ ‖u‖µs1
D(s1, s2)D(s2, s3). (5.15)

Proof. Observe that, thanks to the semigroup property (5.11), we have

P
s3

s1
(u) − P

s3

s2
(P

s2

s1
(u)) = P

s3

s2
(τs2

s1
(u) − P

s2

s1
(u)),

and that τs2

s1
(u)−Ps2

s1
(u) ∈ Tan

⊥
µs2

(P2(R
d
)). Therefore the thesis follows by a direct

application of inequalities (5.12).

Corollary 5.11. Let P = {t = t0 < t1 < · · · < tn = s} be a partition of
[t, s] ⊂ [0, 1] and let Q be a refinement of P. Then:

‖P(u) −Q(u)‖µs
≤ ‖u‖µt

D2

(P) for every u ∈ Tanµt
(P2(R

d
)). (5.16)

Proof. Without loss of generality we may assume [t, s] = [0, 1]. Fix i < n such

that (ti, ti+1) contains some element of Q and write Q∩ [ti, ti+1] = {ti = si,0 < si,1 <
· · · < si,k(i) = ti+1} for some k(i) ≥ 1. Now, we claim that

‖Psi,k(i)

si,0 (uti
) − P

si,ki
si,ki−1

(P
si,ki−1

si,ki−2
(· · · (Psi,1

si,0
(uti

))))‖µti+1
≤ ‖uti

‖µti
D2

(ti, ti+1)

(5.17)
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for all uti
∈ Tanµti

(P2(R
d
)). Indeed, the right hand side of (5.17) can be estimated

by

‖Psi,k(i)

si,0 (uti
) − P

sik(i)

si,k(i)−1
(P

si,k(i)−1

si,0 (uti
))‖µti+1

+ ‖Psi,k(i)

si,k(i)−1
(P

si,k(i)−1

si,0 (uti
)) − P

si,k(i)

si,k(i)−1
(P

si,k(i)−1

si,k(i)−2
(· · · (Psi,1

si,0
(uti

))))‖µti+1

≤ ‖uti
‖µti

D(si,0, si,k(i)−1
)D(si,k(i)−1

, si,k(i))

+ ‖Psi,k(i)−1

si,0 (uti
) − P

si,k(i)−1

si,k(i)−2
(P

si,k(i)−2

si,k(i)−3
(· · · (Psi,0

ti
(uti

))))‖µti+1

≤ · · ·

≤ ‖uti
‖µti

k(i)−1
∑

j=0

D(si,0, si,j)D(si,j , si,j+1) ≤ ‖uti
‖µti

D(ti, ti+1)

k(i)−1
∑

j=0

D(si,j , si,j+1)

≤ ‖uti
‖µti

D2

(ti, ti+1).

Now, let us assume that (t0, t1) contains some element of Q and let P ′
= [t1, 1] ∩ P ,

Q′
= [t1, 1]∩Q, u ∈ Tanµ0

(P2(R
d
)) and v, w ∈ Tanµt1

(P2(R
d
)) be such that P(u) =

P ′
(v) and Q(u) = Q′

(w). Then, the inequality (5.17) with i = 0 reads

‖v − w‖µt1
≤ ‖u‖t0D

2

(t0, t1),

(the estimate is trivial if Q′ ∩ (t0, t1) = ∅, because v = w) so that

‖P(u) −Q(u)|µtn
≤ ‖P ′

(v) −Q′
(v)‖µtn

+ ‖Q′
(v) −Q′

(w)‖µtn

≤ ‖P ′
(v) −Q′

(v)‖µtn
+ ‖u‖t0D

2

(t0, t1).

Since ‖v‖t1 ≤ ‖u‖t0 we can apply repeatedly (5.17) in the intervals (ti, ti+1) to obtain

‖P(u) −Q(u)‖µ1
≤ ‖u‖µ0

D2
(P).

The following result follows directly from the previous corollary and from (5.13d).

Theorem 5.12 (Existence of the limit of P(u0)). Let µt be a regular curve and
let u0 ∈ Tanµ0

(P2(R
d
)). Then limP∈P P(u0) exists.

Define T 1

0
(u0) as the vector obtained by the limit process described above and

observe that, by repeating the arguments to the restriction of µt to the interval [t, s],
we can define a map T s

t : Tanµt
(P2(R

d
)) → Tanµs

(P2(R
d
)) whenever t ≤ s. Fur-

thermore, by considering the curve t → µ1−t, we can define the maps T s
t even for

t > s.

Proposition 5.13 (Group property). Let µt be a regular curve and let T s
t :

Tanµt
(P2(R

d
)) → Tanµs

(P2(R
d
)) be defined as above. Then

T s
t ◦ T t

r = T s
r , ∀r, s, t ∈ [0, 1]. (5.18)

Proof. Let us first assume r ≤ t ≤ s. In this case it is sufficient to observe that,

by definition of limit over a direct set, the limit over all partitions coincides with

the limit over all partitions which contain the point t. The thesis then follows easily.

For the general case it is sufficient to prove that T s
t = (T t

s )
−1

, or, without loss of

generality, that T 1

0
= (T 0

1
)
−1

. The latter equation will follow if we show that

lim
P∈P

‖u− P−1

(P(u))‖µ0
= 0 ∀u ∈ Tanµ0

(P2(R
d
)), (5.19)
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where P−1
: Tanµ1

(P2(R
d
)) → Tanµ0

(P2(R
d
)) is defined by

P−1

(u) := P
0

t1(P
t1
t2 (· · ·Ptn−1

1
(u)))

for the partition P = {0 = t0 < t1 < · · · < tn = 1} (and, in particular, it is not
the functional inverse of u → P(u)). Observe that for any u ∈ Tanµti

(P2(R
d
))

the identities u = P
ti

ti+1
(τ

ti+1

ti
(u)) and P

ti+1

ti
(u) − τ

ti+1

ti
(u) ∈ Tan

⊥
µti+1

(P2(R
d
)), in

conjunction with inequalities (5.12), yield

‖Pti

ti+1
(P

ti+1

ti
(u)) − u‖µti

=‖Pti

ti+1
(P

ti+1

ti
(u) − τ

ti+1

ti
(u))‖µti

≤‖Pti+1

ti
(u) − τ

ti+1

ti
(u)‖µti

D(ti, ti+1)

≤‖u‖µti
D2

(ti, ti+1).

For any u ∈ Tanµ0
(P2(R

d
)) we obtain

‖u− P
0

t1(· · · (P
tn−1

1
(P(u)))‖µ0

≤ ‖u− P
0

t1(P
t1
0

(u))‖µ0
+ ‖P0

t1(P
t1
0

(u)) − P
0

t1(· · · (P
tn−1

1
(P(u))))‖µ0

≤ ‖u‖µ0
D2

(0, t1) + ‖v − P
t1
t2 (· · · (P1

tn−1
(P ′

(v))))‖µt1
,

where v = P
t1
0

(u) and P ′
= {t1 < · · · < tn} (so that P ′

(v) = P(u)). Since ‖v‖µt1
≤

‖u‖µ0
we can continue in this way, to arrive at

‖u− P
0

t1(· · · (P
tn−1

1
(P(u))))‖µ0

≤ ‖u‖µ0
D2

(P)

and this, taking (5.13d) into account, leads to (5.19).

Theorem 5.14 (Existence of the parallel transport). Let µt be a regular curve,
let u0 ∈ Tanµ0

(P2(R
d
)) and let T s

t be the maps defined as above. Then the vector
field ut := T t

0
(u0) is the parallel transport of u0 along the curve.

Proof. Consider any interval [t, s] ⊂ [0, 1], its trivial partition P = {t, s} and any

(finer) partition Q. Applying inequality (5.16) and passing to the limit on Q we get

‖Ps
t (u) − T s

t (u)‖µs
≤ ‖u‖µt

D2

(t, s) ∀u ∈ Tanµt
(P2(R

d
)). (5.20)

Coupling this equation with inequality (5.12b) we get

‖τs
t (u) − T s

t (u)‖µs
≤‖τs

t (u) − P
s
t (u)‖µs

+ ‖Ps
t (u) − T s

t (u)‖µs

≤‖u‖µt
D(t, s) (1 +D(0, 1)) ∀u ∈ Tanµt

(P2(R
d
)),

which gives the absolute continuity of t 7→ T t
0
(u0).

Now, pick a Lebesgue point t of the function t 7→ Lip(vt) and observe that in-

equality (5.20) gives

lim
s→t

‖Ps
t (u) − T s

t (u)‖µs

|s− t| = 0 for all u ∈ Tanµt
(P2(R

d
)).

In particular, choosing u = T t
0
(u0), we obtain ‖Ps

t (u)− us‖µs
= o(s− t). Therefore,

to conclude it is sufficient to prove that

lim
s→t

Pµt

(

τ t
s(P

s
t (u)) − u

s− t

)

= 0 ∀u ∈ Tanµt
(P2(R

d
)).
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Observe that Ps
t (u) − τs

t (u) ∈ Tan
⊥
µs

(P2(R
d
)), therefore from inequalities (5.12) we

get

‖Pµt
(τ t

s(P
s
t (u)) − u)‖µt

= ‖Pt
s(P

s
t (u) − τs

t (u))‖µt

≤ ‖Ps
t (u) − τs

t (u)‖µt
D(t, s) ≤ ‖u‖µt

D2

(t, s).

Remark 5.15 (Parallel transport along a flow). Observe that the approximation
argument presented in Section 5 to build the parallel transport, works as well if, instead
of assuming that the curve µt is regular, we assume the existence of a family of
maps X(t, s, x) having the group property X(t, s,X(r, t, x)) = X(r, s, x), satisfying
X(t, s, ·)#µt = µs and such that the Lipschitz constant of X(t, s, ·)−Id is bounded by a
function D(t, s) having the properties (5.13). In other words, we drop the requirement
that X is the flow of the tangent vector field, but just choose a vector field ṽt with
∫

1

0
Lip(ṽt) dt <∞ for which the continuity equation holds. Recall also that

−∇ · (vtµt) =
d

dt
µt = −∇ · (ṽtµt) in the sense of distributions in (0, 1) × R

d

implies ∇ · ((ṽt − vt)µt) = 0 for a.e. t, i.e. Pµt
(ṽt) = vt for a.e. t ∈ (0, 1).

Using X we would obtain tangent fields ũt ∈ Tanµt
(P2(R

d
)), which we call par-

allel transport along the flow X, such that t 7→ ut ◦ X(s, t, ·) ∈ L2

µs
is absolutely

continuous for every s ∈ [0, 1] and satisfying

Pµt

(

lim
h→0

ut+h ◦X(t, t+ h, ·) − ut

h

)

= 0 for a.e. t ∈ (0, 1)

and

d

dt
〈∇η, ut〉µt

= 〈∇2η · ṽt, ut〉µt
+ 〈∇η, d

dt
ut〉µt

∀η ∈ C∞
c (R

d
) (5.21)

for a.e. t ∈ (0, 1). However, we shall prove in Section 7 that the choice of the tangent
vector field is more natural.

In the rest of the section we analyze some simple examples of parallel transport.

Example 5.16 (Equation in the smooth case). Assume that ut(x) = ∇ϕt(x)
for some smooth functions ϕt smoothly varying in time. Then it is easy to see that

equation (5.6) becomes:

∇ ·
(

(∂t∇ϕt + ∇2ϕt · vt)µt

)

= 0. (5.22)

Equivalently

∫

1

0

∫

〈∂t∇ϕt + ∇2ϕt · vt,∇η〉dµtdt = 0 ∀η ∈ C∞
c ((0, 1) × R

d
). (5.23)

Example 5.17 (Constant vector fields). Let µt be a regular curve, let v ∈ R
d

and

let Cv be the function on R
d

constantly equal to v. Define u0 := Cv ∈ Tanµ0
(P2(R

d
)).

The parallel transport ut of u0 along µt is given by ut = Cv, for all t ∈ [0, 1]. The proof

is immediate: it is sufficient to observe that ut(x) = ∇ϕ(t, x), where ϕ(t, x) = 〈x, v〉
and to verify that ϕ satisfies equation (5.22).
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Example 5.18 (Geodesics). Consider a geodesic µt defined on the interval [0, 1]:

we want to prove that in any interval of the form [ε, 1 − ε] with ε > 0 the geodesic

is regular. Fix t ∈ (0, 1); it is well-known (see [1, 7.2.1] for instance) that there

exists only one optimal plan between µt and µ1 and that this plan is induced by a

Lipschitz map Tt with Lipschitz constant bounded by t−1
. We know also [1, 7.2.2]

that for s ∈ [t, 1] it holds µs = (Id +
s−t
1−t (Tt − Id))#µt, the transport map Tt being

optimal. Computing the velocity vector vt as limit of the optimal transport maps as

in (2.5), we get vt = (1− t)−1
(Tt − Id), therefore its Lipschitz constant is bounded by

(1 + t)(t(1 − t))−1
. Our claim on the regularity of µt in all intervals [ε, 1− ε] follows.

Now assume that the geodesic [0, 1] ∋ t 7→ µt is regular. Such a µt must be

induced by a Lipschitz optimal map T . In this case its flow is given by

T(t, s, ·) = (Id+ s(T (·) − Id)) ◦ (Id+ t(T (·) − Id))−1,

and the velocity vectors satisfy

v0 = T − Id,

vs = vt ◦ T (t, s, ·),

therefore a direct calculation shows that vt is a parallel transport.

Let us consider now a locally regular curve in (0, T ], i.e. a curve µt such that

the function Lip(vt) belongs to L1

loc
((0, T ]): for instance, this is the case of constant

speed geodesics in [0, 1], that are locally regular in (0, T ] for all T ∈ (0, 1). In the

following proposition we show how existence of the “forward” parallel transport can

still be achieved along locally regular curves.

Proposition 5.19 (Forward parallel transport along locally regular curves). Let
µt be an absolutely continuous curve in [0, T ], locally regular in (0, T ], and let u0 ∈
Tanµ0

(P2(R
d
)). Then the parallel transport of u0 along µt exists, i.e. a locally

absolutely continuous vector field ut ∈ Tanµt
(P2(R

d
)) in (0, T ] which is a parallel

transport in (0, T ] and satisfies utµt ⇀ u0µ0 as t ↓ 0 and ‖ut‖µt
= ‖u0‖µ0

.

Proof. We will use the inequality

‖T s
t (∇ϕ) −∇ϕ‖µs

≤ Lip(∇ϕ)Ls
t (µr), (5.24)

where Ls
t (µr) is the length of µr restricted to the interval [t, s]. This inequality is a

consequence of the fact that s 7→ T s
t (∇ϕ) − ∇ϕ ∈ Tanµs

(P2(R
d
)) is an absolutely

continuous vector field in [t, T ] and of the differential inequality

d

ds
‖T s

t (∇ϕ) −∇ϕ‖2

µs
= 2〈T s

t (∇ϕ) −∇ϕ, d
ds

(

T s
t (∇ϕ) −∇ϕ

)

〉µs

= 2〈T s
t (∇ϕ) −∇ϕ, d

ds

(

T s
t (∇ϕ)

)

−∇2ϕ · vs〉µs

= 2〈T s
t (∇ϕ) −∇ϕ, Pµs

( d

ds
(T s

t (∇ϕ)) −∇2ϕ · vs

)

〉µs

= −2〈T s
t (∇ϕ) −∇ϕ, Pµs

(∇2ϕ · vs)〉µt

= −2〈T s
t (∇ϕ) −∇ϕ,∇2ϕ · vs〉µt

≤ 2‖T s
t (∇ϕ) −∇ϕ‖µs

Lip(∇ϕ)‖vs‖µs
.
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Start assuming that u0 is the gradient of ϕ ∈ C∞
c (R

d
). Fix ε > 0, think ∇ϕ as a

vector in Tanµε
(P2(R

d
)) and define the vectors uε

t := T t
ε (∇ϕ) for any t ∈ [ε, T ], so

that we have uε
ε = ∇ϕ. From

‖uε′

t −uε
t‖µt

= ‖uε′

ε −uε
ε‖µε

= ‖T ε
ε′(∇ϕ)−∇ϕ‖µε

≤ Lip(∇ϕ)ω(ε) 0 < ε′ ≤ ε ≤ t ≤ T,

with ω(ε) :=
∫ ε

0
‖vt‖µt

dt, we get that for any t, the family {uε
t} converges in

Tanµt
(P2(R

d
)), as ε → 0, to a vector ut satisfying ‖uε

t − ut‖µt
≤ Lip(∇ϕ)ω(ε).

The limit vector field ut is easily seen to be a parallel transport in the interval (0, T ]:

indeed from the uniform bound (5.8) we get its local absolute continuity, and we

conclude by the stability of the solutions of (5.9).

From

‖ut‖µt
= lim

ε
‖uε

t‖µt
= lim

ε
‖uε

ε‖µε
= lim

ε
‖∇ϕ‖µε

we get that the norm of ut is constant, and equal to ‖∇ϕ‖µ0
. Finally it holds

〈uε, η〉µε
= 〈uε − uε

ε, η〉µε
+ 〈uε

ε, η〉µε
= Rε + 〈∇ϕ, η〉µε

∀η ∈ C∞
c (R

d,Rd
),

where the term Rε is bounded by ‖ut − uε
t‖µt

sup |η| ≤ ω(ε) Lip(∇ϕ) sup |η|.
For the general case, just approximate u0 with smooth gradients un

0
, apply the

construction above to obtain the existence of forward parallel transports un
t of un

0

and use the fact that (clearly) ‖un
t − um

t ‖µt
= ‖un

0
− um

0
‖µ0

to get that for any t
the sequence (un

t ) strongly converges to some ut satisfying ‖ut‖µt
= ‖u0‖µ0

. By the

stability argument used above we get that ut is a parallel transport on (0, T ], so we

need just to prove that ut weakly converge to u0 as t→ 0. To prove this, observe that

since [0, T ] ∋ t 7→ un
t is a forward parallel transport, passing to the limit as t → 0 in

(5.9) we get

〈un
t ,∇η〉µt

−〈un
0
,∇η〉µ0

=

∫ t

0

〈un
r ,∇2η·vr〉µr

dr ≤ ‖un
t ‖µt

Lip(∇η)ω(t) ∀η ∈ C∞
c (R

d
).

Letting n→ ∞ in the above inequality the weak convergence follows.

Now we give an example of a geodesic along which a parallel transport does

not exist globally: we proved in Proposition 5.19 that the forward parallel transport

exists in [0, 1) for all constant speed geodesics µt : [0, 1] → P2(R
d
). We will see,

on the other hand, that for T ∈ (0, 1) the backward problem of a transporting uT ∈
TanµT

(P2(R
d
)) to some u0 ∈ Tanµ0

(P2(R
d
)) does not have solution in general.

The obstruction to the construction we made of the parallel transport is the fact

that supp(µ0) is not necessarily homeomorphic to supp(µt) for t > 0. This change

of topology cannot happen along a regular curve: indeed, the flow maps T(t, s, ·)
are (actually, can be extended to) bi-Lipschitz homeomorphisms of R

d
into itself.

Therefore, since supp(µs) = T(t, s, supp(µt)), the supports of µt, as t varies, are all

homeomorphic. We will see that, in this situation, not only the parallel transport

can’t be built with flow maps, but also that it may happen that the parallel transport

does not exist.

Example 5.20. Let Q = [0, 1] × [0, 1] be the unit square in R
2 and let Ti,

i = 1, 2, 3, 4, be the four open triangles in which Q is divided by its diagonals. Let
µ0 := χQL 2 and define the function v : Q → R

2 as the gradient of the convex map
max{|x|, |y|}, as in the figure. Set also w = v⊥, the rotation by π/2 of v, in Q and
w = 0 out of Q. Notice that w is a divergence-free vector field in the whole of R

2.
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Set µt := (Id + tv)#µ0 and observe that, for positive t, the support Qt of µt is
made of 4 connected components, each one the translation of one of the sets Ti, and
that µt = χQt

L 2.

It is immediate to check that µt is a geodesic in [0,∞), so that from Example 5.18
we know that the restriction of µt to any interval [ε, 1] with ε > 0 is regular. Fix ε > 0

and note that, by construction, the flow maps of µt in [ε, 1] are given by

T(t, s, ·) = (Id+ sv) ◦ (Id+ tv)−1, ∀t, s ∈ [ε, 1].

Now, set wt := w◦T(t, 0, ·) and notice that wt is tangent at µt, because wt is constant
in the connected components of the support of µt. Since wt+h ◦ T(t, t + h, ·) = wt,
from (5.7) we obtain that wt is a parallel transport in [ε, 1]. Furthermore, since
∇ · (wµ0) = 0, we have w0 = w /∈ Tanµ0

(P2(R
2
)). Therefore there is no way to

extend wt to a continuous tangent vector field on the whole [0, 1].

6. Density of regular curves. Aim of this section is the proof of a density

result for regular curves. It is well-known that the set

P
a
2
(R

d
) :=

{

µ ∈ P2(R
d
) : µ≪ L

d
}

is a geodesic subspace of P2(R
d
) (i.e. any geodesic between two points in Pa

2
(R

d
)

is entirely contained in P
a
2
(R

d
)) and the same is true for the subsets {µ = ρL d

:

‖ρ‖∞ ≤ C}. Our approximation will be obtained with measures in this class, and

preserves these upper bounds on the densities, if any.

The delicate point in our approximation result is due to the fact that regularity

imposes a Lipschitz condition on the tangent velocity field. The typical approxima-

tion schemes for solutions to the continuity equation, on the other hand, produce a

regularized vector field that is compatible with the regularized density, but it is not

tangent in general. Therefore a further projection of the regularized velocity on the

tangent space is needed.

The following lemma will be used in the reduction to compactly supported mea-

sures.

Lemma 6.1 (Monotone approximation). Let µt : [0, 1] → P2(R
d
) be absolutely

continuous and let vt be its tangent velocity field. Then there exist absolutely contin-
uous curves µn

t : [0, 1] → P2(R
d
) and zn ↑ 1 satisfying:
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(i) znµ
n
t ↑ µt for all t ∈ [0, 1] and supt W2(µ

n
t , µt) → 0 as n→ ∞;

(ii) the tangent velocity field of µn
t is vt, and there exists a closed ball Bn such

that suppµn
t ⊂ Bn for all t ∈ [0, 1].

Proof. Let Ω be the Banach space of continuous maps from [0, 1] to R
d

and let

et : Ω → R
d

be the evaluation maps at time t, i.e. et(ω) = ω(t). According to [1,

8.2.1], we can represent µt as the law under et of a suitable probability measure η in Ω,

concentrated in the set of absolutely continuous solutions of the equation ω̇ = vt(ω).

Let

Ωn :=

{

ω ∈ Ω : ω is absolutely continuous, |ω(0)| ≤ n,

∫

1

0

|ω̇|dt ≤ n

}

and set ηn = χΩn
η, zn = η(Ωn) = ηn(Ω) and µn

t = z−1

n (et)#ηn. It is easy to check

condition (i), and that the support of µn
t is contained in the ball B2n(0). Since also

ηn is concentrated on curves solving the ODE ω̇ = vt(ω), it turns out that vt is an

admissible velocity field for µn
t (i.e. the continuity equation holds, see again [1, 8.2.1]

for instance). We conclude that vt is the tangent velocity fields noticing that, because

of condition (i), vt ∈ Tanµt
(P2(R

d
)) implies vt ∈ Tanµn

t
(P2(R

d
)).

We can now state our approximation result.

Theorem 6.2 (Approximation by regular curves). Let µt : [0, 1] → P2(R
d
) be

an absolutely continuous curve. Then there exist regular curves µn
t : [0, 1] → P2(R

d
)

satisfying:
(i) suptW2(µ

n
t , µt) → 0 as n→ +∞;

(ii) µn
t = ρn

t L n, supt ‖ρn
t ‖∞ < +∞, ρn

t are smooth, the smooth tangent velocity
fields vn

t are gradients of smooth maps ϕn
t : R

d → R satisfying supt Lip(vn
t ) <

∞ and {ρn
t > 0} is a bounded open set with a smooth boundary;

(iii) if vt ∈ L2

µt
is the tangent field of µt, we have that vn

t µ
n
t weakly converge to

vtµt and

lim
n→∞

∫

|vn
t |2dµn

t =

∫

|vt|2dµt.

Proof. Step 1. Regularization of 1-periodic solutions.

By Lemma 6.1 and a diagonal argument we can assume that the supports of µt

are contained in a fixed compact set. By a scaling argument, we can also assume with

no loss of generality that the union of these supports is a compact subset K of (0, 1)
d
.

We consider the 1-periodic extension µper

t of µt, still solving the continuity equation

with the 1-periodic extension vper

t of vt, and the regularized densities

̺n
t := µper

t ∗ χn,

still 1-periodic. Here χn is a family of smooth and symmetric w.r.t. 0, convolution

kernels converging to δ0 whose support has a diameter equal to 2

√
d. With this choice

of χn, we have inft inf ̺n
t > 0, and standard properties of convolution yield

sup ̺n
t ≤ sup

t
µper

t ([−1, 2]
d
) supχn = 3

d
supχn.

Analogous bounds hold, of course, for all higher order derivatives of ̺n
t . Passing to

the velocity fields, we consider as in [7, 1] this regularization:

wn
t :=

(vper

t µper

t ) ∗ χn

̺n
t
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which satisfies, thanks to the lower bound on ̺n
t , supt Lip(wn

t ) < ∞ (and the same

holds for higher order derivatives) and preserves the validity of the continuity equation.

Eventually we consider the projection vn
t = ∇ϕn

t ofwn
t on periodic gradients by solving

the PDE

∇ · (∇ϕn
t ̺

n
t ) = ∇ · (wn

t ̺
n
t ).

From the variational formulation of the PDE we obtain
∫

(0,1)d

|vt
n|2̺n

t dx ≤
∫

(0,1)d

|wn|2̺n
t dx. (6.1)

We can use standard elliptic regularity theory to obtain that supt Lip(vn
t ) < ∞.

Moreover, using Jensen’s inequality as in [1, 8.1.10], we have the local estimate

∫

(0,1)d

|wn
t |2̺n

t dx ≤
∫ ∫

(0,1)d

|vt|2(y)χn(x − y)dxdµper

t (y). (6.2)

Step 2. Construction of the approximating sequence.

We build µn
t = ρn

t L d ∈ Pa
2
(R

d
), with the same velocity field vn

t , from the

periodic measures ̺n
t L d

. To this aim, we shall first consider ̺n
t as measures in

the flat d-dimensional torus T
d ∼ (0, 1)

d
, with velocity field vn

t . We denote by P

the Lebesgue measure on T
d
, by X

n
(t, x) : [0, 1] × T

d → T
d

the smooth flow of vn
t

(starting from s = 0), and by ηn the probability measure in C([0, 1]; T
d
) defined by

ηn := X
n
(t, ·)#(̺n

0
P).

Equivalently, ηn is the law of the random variable x 7→ X
n
(·, x) ∈ C([0, 1]; T

d
) under

̺n
0
P. Classical representation results for solutions to the continuity equation with a

Lipschitz vector field ensure that ̺n
t P = X

n
(t, ·)#(̺n

0
P), and since et ◦ X

n
(·, x) =

X
n
(t, x) we obtain

(et)#ηn = ̺n
t P ∀t ∈ [0, 1], n ∈ N. (6.3)

From (6.1) and (6.2) we get

sup
n

∫

1

0

∫

Td

|vn
t |2̺n

t dP(x)dt <∞

and this, using Prokhorov theorem as in [2, 11], gives that (ηn) is a relatively com-

pact sequence in P(C([0, 1]; T
d
)). It is not restrictive, extracting if necessary a sub-

sequence, to assume that (ηn) weakly converges, in the duality with continuous and

bounded functions in C([0, 1]; T
d
), to some probability measure η. Passing to the

limit as n→ ∞ in (6.3) we obtain that (et)#η = µper

t for all t ∈ [0, 1], and this means

that η-almost all the paths ω are contained in K̃ (here we denote by K̃ the image of

K in T
d

and we consider µper

t as probability measures in T
d
).

Now, let δ < 1 be such that K is contained in the interior of [δ, 1− δ]d and define

η̃n := z−1

n χ
Ω(δ)ηn, where

Ω(δ) :=
{

ω ∈ C([0, 1]; T
d
) : ω(t)mod(1) ∈ (δ, 1 − δ)d ∀t ∈ [0, 1]

}

, zn := ηn(Ω(δ))

(in other words, we remove the trajectories that cross ∂(δ, 1−δ)d
). Since η is supported

on paths contained in K̃, we have that zn → 1 and still η̃n weakly converge to

χ
Ω(δ)η = η. We define

µn
t := (ẽt)#η̃n
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where ẽt(ω(t)) = ωt mod(1) ∈ [0, 1)
d
. The measures µn

t can also be represented by

µn
t = z−1

n Y
n
(t, ·)#(χEn

(δ)̺
n
0
L

d
), (6.4)

where Y
n
(t, x) = X

n
(t, x)mod(1) and En

(δ) = {x ∈ (0, 1)
d

: X
n
(·, x) ∈ Ω(δ)}.

By construction µn
t are probability measures in R

d
concentrated on [δ, 1− δ]d. It

is immediate to check that the tangent field to µn
t is vn

t (because ηn is concentrated

on solutions to the ODE ω̇ = vn
t (ω) in T

d
, and vn

t are gradients). In particular µn
t are

regular curves and the convergence of µn
t to µt follows at once from the convergence

of η̃n to η, using the evaluation map ẽt. Notice also that the inequality znη̃n ≤ ηn

and the fact that the mass of their difference is infinitesimal imply

znµ
n
t ≤ ̺n

t L
d

and lim
n→∞

(̺n
t L

d − znµ
n
t )((0, 1)

d
) = 0. (6.5)

Step 3. Convergence of velocity fields.

Notice first that (6.1) and (6.2) give

lim sup
n→∞

∫

|vn
t |2dµn

t ≤ lim sup
n→∞

∫

|vn
t (et(ω))|2dηn(ω) = lim sup

n→∞

∫

|vn
t |2̺n

t dP

≤ lim sup
n→∞

∫

|wn
t |2̺n

t dP

≤ lim sup
n→∞

∫ ∫

(0,1)d

|vt|2(y)χn(x− y)dxdµper

t (y) =

∫

|vt|2dµt.

Now, recall (see for instance [1, 9.4.3]) that the functional

G(ν, µ) :=







∫

|f |2dµ if ν = fµ with f ∈ L2
(µ; R

d
),

+∞ otherwise

is jointly lower semicontinuous in P2(R
d
)×P2(R

d
) with respect to weak convergence

in the duality with Cb(R
d
), to obtain that any weak limit point σ of vn

t µ
n
t as n→ ∞

has the form ṽµt for some ṽ ∈ L2

µt
with ‖ṽ‖µt

≤ ‖vt‖µt
. On the other hand, passing

to the limit in ∇ · ((wn
t − vn

t )̺n
t ) = 0 and taking into account the weak convergence

in the duality with Cc(R
d
) of wn

t ̺
n
t = (vper

t µper

t ) ∗χn to vper

t µper

t and the convergence

to 0 in (0, 1)
d

of ̺n
t L

d − µn
t (ensured, even in the strong sense, by (6.5)) we get

∇ · ((ṽ − vt)µt) = 0. Since vt is tangent and ‖ṽ‖µt
≤ ‖vt‖µt

, it must be ṽ = vt. This

proves the weak convergence of velocity fields that provides also, thanks to the lower

semicontinuity of G, the lim inf inequality

lim inf
n→∞

∫

|vn
t |2dµn

t ≥
∫

|vt|2dµt.

Step 4. Eventually we can regularize the characteristic function of the set En
(δ)

in (6.4), by smooth functions χn
such that {χn̺

n
0
> 0} is smooth and bounded, to

approximate the curve µn
t by curves with the same velocity field and smooth densities

with respect to L d
, with smooth supports.

7. Additional remarks and extensions. In this section we describe in a more

informal way, referring to [8] for more details, some additional construction made

possible by the existence of the parallel transport along a sufficiently large class of

curves.



PARALLEL TRANSPORT IN WASSERSTEIN SPACE 23

7.1. Covariant derivative and curvature operator. It is well known that,

in the classical Riemannian setting, the definition of parallel transport leads to the

one of covariant derivative via the formula

∇γ̇(t)u(t) := lim
s→t

T t
s(u(s)) − u(t)

s− t
, (7.1)

where γ(t) is a smooth curve, u(t) ∈ Tγ(t)M is a smooth vector field and T t
s , for any

s, t, is the parallel transport map from Tγ(s)M to Tγ(t)M along γ.

The same construction may be used in the Wasserstein setting:

Definition 7.1 (Covariant derivative). Let µt be a regular curve, let vt ∈
Tanµt

(P2(R
d
)) be its velocity vector and let ut ∈ Tanµt

(P2(R
d
)) be an absolutely

continuous vector field along µt. The covariant derivative of ut along vt is:

∇vt
ut := lim

s→t

T t
s (us) − ut

s− t
,

where T t
s are the parallel transport maps along µt and the derivative takes place in

L2

µt
.

Using the definition of absolutely continuous vector field, it is not difficult to check

that the covariant derivative exists for a.e. t and that the function t 7→ ‖∇vt
ut‖µt

is

integrable. Indeed, inequality (5.20) implies that the covariant derivative satisfies:

∇vt
ut = lim

s→t

Pt
s(us) − ut

s− t
= Pµt

(

lim
s→t

us ◦ T(t, s, ·) − ut

s− t

)

. (7.2)

If the vector field ut is given by the gradient of smooth functions, i.e. if ut =

∇xϕt(x) for some ϕt ∈ C∞
c (R

d
) smoothly varying in time, the previous equation reads

as

∇vt
ut = Pµt

(

∂t∇ϕt + ∇2

xϕt · vt

)

. (7.3)

Equation (7.3) and the analogous one (5.22) were first given in [10], although

from a formal viewpoint and under stronger assumptions on the measures µt.

Having defined the covariant derivative, our first goal is to prove that it is the Levi-

Civita connection on (P2(R
d
),W2). Recalling the discussion made for the classical

case of Riemanniann manifolds, we need to prove that it is compatible with the metric
and torsion-free. The compatibility with the metric is a simple consequence of the

definition: indeed, for a given couple of absolutely continuous vector fields u1

t , u
2

t ∈
Tanµt

(P2(R
d
)) along the regular curve µt, we have:

d

dt
〈u1

t , u
2

t 〉µt
= 〈 d

dt
u1

t , u
2

t 〉µt
+ 〈u1

t ,
d

dt
u2

t 〉µt

= 〈Pµt

(

d

dt
u1

t

)

, u2

t 〉µt
+ 〈u1

t , Pµt

(

d

dt
u2

t

)

〉µt

= 〈∇vt
u1

t , u
2

t 〉µt
+ 〈u1

t ,∇vt
u2

t 〉µt
,

(7.4)

having used the Leibnitz rule (5.4) and the fact that both vector fields are tangent.

To prove the torsion-free identity, we need first to understand how to calculate

the Lie bracket of two vector fields. To this aim, let µi
t, i = 1, 2, be two regular curves

such that µ1

0
= µ2

0
=: µ and let ui

t ∈ Tanµi
t
(P2(R

d
)) be two absolutely continuous
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vector fields satisfying u1

0
= v2

0
, u2

0
= v1

0
, where vi

t are the tangent fields of µi
t. We

assume that the velocity fields vi
t of µi

t are continuous in time (for instance with

respect to the convergence considered in Section 7.2), to be sure that (5.5) holds for

all t with u = ui
and the initial condition makes sense.

Let us consider vector fields as derivations, and the functional µ 7→ Fη(µ) :=
∫

ηdµ, for η ∈ C∞
c (R

d
) fixed. By the continuity equation, the derivative of Fη along

u2

t is equal to 〈∇η, u2

t 〉µ2
t
, therefore (5.5) gives:

u1

(u2

(Fη))(µ) =
d

dt
〈∇η, u2

t 〉µ2
t |t=0

= 〈∇2η · v2

0
, u2

0
〉µ + 〈∇η, d

dt
u2

t |t=0

〉µ
= 〈∇2η · u1

0
, u2

0
〉µ + 〈∇η,∇v2

0
u2

t 〉µ.

Subtracting the analogous term u2
(u1

(Fη))(µ) and using the symmetry of ∇2η and

the identities ui
0

= v1−i
0

, i = 0, 1, we get

[u1, u2

](Fη)(µ) = 〈∇η,∇u1
0
u2

t −∇u2
0
u1

t 〉µ.

Given that the set {∇η}η∈C∞
c

is dense in Tanµ(P2(R
d
)), the above equation charac-

terizes [u1, u2
] as:

[u1, u2

] = ∇u1
0
u2

t −∇u2
0
u1

t , (7.5)

which proves the torsion-free identity for the covariant derivative.

In the case of the parallel transport along a flow, considered in Remark 5.15, given

that the right composition with X(t, s, ·) is an isometry from L2

µt
to L2

µs
, it holds

〈u1

s, u
2

s〉µs
= 〈u1

s ◦X(t, s, ·), u2

s ◦X(t, s, ·)〉µt
,

subtracting 〈u1

t , u
2

t 〉µt
, dividing both terms by s− t and letting s→ t we get that the

Leibnitz rule holds even using the maps X(t, s, ·):

d

dt
〈u1

t , u
2

t 〉µt
= 〈 d

ds
u1

s ◦X(t, s, ·)|s=t
, u2

t 〉µt
+ 〈u1

t ,
d

ds
u2

s ◦X(t, s, ·)|s=t
〉µt
,

for any couple of vector fields ui
t such that t 7→ ui

t ◦X(s, t, ·) is absolutely continuous

for i = 1, 2. From this formula it follows that the parallel transport along any flow

X compatible with µt preserves the scalar product.
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Of course, different parallel transports define different covariant derivatives ∇̃vt
ut

via (7.2): they are expressed by

∇̃vt
ut := Pµt

(

d

ds
us ◦X(t, s, ·)|s=t

)

.

Denoting by ṽt the velocity field of X , we get that the covariant derivative of the

vector field ut := ∇ϕ, ϕ ∈ C∞
c (R

d
), is given by ∇̃vt

∇ϕ = Pµt
(∇2ϕ · ṽt). It is easy to

check that a generic covariant derivative is not torsion-free. Indeed, assume that it is

and observe that in this case the two following equations hold:

〈∇∇ϕ1∇ϕ2,∇ϕ3〉µ + 〈∇ϕ2,∇∇ϕ1∇ϕ3〉µ = 〈∇̃∇ϕ1∇ϕ2,∇ϕ3〉µ + 〈∇ϕ2, ∇̃∇ϕ1∇ϕ3〉µ,
∇∇ϕ1∇ϕ2 −∇∇ϕ2∇ϕ1

= ∇̃∇ϕ1∇ϕ2 − ∇̃∇ϕ2∇ϕ1,

for any ϕi ∈ C∞
c (R

d
), i = 1, 2, 3. From these equalities, with some algebraic ma-

nipulations (more explicitely, by following the calculations indicated in the Koszul

formula), it follows that 〈∇∇ϕ1∇ϕ2,∇ϕ3〉µ = 〈∇̃∇ϕ1∇ϕ2,∇ϕ3〉µ, so that the two

covariant derivatives coincide. Furthermore, we can consider in the identity

Pµt

(

∇2ϕ · (ṽt − vt)
)

= 0 ∀ϕ ∈ C∞
c (R

d
)

test functions ϕ ∈ C2
(R

d
) with uniformly bounded second derivatives (by a simple ap-

proximation argument based on the finiteness of the second moments of µt). Choosing

ϕ(x) = |〈x, ξ〉|2 gives

∫

∂η

∂ξ
〈ṽt − vt, ξ〉dµt = 0 ∀η ∈ C∞

c (R
d
), ξ ∈ R

d.

This means the symmetric part of the distributional derivative of the vector-valued

distribution (ṽt−vt)µt vanishes; Korn’s inequality gives that the distribution is equiv-

alent to a constant. By integrability, this constant must be 0, i.e. ṽt = vt µt-a.e. in

R
d
.

The definition of covariant derivative allows us to define the curvature tensor and

to check, at least formally, that (P2(R
d
),W2) is positively curved by proving that its

sectional curvatures are always non-negative. The spirit of the foregoing discussion

and the calculations we do, are basically borrowed from Lott’s work [10].

Given four vector fields µ 7→ ∇ϕi
µ ∈ Tanµ(P2(R

d
)), i = 1, . . . , 4, the curvature

tensor R calculated on them is defined as:

〈R(∇ϕ1

µ,∇ϕ2

µ)(∇ϕ3

µ),∇ϕ4

µ〉µ : = 〈∇∇ϕ1
µ
(∇∇ϕ2

µ
∇ϕ3

µ),∇ϕ4

µ〉µ
− 〈∇∇ϕ2

µ
(∇∇ϕ1

µ
∇ϕ3

µ),∇ϕ4

µ〉µ
− 〈∇

[∇ϕ1
µ,∇ϕ2

µ]
∇ϕ3

µ,∇ϕ4

µ〉µ.

With the same calculation used in the classical Riemannian case, it is easy to check

that R is actually a tensor, i.e. that its value at the measure µ depends only on the

value of the four vector fields at µ. Therefore in order to evaluate it, we can consider

the simpler vector fields µ 7→ ∇ϕi ∈ Tanµ(P2(R
d
)), i = 1, . . . , 4, where the functions

ϕi
do not depend on the base measure µ. This will simplify the calculations. Under

this assumption we have

∇v∇ϕ = Pµ(∇2ϕ · v) ∀v ∈ Tanµ(P2(R
d
)). (7.6)
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In order to give an explicit formula for R, it is useful to introduce the function

ξµ(ϕ1, ϕ2
) ∈ L2

µ as

ξµ(ϕ1, ϕ2

) := P⊥
µ (∇2ϕ1 · ∇ϕ2

) = ∇2ϕ1 · ∇ϕ2 −∇∇ϕ2∇ϕ1

(µ).

Observe that from ∇2ϕ1 · ∇ϕ2
+ ∇2ϕ2 · ∇ϕ1

= ∇(〈∇ϕ1,∇ϕ2〉) ∈ Tanµ(P2(R
d
)) we

get ξµ(ϕ1, ϕ2
) = −ξµ(ϕ2, ϕ1

).

Proposition 7.2. The curvature tensor is given by

〈R(∇ϕ1,∇ϕ2

)(∇ϕ3

),∇ϕ4〉µ =〈ξµ(ϕ1, ϕ4

), ξµ(ϕ2, ϕ3

)〉µ − 〈ξµ(ϕ1, ϕ3

), ξµ(ϕ2, ϕ4

)〉µ
− 2〈ξµ(ϕ1, ϕ2

), ξµ(ϕ3, ϕ4

)〉µ.

Proof. Define µt := (Id + t∇ϕ1
)#µ and F (ν) :=

∫

ηdν with η := 〈∇2ϕ3 ·
∇ϕ2,∇ϕ4〉. Evaluate the derivative at t = 0 of F (µt) to get

d

dt
F (µt)|t=0

=
d

dt

∫

η ◦ (Id+ t∇ϕ1

)dµ|t=0

= 〈∇η,∇ϕ1〉µ.

On the other hand, using equations (7.6) and (7.4) we have

d

dt
F (µt)|t=0

=
d

dt
〈∇2ϕ3 · ∇ϕ2,∇ϕ4〉µt |t=0

=
d

dt
〈∇∇ϕ2∇ϕ3

(µt),∇ϕ4〉µt |t=0

= 〈∇∇ϕ1(∇∇ϕ2∇ϕ3

),∇ϕ4〉µ + 〈∇∇ϕ2∇ϕ3,∇∇ϕ1∇ϕ4〉µ.

Coupling the last two equations and then using the trivial identity 〈Pµ(v), Pµ(w)〉µ =

〈v, w〉µ − 〈P⊥
µ (v), P⊥

µ (w)〉µ, valid for any v, w ∈ L2

µ, we obtain the equality

〈∇∇ϕ1(∇∇ϕ2∇ϕ3

),∇ϕ4〉µ
=〈∇

(

〈∇2ϕ3 · ∇ϕ2,∇ϕ4〉
)

,∇ϕ1〉µ − 〈∇∇ϕ2∇ϕ3,∇∇ϕ1∇ϕ4〉µ
=〈∇

(

〈∇2ϕ3 · ∇ϕ2,∇ϕ4〉
)

,∇ϕ1〉µ − 〈∇2ϕ3 · ∇ϕ2,∇2ϕ4 · ∇ϕ1〉µ
+ 〈ξµ(ϕ3, ϕ2

), ξµ(ϕ4, ϕ1

)〉µ.

The computation of the gradient of 〈∇2ϕ3 · ∇ϕ2,∇ϕ4〉 gives

〈∇∇ϕ1(∇∇ϕ2∇ϕ3

),∇ϕ4〉µ
=

∫

∇3ϕ3

(∇ϕ2,∇ϕ4,∇ϕ1

)dµ+ 〈∇2ϕ3 · ∇ϕ4,∇2ϕ2 · ∇ϕ1〉µ
+ 〈ξµ(ϕ3, ϕ2

), ξµ(ϕ4, ϕ1

)〉µ.

(7.7)

Analogously, it holds:

〈∇∇ϕ2(∇∇ϕ1∇ϕ3

),∇ϕ4〉µ
=

∫

∇3ϕ3

(∇ϕ1,∇ϕ4,∇ϕ2

)dµ+ 〈∇2ϕ3 · ∇ϕ4,∇2ϕ1 · ∇ϕ2〉µ
+ 〈ξµ(ϕ3, ϕ1

), ξµ(ϕ4, ϕ2

)〉µ,

(7.8)
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so that, subtracting (7.8) from (7.7), the symmetry of ∇3ϕ3
gives

〈∇∇ϕ1(∇∇ϕ2∇ϕ3

),∇ϕ4〉µ − 〈∇∇ϕ2(∇∇ϕ1∇ϕ3

),∇ϕ4〉µ
=〈∇2ϕ3 · ∇ϕ4,∇2ϕ2 · ∇ϕ1〉µ − 〈∇2ϕ3 · ∇ϕ4,∇2ϕ1 · ∇ϕ2〉µ

+ 〈ξµ(ϕ3, ϕ2

), ξµ(ϕ4, ϕ1

)〉µ − 〈ξµ(ϕ3, ϕ1

), ξµ(ϕ4, ϕ2

)〉µ.
(7.9)

Recalling equation (7.5) we get

〈∇
[∇ϕ1,∇ϕ2

]
∇ϕ3,∇ϕ4〉µ = 〈∇2ϕ3 · Pµ(∇2ϕ2 · ∇ϕ1 −∇2ϕ1 · ∇ϕ2

),∇ϕ4〉µ
= 〈Pµ(∇2ϕ2 · ∇ϕ1 −∇2ϕ1 · ∇ϕ2

),∇2ϕ3 · ∇ϕ4〉µ
= 〈∇2ϕ3 · ∇ϕ4,∇2ϕ2 · ∇ϕ1 −∇2ϕ1 · ∇ϕ2〉µ
− 〈ξµ(ϕ2, ϕ1

), ξµ(ϕ3, ϕ4

)〉µ + 〈ξµ(ϕ1, ϕ2

), ξµ(ϕ3, ϕ4

)〉µ.

Subtracting the last equations from (7.9), all the terms except those involving the

functions ξµ cancel, and the thesis follows.

From the representation formula of the curvature tensor, it follows immediately

that the sectional curvatures of P2(R
d
) are non-negative (for the definition see [6],

Chapter 4, section 3). Indeed, it holds:

K(∇ϕ,∇ψ)(µ) =
〈R(∇ϕ,∇ψ)∇ψ,∇ϕ〉µ

‖∇ϕ‖2

µ‖∇ψ‖2

µ − 〈∇ϕ,∇ψ〉2µ
=

3‖ξµ(ϕ1, ϕ2
)‖2

µ

||∇ϕ||2µ‖∇ψ‖2

µ − 〈∇ϕ,∇ψ〉2µ
≥ 0.

7.2. A distance on the tangent bundle. Recall that, for a Riemannian man-

ifold M , it is possible to endow the tangent bundle TM with a natural Riemannian

metric, the so-called Sasaki metric, in the following way (see also [6], Chapter 3,

exercise 2).

Fix a point (p, u) ∈ TM and choose two regular curves [0, 1] ∋ t → αi
(t) ∈ TM ,

i = 1, 2, such that α1
(0) = α2

(0) = (p, u). Let (pi
(t), ui

(t)) := αi
(t) and vi

(t) :=

(pi
(t))′, i = 1, 2. Clearly V i

:= (αi
)
′
(0) ∈ T

(p,u)
(TM), i = 1, 2. The scalar product

〈·, ·〉∗ between V 1
and V 2

is defined as

〈V 1, V 2〉∗ := 〈v1

(0), v2

(0)〉 + 〈∇v1u1

(0),∇v2u2

(0)〉.

It is possible to show that this is a good definition, that is, it depends only on V 1, V 2

and not on the particular curves α1
(t), α2

(t) chosen, therefore it defines a metric

tensor on TM . It is then easy to see that the distance d on TM induced by this

metric tensor is given by

d2

(

(p1, u1

), (p2, u2

)

)

= inf
γ

(

L(γ)
)

2

+ |T (u1

) − u2|2, (7.10)

where the infimum is taken among all the smooth curves γ(t) in M connecting p1
to

p2
, L(γ) is the length of γ and T (u1

) is the parallel transport of u1
along γ to the

point p2
.

Now turn back to the space (P2(R
d
),W2). Define the tangent bundle as

Tan (P2(R
d
)) :=

{

(µ, u) : µ ∈ P2(R
d
), u ∈ Tanµ(P2(R

d
))
}

,
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and say that a sequence (µn, un) converges to (µ, u) if:

lim
n→∞

W (µn, µ) = 0,

lim
n→∞

‖un‖µn
= ‖u‖µ,

lim
n→∞

〈un,∇ϕ〉µn
= 〈u,∇ϕ〉µ ∀ϕ ∈ C∞

c (R
d
).

(7.11)

Even if we do not have a differential structure on the tangent bundle, and therefore

we cannot mimick directly the definition of the Riemannian distance on it, equation

(7.10) suggests the introduction of the following function on [Tan (P2(R
d
))]

2
:

d2
(

(µ, u), (ν, v)
)

:= inf
µt

{

(L(µt))
2

+ ‖v − T 1

0
(u)‖2

ν

}

,

where the infimum is taken on the set of regular curves µt : [0, 1] → P2(R
d
) such that

µ0 = µ and µ1 = ν, L(µt) is the length of µt and T s
t are the parallel transport maps

along µt. In particular we define d((µ, u), (ν, v)) := +∞ if there is no regular curve

connecting µ to ν.
The function d behaves like a distance on Tan (P2(R

d
)), the only problem being

that it is not real valued. Given that regular curves are dense in the set of absolutely

continuous curves, a natural candidate for a relaxation of d is its lower semicontinuous

envelope d∗, defined by:

d∗
(

(µ, u), (ν, v)
)

:= inf

{

lim inf
n→∞

d
(

(µn, un), (νn, vn)
)

: (µn, un) → (µ, u), (νn, vn) → (ν, v)

}

.

However, it is not clear to us whether the function d∗ is sufficienly well-behaved,

for instance,whether the triangle inequality holds. Therefore we modify a bit the

definition, and we introduce the function D as:

D
(

(µ, u), (ν, v)
)

:= inf
{

d∗
(

(µ,∇ϕ), (ν,∇ψ)
)

+ ‖u−∇ϕ‖µ + ‖v −∇ψ‖ν : ϕ, ψ ∈ C∞
c (R

d
)
}

.

With the introduction of D we are allowed to regularize the vectors u, v, provided we

pay the L2
difference between the regularizations and the vectors themselves.

The following result is proved in Chapter 6 of [8].

Proposition 7.3. D is a distance and metrizes the convergence in Tan (P2(R
d
))

in the sense of equations (7.11). Furthermore, for any absolutely continuous curve
(µt, ut) in Tan (P2(R

d
)) the curve µt is absolutely continuous in (P2(R

d
),W2) and:

lim
s→t

D
(

(µs, us), (µt, ut)
)

|s− t| ≥ ‖vt‖µt
for a.e. t, (7.12)

where vt is the tangent field of µt.
Conversely, if µt is a regular curve and ut is a parallel transport along it, the map
(µt, ut) is absolutely continuous in (Tan (P2(R

d
)),D) and equality holds a.e. in

(7.12).

This proposition suggests a definition of weak parallel transport along an ab-

solutely continuous curve µt: ut ∈ Tanµt
(P2(R

d
)) is a weak parallel transport along
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µt if equality in (7.12) holds for a.e. t. For a weak parallel transport it is possible to

show that the map t 7→ 〈ut,∇η〉µt
is absolutely continuous and that its derivative is

given by (5.8).

However, it is not clear to the authors whether the weak parallel transport

preserves the scalar product, or whether the parallel transport is unique. Fur-

thermore, the density of regular curves is not enough to gain existence of weak

parallel transport through an approximation argument. The key problem is that

the space (Tan (P2(R
d
)),D) is not complete, as it may happen for a sequence

((µn, un)) ⊂ Tan (P2(R
d
)) to converge to some (µ, u) with u /∈ Tanµ(P2(R

d
)): pre-

cisely, it may happen that W (µn, µ) → 0, unµn → uµ in duality with Cc(R
d
) and

‖vn‖µn
→ ‖v‖µ. Example 5.20 shows that it might be impossible to extend a (weak)

parallel transport “backward” to the initial point of a geodesic.
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