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VISCOSITY APPROXIMATION METHODS FOR EQUILIBRIUM
PROBLEMS AND FIXED POINT PROBLEMS OF NONEXPANSIVE
MAPPINGS AND INVERSE-STRONGLY MONOTONE MAPPINGS∗

SHENGHUA WANG‡† , HAIYUN ZHOU‡ , AND JIANMIN SONG§

Abstract. In this paper, we introduce an iterative scheme by viscosity approximation method
for obtaining a common element of the set of solutions of an equilibrium problem and the set of
fixed points of a nonexpansive mapping and the set of solutions of the variational inequality for
an inverse-strongly monotone mapping in a Hilbert space. We obtain a strong convergence which
improves and extends S. Takahashi and W. Takahashi’s result [S. Takahashi, W. Takahashi, Viscosity
approximation methods for equilibrium problems and fixed point problems in Hilbert spaces, J. Math.
Anal. Appl. 331 (2007) 506-515].
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1. Introduction and Preliminaries. Let C be a nonempty closed convex sub-
set of a real Hilbert H. Let f be a mapping from C into itself. Then, f is called a
contraction on C if there exists a constant κ ∈ (0, 1) such that

‖f(x)− f(y)‖ ≤ κ‖x− y‖, for all x, y ∈ C.

We denote the set of all contractions on C by ΠC . Note that f has a unique fixed
point in C.

Let S be a mapping from C into itself, then S is called nonexpansive if

‖Sx− Sy‖ ≤ ‖x− y‖

for all x, y ∈ C. In this paper, we denote the set of fixed points of S by F (S).
Let F be a bifunction of C × C into R, where R is the set of real numbers. The

equilibrium problem for F : C × C → R is to find x ∈ C such that

F (x, y) ≥ 0 for all y ∈ C.

For solving above equilibrium problem, assume that F satisfies the following condi-
tions:
(A1) F (x, x) = 0 for all x ∈ C;
(A2) F is monotone, i.e., F (x, y) + F (y, x) ≤ 0 for all x, y ∈ C;
(A3) for each x, y, z ∈ C, limt↓0 F (tz + (1− t)x, y) ≤ F (x, y);
(A4) for each x ∈ C, y 7→ F (x, y) is convex and lower semicontinuous.

The set of solution of the above equilibrium problem is denoted by EP (F ). The
following lemmas were given in [2] and [5], respectively.
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Lemma 1.1 ([2]). Let C be a nonempty closed convex subset of H and let F be a
bifunction of C × C into R satisfies (A1)− (A4). Let r > 0 and x ∈ H. Then, there
exists z ∈ C such that

F (z, y) +
1
r
〈y − z, z − x〉 ≥ 0 for all y ∈ C.

Lemma 1.2 ([5]). Assume that F : C × C → R satisfies (A1)− (A4). For r > 0
and x ∈ H, define a mapping Tr : H → C as follows:

Tr(x) = {z ∈ C : F (z, y) +
1
r
〈y − z, z − x〉 ≥ 0,∀y ∈ C}

for all x ∈ H. Then, the following hold:
(1) Tr is single-valued;
(2) Tr is firmly nonexpansive, i.e., for any x, y ∈ H,

‖Trx− Try‖2 ≤ 〈Trx− Try, x− y〉;

(3) F (Tr) = EP (F );
(4) EP(F) is closed and convex.

Lemma 1.2 shows that for each given x ∈ H, there exists a unique Tr(x) ∈ C.
However, it is very hard to find such a z ∈ C such that

F (z, y) +
1
r
〈y − z, z − x〉 ≥ 0

for all y ∈ C, that is, for a given x ∈ H, it is very hard to compute Tr(x). In
[5], Combettes and Hirstoaga gave an iterative algorithm to compute Tr(x) for a
given x ∈ H. On this problem, the interested readers may refer to [5]. Here, we
give a simple example to compute Tr(x) in a Euclidean space. Put H = R2 and
C = {x ∈ H : ‖x‖ ≤ 1}. Let F (x, y) = ‖y‖2 − ‖x‖2 for all x, y ∈ C. Obviously, the
bifunction F satisfies the conditions A(1)−A(4). Taking r = 1, for given x = 0, we
compute

T1(0) = {z ∈ C : F (z, y) + 〈y − z, z〉 ≥ 0,∀y ∈ C}.

Note that F (z, y) + 〈y − z, z〉 ≥ 0 is equivalent to the inequality

2‖z‖2 ≤ ‖y‖2 + 〈y − z, z〉

and observe that z = 0 satisfies the above inequality for all y ∈ C. Since T1 is
single-value from Lemma 1.2, we know that T1(0) = 0.

Let A be a mapping from C into H, then A is called monotone if

〈x− y, Ax−Ay〉 ≥ 0

for all x, y ∈ C. However, A is called an α-inverse-strongly monotone mapping if
there exists a positive real number α such that

〈x− y, Ax−Ay〉 ≥ α‖Ax−Ay‖2
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for all x, y ∈ C. Let I denote the identity mapping of H, then for all x, y ∈ C and
λ > 0, one has [6]

‖(I − λA)x− (I − λA)y‖2 ≤ ‖x− y‖2 + λ(λ− 2α)‖Ax−Ay‖2. (1.1)

Hence, if λ ∈ (0, 2α], then I − λA is a nonexpansive mapping of C into H.
If there exists u ∈ C such that

〈v − u, Au〉 ≥ 0

for all v ∈ C, then u is called the solution of this variational inequality. The set of all
solutions of the variational inequality is denoted by V I(C,A).

For every point x ∈ H, there exists a unique nearest point in C, denoted by PCx,
such that

‖x− PCx‖ ≤ ‖x− y‖

for all y ∈ C. PC is called the metric projection of H onto C. It is well known that
PC is a nonexpansive mapping of H onto C and satisfies

〈x− y, PCx− PCy〉 ≥ ‖PCx− PCy‖2

for all x, y ∈ H. Moreover, for every x ∈ H, one has

〈x− PCx, PCx− y〉 ≥ 0

for all y ∈ C, which implies that

u ∈ V I(C,A) ⇔ u = PC(u− λAu), ∀λ > 0.

Recently, for obtaining an element of F (S) ∩ V I(C,A), Iiduka and Takahashi [6]
introduced the following iterative algorithm: x1 = x ∈ C and

xn+1 = αnx + (1− αn)SPC(xn − λnAxn), n ≥ 1

and obtained a strong convergence theorem. On the other hand, for finding the
element of F (S) ∩ EP (F ), Takahashi and Takahashi [9] introduced the following
algorithm: x1 ∈ H and{

F (un, y) + 1
rn
〈y − un, un − xn〉 ≥ 0, ∀y ∈ C,

xn+1 = αnf(xn) + (1− αn)Sun,

for all n ≥ 1. They proved that {xn} and {un} converge strongly to z ∈ F (S)∩EP (F ),
where z = PF (S)∩EP (F )f(z) if {αn} ⊂ [0, 1] and {rn} ⊂ (0,∞) satisfy some certain
conditions.

In literatures, many iterative methods for finding the common point of F (S)
and V I(C,A) or EP (F ) have been proposed and studied widely. For example, see
[10, 7, 4]. However, the algorithm for approximating the element of the intersection
of F (S), V I(C,A) and EP (F ) have not been found in literatures. In order to obtain
the common point of F (S), V I(C,A) and EP (F ), we in this paper introduce an
iterative scheme by the viscosity approximation method to find an element z ∈ F (S)∩
V I(C,A)∩EP (F ). Our result improves and extends S. Takahashi and W. Takahashi’s
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result [9]. Using this result, we obtain two corollaries which are connected with
Combettes and Hirstoaga’s result [5].

The following lemmas are useful.

Lemma 1.3 ([8]). Let {xn} and {wn} be bounded sequences in a Banach space
X and let {βn} be a sequence in [0, 1] with 0 < lim infn→∞ βn < lim supn→∞ βn < 1.
Suppose

xn+1 = βnxn + (1− βn)wn

for all integers n ≥ 0 and lim supn→∞(‖wn+1 − wn‖ − ‖xn+1 − xn‖) ≤ 0. Then,

lim
n→∞

‖wn − xn‖ = 0.

Lemma 1.4 ([11]). Let {an} be a non-negative real number sequence satisfying

an+1 ≤ (1− αn)an + o(αn), n = 0, 1, 2, · · · ,

where {αn} ⊂ (0, 1) is a real number sequence. If
∑∞

n=0 αn = ∞, then limn→∞ an = 0.

2. Main result.

Theorem 2.1. Let C be a nonempty closed convex subset of a real Hilbert space H.
Let F be a bifunction from C ×C to R satisfying (A1)− (A4) and f be a contraction
with coefficient κ(0 < κ < 1) from C into itself. Let A be an α-inverse-strongly
monotone mapping of C into H and let S be a nonexpansive mapping of C into itself
such that F (S) ∩ EP (F ) ∩ V I(C,A) 6= ∅. Suppose x1 = x ∈ C and {xn}, {un} are
sequences generated by{

F (un, y) + 1
rn
〈y − un, un − xn〉 ≥ 0, ∀y ∈ C,

xn+1 = αnf(xn) + βnxn + γn(µSun + (1− µ)PC(un − λnAun)),

for every n = 1, 2, · · · , where µ ∈ [0, 1], {rn} ⊂ (0,∞), {λn} ⊂ [a, b] with 0 < a < b <
2α and {αn}, {βn} and {γn} are sequences in [0, 1] and satisfy αn + βn + γn = 1 for
every n = 1, 2, · · · . If {αn}, {βn}, {λn} and {rn}are chosen so that

lim
n→∞

αn = 0,
∞∑

n=1

αn = ∞, 0 < lim inf
n→∞

βn < lim sup
n→∞

βn < 1,

lim
n→∞

|λn+1 − λn| = 0, lim inf
n→∞

rn > 0 and lim
n→∞

|rn+1 − rn| = 0,

then {xn} and {un} converge strongly to the same point z ∈ F (S)∩EP (F )∩V I(C,A),
where z = PF (S)∩EP (F )∩V I(C,A)f(z).

Proof. We proceed with the following steps.

Step 1. {xn} is bounded.

Let Q = PF (S)∩EP (F )∩V I(C,A). Then Qf is a contraction of C into itself. In fact,
for all x, y ∈ C, we have ‖Qf(x)−Qf(y)‖ ≤ ‖f(x)− f(y)‖ ≤ κ‖x− y‖. So, Qf is a
contraction of C into itself. Since C is complete, there exists a unique element z ∈ C
such that z = Qf(z).
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Let v ∈ F (S) ∩ EP (F ) ∩ V I(C,A). Since un = Trn
xn, we have

‖un − v‖ = ‖Trn
xn − Trn

v‖ ≤ ‖xn − v‖

for every n = 1, 2, · · · .
Let zn = µSun + (1− µ)tn, where tn = PC(un − λnAun), for every n = 1, 2, · · · .

Then, we have

‖tn − v‖ = ‖PC(un − λnAun)− PC(v − λnAv)‖
≤ ‖un − λnAun − (v − λnAv)‖
≤ ‖un − v‖
≤ ‖xn − v‖

and

‖zn − v‖ = ‖µ(Sun − v) + (1− µ)(tn − v)‖
≤ µ‖un − v‖+ (1− µ)‖tn − v‖
≤ µ‖xn − v‖+ (1− µ)‖xn − v‖
= ‖xn − v‖,

for every n = 1, 2, · · · .
Put M = max{‖x1 − v‖, 1

1−κ‖f(v)− v‖}. Suppose ‖xn − v‖ ≤ M . Then we have

‖xn+1 − v‖
= ‖αn(f(xn)− v) + βn(xn − v) + γn(zn − v)‖
≤ αn‖f(xn)− v‖+ βn‖xn − v‖+ γn‖xn − v‖
≤ αn‖f(xn)− f(v)‖+ αn‖f(v)− v‖+ (1− αn)‖xn − v‖
≤ (1− αn(1− κ))‖xn − v‖+ αn(1− κ) 1

1−κ‖f(v)− v‖
≤ (1− αn(1− κ))M + αn(1− κ)M = M.

Noting ‖x1 − v‖ ≤ M , by mathematical induction, we have ‖xn − v‖ ≤ M for all
n ∈ N . Hence, {xn} is bounded and {un}, {f(xn)}, {zn} and {Aun} are all bounded.

Step 2. limn→∞ ‖xn+1 − xn‖ = 0.

Since un = Trn
xn and un+1 = Trn+1xn+1, we have

F (un, y) +
1
rn
〈y − un, un − xn〉 ≥ 0 for all y ∈ C (2.1)

and

F (un+1, y) +
1

rn+1
〈y − un+1, un+1 − xn+1〉 ≥ 0 for all y ∈ C. (2.2)

Putting y = un+1 in (2.1) and y = un in (2.2), we have

F (un, un+1) +
1
rn
〈un+1 − un, un − xn〉 ≥ 0

and

F (un+1, un) +
1

rn+1
〈un − un+1, un+1 − xn+1〉 ≥ 0.
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Therefore, from (A2) we have

〈un+1 − un,
un − xn

rn
− un+1 − xn+1

rn+1
〉 ≥ 0

and hence

〈un+1 − un, un − un+1 + un+1 − xn −
rn

rn+1
(un+1 − xn+1)〉 ≥ 0.

Since {rn} ⊂ (0,∞), there exists a real number b such that rn > b > 0 for every
n = 1, 2, · · · . Then, we have

‖un+1 − un‖2 ≤ 〈un+1 − un, xn+1 − xn + (1− rn

rn+1
)(un+1 − xn+1)〉

≤ ‖un+1 − un‖{‖xn+1 − xn‖+ |1− rn

rn+1
|‖un+1 − xn+1‖}

and hence

‖un+1 − un‖ ≤ ‖xn+1 − xn‖+ 1
rn+1

|rn+1 − rn|‖un+1 − xn+1‖
≤ ‖xn+1 − xn‖+ 1

b |rn+1 − rn|L,
(2.3)

where L = sup{‖un − xn‖ : n = 1, 2, · · · .}.
Putting wn = xn+1−βnxn

1−βn
, for every n = 1, 2, · · · , then we obtain

wn+1 − wn

= αn+1f(xn+1)+γn+1zn+1
1−βn+1

− αnf(xn)+γnzn

1−βn

= αn+1(f(xn+1)−f(xn))
1−βn+1

+ αn+1f(xn)
1−βn+1

+ γn+1(zn+1−zn)
1−βn+1

+ γn+1zn

1−βn+1
− αnf(xn)+γnzn

1−βn

= αn+1(f(xn+1)−f(xn))
1−βn+1

+ αn+1f(xn)
1−βn+1

+ γn+1(zn+1−zn)
1−βn+1

+ zn − αn+1zn

1−βn+1

−αnf(xn)
1−βn

− zn + αnzn

1−βn

= αn+1(f(xn+1)−f(xn))
1−βn+1

+ γn+1(zn+1−zn)
1−βn+1

+ αn+1(f(xn)−zn)
1−βn+1

+ αn(zn−f(xn)
1−βn

.

By using (2.3) we have

‖tn+1 − tn‖ = ‖PC(un+1 − λn+1Aun+1)− PC(un − λnAun)
≤ ‖un+1 − λn+1Aun+1 − (un − λnAun)‖
= ‖un+1 − λn+1Aun+1 − (un − λn+1Aun) + (λn − λn+1)Aun‖
≤ ‖un+1 − λn+1Aun+1 − (un − λn+1Aun)‖+ |λn − λn+1|‖Aun‖
≤ ‖un+1 − un‖+ |λn − λn+1|‖Aun‖
≤ ‖xn+1 − xn‖+ 1

b |rn+1 − rn|L + |λn − λn+1|‖Aun‖,

for every n = 1, 2, · · · . Therefore, we obtain

‖zn+1 − zn‖
= ‖µ(Sun+1 − Sun) + (1− µ)(tn+1 − tn)‖
≤ µ‖un+1 − un‖+ (1− µ)‖tn+1 − tn‖
≤ µ(‖xn+1 − xn‖+ 1

b |rn+1 − rn|L) + (1− µ)(‖xn+1 − xn‖+ 1
b |rn+1 − rn|L)

+(1− µ)|λn − λn+1|‖Aun‖
≤ ‖xn+1 − xn‖+ 1

b |rn+1 − rn|L + |λn − λn+1|‖Aun‖
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and

‖wn+1 − wn‖ − ‖xn+1 − xn‖
≤ αn+1(‖f(xn+1)‖+‖f(xn)‖)

1−βn+1
+ αn+1(‖f(xn)‖+‖zn‖)

1−βn+1
+ αn(‖f(xn)‖+‖zn‖)

1−βn

+γn+1‖xn+1−xn‖
1−βn+1

+ γn+1
1
b |rn+1−rn|L
1−βn+1

+ γn+1|λn−λn+1|‖Aun‖
1−βn+1

−‖xn+1 − xn‖
≤ αn+1(‖f(xn+1)‖+‖f(xn)‖)

1−βn+1
+ αn+1(‖f(xn)‖+‖zn‖)

1−βn+1
+ αn(‖f(xn)‖+‖zn‖)

1−βn

+γn+1
1
b |rn+1−rn|L
1−βn+1

+ γn+1|λn−λn+1|‖Aun‖
1−βn+1

,

for every n = 1, 2, · · · . Since {f(xn)}, {zn} and {Aun} are bounded, and limn→∞ αn =
0, limn→∞ ‖rn+1 − rn‖ = 0 and limn→∞ ‖λn+1 − λn‖ = 0, we have

lim sup
n→∞

(‖wn+1 − wn‖ − ‖xn+1 − xn‖) ≤ 0.

According to Lemma 1.3, we obtain limn→∞ ‖wn−xn‖ = 0, i.e., limn→∞
1

1−βn
‖xn+1−

xn‖ = 0. Noting that 0 < lim infn→∞ βn < lim supn→∞ βn < 1, we have

lim
n→∞

‖xn+1 − xn‖ = 0. (2.4)

Step 3. limn→∞ ‖xn − un‖ = 0.

First we prove that limn→∞ ‖Aun −Av‖ = 0 and limn→∞ ‖un − tn‖ = 0.
By using (1.1) we have

‖tn − v‖2 = ‖PC(un − λnAun)− PC(v − λnAv)‖2
≤ ‖un − λnAun − (v − λnAv)‖2
≤ ‖un − v‖2 + λn(λn − 2α)‖Aun −Av‖2
≤ ‖xn − v‖2 + λn(λn − 2α)‖Aun −Av‖2

for every n = 1, 2, · · · . Hence we have

‖xn+1 − v‖2
= ‖αn(f(xn)− v) + βn(xn − v) + γn(zn − v)‖2
≤ α2

n‖f(xn)− v‖2 + β2
n‖xn − v‖2 + γ2

n‖µ(Sun − v) + (1− µ)(tn − v)‖2
+2αnβn〈f(xn)− v, xn − v〉+ 2αnγn〈f(xn)− v, zn − v〉+ 2βnγn‖xn − v‖2

≤ α2
n‖f(xn)− v‖2 + β2

n‖xn − v‖2 + γ2
nµ‖Sun − v‖2 + (1− µ)γ2

n‖tn − v)‖2
+2αnβn〈f(xn)− v, xn − v〉+ 2αnγn〈f(xn)− v, zn − v〉+ 2βnγn‖xn − v‖2

≤ α2
n‖f(xn)− v‖2 + β2

n‖xn − v‖2 + γ2
nµ‖xn − v‖2 + (1− µ)γ2

n(‖xn − v‖2
+λn(λn − 2α)‖Aun −Av‖2) + 2βnγn‖xn − v‖2 + 2αnβn〈f(xn)− v, xn − v〉
+2αnγn〈f(xn)− v, zn − v〉

= α2
n‖f(xn)− v‖2 + (1− αn)2‖xn − v‖2 + (1− µ)γ2

nλn(λn − 2α)‖Aun −Av‖2
+2αnβn〈f(xn)− v, xn − v〉+ 2αnγn〈f(xn)− v, zn − v〉

≤ α2
n‖f(xn)− v‖2 + ‖xn − v‖2 + (1− µ)γ2

na(b− 2α)‖Aun −Av‖2
+2αnβn〈f(xn)− v, xn − v〉+ 2αnγn〈f(xn)− v, zn − v〉,

i.e.,

(1− µ)γ2
na(2α− b)‖Aun −Av‖2

≤ α2
n‖f(xn)− v‖2 + (‖xn+1 − v‖+ ‖xn − v‖)(‖xn+1 − xn‖)

+2αnβn〈f(xn)− v, xn − v〉+ 2αnγn〈f(xn)− v, zn − v〉,
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for every n = 1, 2, · · · .
Noting limn→∞ αn = 0, and {xn}, {f(xn)}, {zn} are bounded, by (3.4) we have

lim
n→∞

‖Aun −Av‖ = 0. (2.5)

For every n = 1, 2, · · · , by computing

‖tn − v‖2 = ‖PC(un − λnAun)− PC(v − λnAv)‖2
≤ 〈(un − λnAun)− (v − λnAv), tn − v〉
= 1

2{‖(un − λnAun)− (v − λnAv)‖2 + ‖tn − v‖2
−‖(un − λnAun)− (v − λnAv)− (tn − v)‖2}

≤ 1
2{‖un − v‖2 + ‖tn − v‖2 − ‖(un − tn)− λn(Aun −Av)‖2}

= 1
2{‖un − v‖2 + ‖tn − v‖2 − ‖un − tn‖2
+2λn〈yun − tn, Aun −Av〉 − λ2

n‖Aun −Av‖2},

we obtain
‖tn − v‖2

≤ ‖un − u‖2 − ‖un − tn‖2 + 2λn〈un − tn, Aun −Av〉 − λ2
n‖Aun −Av‖2

≤ ‖xn − u‖2 − ‖un − tn‖2 + 2λn〈un − tn, Aun −Av〉 − λ2
n‖Aun −Av‖2.

Therefore we have
‖xn+1 − v‖2

= ‖αn(f(xn)− v) + βn(xn − v) + γn(zn − v)‖2
≤ α2

n‖f(xn)− v‖2 + β2
n‖xn − v‖2 + γ2

n‖µ(Sun − v) + (1− µ)(tn − v)‖2
+2αnβn〈f(xn)− v, xn − v〉+ 2αnγn〈f(xn)− v, zn − v〉+ 2βnγn‖xn − v‖2

≤ α2
n‖f(xn)− v‖2 + β2

n‖xn − v‖2 + γ2
nµ‖xn − v‖2 + (1− µ)γ2

n‖tn − v)‖2
+2αnβn〈f(xn)− v, xn − v〉+ 2αnγn〈f(xn)− v, zn − v〉+ 2βnγn‖xn − v‖2

≤ α2
n‖f(xn)− v‖2 + β2

n‖xn − v‖2 + γ2
nµ‖xn − v‖2 + (1− µ)γ2

n(‖xn − u‖2
−‖un − tn‖2 + 2λn〈un − tn, Aun −Av〉 − λ2

n‖Aun −Av‖2)
+2αnβn〈f(xn)− v, xn − v〉+ 2αnγn〈f(xn)− v, zn − v〉+ 2βnγn‖xn − v‖2

= α2
n‖f(xn)− v‖2 + (1− αn)2‖xn − v‖2 − (1− µ)γ2

n‖un − tn‖2
+2αnβn〈f(xn)− v, xn − v〉+ 2αnγn〈f(xn)− v, zn − v〉
+2(1− µ)γ2

n(λn〈un − tn, Aun −Av〉 − λ2
n‖Aun −Av‖2)

≤ α2
n‖f(xn)− v‖2 + ‖xn − v‖2 − (1− µ)γ2

n‖un − tn‖2
+2αnβn〈f(xn)− v, xn − v〉+ 2αnγn〈f(xn)− v, zn − v〉
+2(1− µ)γ2

n(λn〈un − tn, Aun −Av〉 − λ2
n‖Aun −Av‖2),

i.e.,

(1− µ)γ2
n‖un − tn‖2

≤ α2
n‖f(xn)− v‖2 + (‖xn − v‖+ ‖xn+1 − v‖)‖xn − xn+1‖

+2αnβn〈f(xn)− v, xn − v〉+ 2αnγn〈f(xn)− v, zn − v〉
+2(1− µ)γ2

n(λn〈un − tn, Aun −Av〉 − λ2
n‖Aun −Av‖2),

for every n = 1, 2, · · · . By using (2.4) and (2.5), then noting limn→∞ αn = 0, we have

lim
n→∞

‖un − tn‖ = 0. (2.6)

Next we prove that limn→∞ ‖xn − un‖ = 0. Since

‖un − v‖2 = ‖Trn
xn − Trn

v‖2
≤ 〈Trn

xn − Trn
v, xn − v〉

= 〈un − v, xn − v〉
= 1

2 (‖un − v‖2 + ‖xn − v‖2 − ‖xn − un‖2),
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we have

‖un − v‖2 ≤ ‖xn − v‖2 − ‖xn − un‖2

for every n = 1, 2, · · · . Therefore, we have

‖xn+1 − v‖2
= ‖αn(f(xn)− v) + βn(xn − v) + γn(zn − v)‖2
≤ α2

n‖f(xn)− v‖2 + β2
n‖xn − v‖2 + γ2

n‖µ(Sun − v) + (1− µ)(tn − v)‖2
+2αnβn〈f(xn)− v, xn − v〉+ 2αnγn〈f(xn)− v, zn − v〉+ 2βnγn‖xn − v‖2

≤ α2
n‖f(xn)− v‖2 + β2

n‖xn − v‖2 + γ2
nµ‖un − v‖2 + (1− µ)γ2

n‖tn − v‖2
+2αnβn〈f(xn)− v, xn − v〉+ 2αnγn〈f(xn)− v, zn − v〉+ 2βnγn‖xn − v‖2

≤ α2
n‖f(xn)− v‖2 + β2

n‖xn − v‖2 + γ2
nµ(‖xn − v‖2 − ‖xn − un‖2)

+(1− µ)γ2
n‖xn − v‖2 + 2αnβn〈f(xn)− v, xn − v〉

+2αnγn〈f(xn)− v, zn − v〉+ 2βnγn‖xn − v‖2
≤ α2

n‖f(xn)− v‖2 + ‖xn − v‖2 − γ2
nµ‖xn − un‖2 + 2αnβn〈f(xn)− v, xn − v〉

+2αnγn〈f(xn)− v, zn − v〉,

i.e.,

γ2
nµ‖xn − un‖2 ≤ α2

n‖f(xn)− v‖2 + (‖xn − v‖+ ‖xn+1 − v‖)‖xn − xn+1‖
+2αnβn〈f(xn)− v, xn − v〉+ 2αnγn〈f(xn)− v, zn − v〉,

which implies that

lim
n→∞

‖xn − un‖ = 0. (2.7)

Step 4. limn→∞ ‖xn − Sxn‖ = 0 and limn→∞ ‖xn − PC(xn − λAxn)‖ = 0, where
limn→∞ λn = λ ∈ (0, 2α).

Since ‖xn − tn‖ ≤ ‖xn − un‖+ ‖un − tn‖, by using (2.5) and (2.6) we have

lim
n→∞

‖xn − tn‖ = 0. (2.8)

However, since xn+1 − xn = αn(f(xn)− xn) + γnµ(Sun − xn) + γn(1− µ)(tn − xn),
we have

γnµ‖Sun − xn‖ ≤ ‖xn+1 − xn‖+ αn(‖f(xn)‖+ ‖xn‖) + ‖tn − xn‖,

for every n = 1, 2, · · · . Noting {f(xn)} and {xn} are bounded, limn→∞ αn = 0, then
by (2.4) and (2.8) we obtain

lim
n→∞

‖xn − Sun‖ = 0. (2.9)

Since ‖un − Sun‖ ≤ ‖un − xn‖+ ‖xn − Sun‖, for every n = 1, 2, · · · , from (2.7) and
(2.9) we obtain

lim
n→∞

‖un − Sun‖ = 0.

Noting

‖xn − Sxn‖ ≤ ‖xn − Sun‖+ ‖Sun − Sxn‖
≤ ‖xn − Sun‖+ ‖un − xn‖,
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for every n = 1, 2, · · · , by (2.7) and (2.9) we have

lim
n→∞

‖xn − Sxn‖ = 0.

Next we prove that limn→∞ ‖xn − PC(xn − λAxn)‖ = 0. To see this, putting
yn = PC(xn − λnAxn), for every n = 1, 2, · · · , we have

‖xn − yn‖ ≤ ‖xn − tn‖+ ‖tn − yn‖
= ‖xn − tn‖+ ‖PC(un − λnAun)− PC(xn − λnAxn)‖
≤ ‖xn − tn‖+ ‖un − λnAun − (xn − λnAxn)‖
≤ ‖xn − tn‖+ ‖un − xn‖,

by (2.7) and (2.8) we obtain

lim
n→∞

‖xn − yn‖ = 0.

Hence,

lim
n→∞

‖xn − PC(xn − λAxn)‖ = lim
n→∞

‖xn − PC(xn − λnAxn)‖ = 0.

Step 5. lim supn→∞〈f(z)− z, xn − z〉 ≤ 0, where z = PF (S)∩EP (F )∩V I(C,A)f(z).

Since {xn} is bounded, we may choose a subsequence {xni} of {xn} such that

lim sup
n→∞

〈f(z)− z, xn − z〉 = lim
i→∞

〈f(z)− z, xni
− z〉.

As {xni} is also bounded, we can choose a subsequence {xnij
} of {xni} converges

weakly to p. Without loss of generality we may assume that xni ⇀ p, then we have
p ∈ F (S) ∩ EP (F ) ∩ V I(C,A).

First we show p ∈ F (S) ∩ V I(C,A). Since xn − Sxn → 0 and xn − PC(xn −
λAxn) → 0, by the demiclosedness principle for nonexpansive mappings, we obtain
p = Sp and p = PC(p− λAp), i.e., p ∈ F (S) ∩ V I(C,A).

Next we show that p ∈ EP (F ). In fact, since limi→∞ ‖xni − uni‖ = 0, we have
{uni} also converges weakly to p. From ‖Sun − un‖ → 0, we obtain Suni ⇀ p. By
un = Trn

xn, we have

F (un, y) +
1
rn
〈y − un, un − xn〉 ≥ 0, ∀y ∈ C.

From (A2), we also have

1
rn
〈y − un, un − xn〉 ≥ F (y, un)

and hence

〈y − uni
,
uni − xni

rni

〉 ≥ F (y, uni
).

Since lim infn→∞ rn > 0, uni
−xni

rni
→ 0 and uni

⇀ p, from (A4) we have

F (y, p) ≤ 0
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for all y ∈ C. For t with 0 < t ≤ 1 and y ∈ C, let yt = ty + (1 − t)p. Since y ∈ C
and p ∈ C, we have yt ∈ C and hence F (yt, p) ≤ 0. Therefore, from (A1) and (A4)
we have

F (yt, yt) ≤ tF (yt, y) + (1− t)F (yt, p)
≤ tF (yt, y).

Noting F (yt, yt) = 0 and 0 < t ≤ 1, we have 0 ≤ F (yt, y). From (A3), we have
0 ≤ F (p, y) for all y ∈ C, which implies that p ∈ EP (F ). Therefore, p ∈ F (S) ∩
EP (F ) ∩ V I(C,A). Since z = PF (S)∩EP (F )∩V I(C,A)f(z), we have

lim supn→∞〈f(z)− z, xn − z〉 = limi→∞〈f(z)− z, xni
− z〉

= 〈f(z)− z, p− z〉 ≤ 0.
(2.10)

Since xn − Sun → 0 and xn − tn → 0, we have xn − zn → 0. Hence, we have

lim sup
n→∞

〈f(z)− z, zn − z〉 ≤ 0. (2.11)

Step 6. limn→∞ ‖xn − z‖ = 0.

For z = PF (S)∩EP (F )∩V I(C,A)f(z), we have

‖xn+1 − z‖2
= ‖αn(f(xn)− z) + βn(xn − z) + γn(zn − z)‖2
= α2

n‖f(xn)− z‖2 + β2
n‖xn − z‖2 + γ2

n‖zn − z‖2 + 2αnβn〈f(xn)− z, xn − z〉
2αnγn〈f(xn)− z, zn − z〉+ 2βnγn〈xn − z, zn − z〉

≤ α2
n‖f(xn)− z‖2 + β2

n‖xn − z‖2 + γ2
n‖xn − z‖2 + 2βnγn‖xn − z‖2

+2αnβnκ‖xn − z‖2 + 2αnβn〈f(z)− z, xn − z〉+ 2αnγnκ‖xn − z‖2
+2αnγn〈f(z)− z, zn − z〉

= (1− 2αn + α2
n + 2καn(1− αn))‖xn − z‖2 + α2

n‖f(xn)− z‖2
+2αnβn〈f(z)− z, xn − z〉+ 2αnγn〈f(z)− z, zn − z〉,

for every n = 1, 2, · · · . Put σ1
n = max{0, 〈f(z)− z, xn − z〉} and σ2

n = max{0, 〈f(z)−
z, zn − z〉}, then σ1

n ≥ 0 and σ2
n ≥ 0, for every n = 1, 2, · · · . Hence, we have

‖xn+1 − z‖2 ≤ (1− ᾱn)‖xn − z‖2 + α2
n‖f(xn)− z‖2 + 2αnβnσ1

n + 2βnγnσ2
n,

where ᾱn = αn(2− αn − 2κ(1− αn)). From (2.10) and (2.11), we have

σ1
n → 0 and σ2

n → 0.

Therefore, we have

‖xn+1 − z‖2 ≤ (1− ᾱn)‖xn − z‖2 + o(ᾱn).

Since limn→∞ ᾱn = 0 and
∑∞

n=1 ᾱn = ∞, by Lemma 1.4 we have

lim
n→∞

‖xn − z‖ = 0.

This theorem is complete.

As direct consequences of Theorem 2.1, we obtain two corollaries.
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Corollary 2.2. Let C be a nonempty closed convex subset of a real Hilbert
space H. Let f be a contraction from C into itself. Let A be an α-inverse-strongly
monotone mapping of C into H and S be a nonexpansive mapping of C into itself such
that F (S) ∩ V I(C,A) 6= ∅. Suppose x1 = x ∈ C and {xn} is a sequence generated by

xn+1 = αnf(xn) + βnxn + γn(µSxn + (1− µ)PC(xn − λnAxn)),

for every n = 1, 2, · · · , where µ ∈ [0, 1], {λn} ⊂ [a, b] with 0 < a < b < 2α and
{αn}, {βn} and {γn} are sequences in [0, 1] and satisfy αn + βn + γn = 1 for every
n = 1, 2, · · · . If {αn}, {βn} and {λn} are chosen so that

lim
n→∞

αn = 0,
∞∑

n=1

αn = ∞, 0 < lim inf
n→∞

βn < lim sup
n→∞

βn < 1 and lim
n→∞

|λn+1−λn| = 0,

then {xn} converges strongly to z ∈ F (S) ∩ V I(C,A), where z = PF (S)∩V I(C,A)f(z).

Proof. Put F (x, y) = 0 for all x, y ∈ C and rn = 1 for all n = 1, 2, · · · in
Theorem 2.1. Then, we have un = PCxn = xn. So, from Theorem 2.1, the se-
quence {xn} in Corollary 2.2 converges strongly to z ∈ F (S) ∩ V I(C,A), where
z = PF (S)∩V I(C,A)f(z).

Corollary 2.3. Let C be a nonempty closed convex subset of a real Hilbert
space H. Let F be a bifunction from C × C to R satisfying (A1)− (A4) and f be a
contraction from C into itself. Let A be an α-inverse-strongly monotone mapping of
C into H such that EP (F ) ∩ V I(C,A) 6= ∅. Suppose x1 = x ∈ C and {xn}, {un} are
sequences generated by{

F (un, y) + 1
rn
〈y − un, un − xn〉 ≥ 0, ∀y ∈ C,

xn+1 = αnf(xn) + βnxn + γn(µun + (1− µ)PC(un − λnAun)),

for every n = 1, 2, · · · , where µ ∈ [0, 1], {rn} ⊂ (0,∞), {λn} ⊂ [a, b] with 0 < a < b <
2α and {αn}, {βn} and {γn} are sequences in [0, 1] and satisfy αn + βn + γn = 1 for
every n = 1, 2, · · · . If {αn}, {βn}, {λn} and {rn}are chosen so that

lim
n→∞

αn = 0,
∞∑

n=1

αn = ∞, 0 < lim inf
n→∞

βn < lim sup
n→∞

βn < 1,

lim
n→∞

|λn+1 − λn| = 0, lim inf
n→∞

rn > 0 and lim
n→∞

|rn+1 − rn| = 0,

then {xn} and un converge strongly to z ∈ EP (F ) ∩ V I(C,A), where z =
PEP (F )∩V I(C,A)f(z).

Proof. This conclusion may be directly obtained by putting Sx = x for all x ∈ C
in Theorem 2.1.

Remark 2.4. We may obtain Wittmann’s theorem [12] if f(y) = x1 for all
y ∈ C, βn ≡ 0 and µ = 1 in Corollary 2.2. We also obtain Combettes and Hirstoaga’s
theorem [5] if f is a contraction from H into itself and f(y) = x1 = x ∈ H for all
y ∈ H, µ = 1 and βn ≡ 1 in Corollary 2.3.
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3. Applications. In this section, we first prove one theorem in a real Hilbert
space H by using Theorem 2.1.

Let C be a closed convex subset of H, and T be a mapping from C to C. T is
called strictly pseudo-contractive if there exists some κ with 0 ≤ κ < 1 such that

‖Tx− Ty‖2 ≤ ‖x− y‖2 + κ‖(I − T )x− (I − T )y‖2

for all x, y ∈ C.
Put A = I − T , where T : C → C is a κ-strictly pseudo-contractive mapping.

Then A is a 1−κ
2 -inverse-strongly monotone mapping [3].

Theorem 3.1. Let C be a closed convex subset of a real Hilbert space H. Let F
be a bifunction from C × C to R satisfying (A1)− (A4) and f be a contraction from
C into itself. Let S be an nonexpansive mapping of C into itself and T be a κ-strictly
pseudo-contractive mapping of C into itself such that F (S) ∩ EP (F ) ∩ F (T ) 6= ∅.
Suppose x1 = x ∈ C and {xn}, {un} are given by{

F (un, y) + 1
rn
〈y − un, un − xn〉 ≥ 0, ∀y ∈ C,

xn+1 = αnf(xn) + βnxn + γn(µSun + (1− µ)((1− λn)un − λnTun))

for every n = 1, 2, · · · , where µ ∈ [0, 1], {rn} ⊂ (0,∞), {λn} ⊂ [a, b] with 0 < a < b <
1 − κ and {αn}, {βn} and {γn} are sequences in [0, 1] and satisfy αn + βn + γn = 1
for every n = 1, 2, · · · . If {αn}, {βn}, {λn} and {rn}are chosen so that

lim
n→∞

αn = 0,
∞∑

n=1

αn = ∞, 0 < lim inf
n→∞

βn < lim sup
n→∞

βn < 1,

lim
n→∞

|λn+1 − λn| = 0, lim inf
n→∞

rn > 0 and lim
n→∞

|rn+1 − rn| = 0,

then {xn} and {un} converge strongly to z ∈ F (S) ∩ EP (F ) ∩ F (T ), where z =
PF (S)∩EP (F )∩F (T )f(z).

Proof. Put A = I −T . Then A is a 1−κ
2 -inverse-strongly monotone mapping. We

have F (T ) = V I(C,A) and PC(un−λnAun) = (1−λn)un +λnTun. So, by Theorem
2.1, we obtain the desired result.

Next we consider the problem of finding a minimizer of a continuously Fréchet
differentiable convex function in a Hilbert space H. Let g be a continuously Fréchet
differentiable convex function on H and let 5g be the gradient of g. It is known
that if 5g is 1/α-Lipschitz continuous, then 5g is α-inverse–strongly monotone [1].
Moreover, we also obtain from the convexity and Fréchet differentiability of g that

V I(H,5g) = (5g)−1(0),

where (5g)−1(0) = {x ∈ H : g(x) = miny∈H g(y)}. So, if letting F ≡ 0 and
A = (5g)−1(0) in Theorem 2.1, then the iterative scheme in Theorem 2.1 converges
strongly to z ∈ F (S)∩ (5g)−1(0), which is a solution of the unconstrained optimiza-
tion problem for the convex function g. Based on this idea, we give the following
theorem:

Theorem 3.2. Let H be a real Hilbert space and let f be a contraction from H
into itself. Let g be a continuously Fréchet differentiable convex function on H and
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assume that 5g is 1/α-Lipschitz continuous. Let S be a nonexpansive mapping of
H into itself such that F (S) ∩ (5g)−1(0) 6= ∅. Suppose x1 = x ∈ H and {xn} is a
sequence generated by

xn+1 = αnf(xn) + βnxn + γn(µSxn + (1− µ)(xn − λn 5 gxn)),

for every n = 1, 2, · · · , where µ ∈ [0, 1], {λn} ⊂ [a, b] with 0 < a < b < 2α and
{αn}, {βn} and {γn} are sequences in [0, 1] and satisfy αn + βn + γn = 1 for every
n = 1, 2, · · · . If {αn}, {βn} and {λn} are chosen so that

lim
n→∞

αn = 0,
∞∑

n=1

αn = ∞, 0 < lim inf
n→∞

βn < lim sup
n→∞

βn < 1 and lim
n→∞

|λn+1−λn| = 0,

then {xn} converges strongly to z ∈ F (S)∩(5g)−1(0), where z = PF (S)∩(5g)−1(0)f(z).

Proof. Put F (x, y) = 0 for all x, y ∈ C and rn = 1 for all n = 1, 2, · · · in Theorem
2.1. Then, noting that5g is α-inverse-strong monotone and (5g)−1(0) = V I(H,5g),
this conclusion may be directly obtained by Theorem 2.1.

Remark 3.3. If g is just a convex and lower semicontinuous function defined on
a nonempty closed convex subset C of H, we can also obtain the optimal solution of
g by the result of this paper. Denote by A the set of solutions of the optimization
problem {

min g(x)
x ∈ C.

(3.1)

We define the bifunction F by F (x, y) = g(y)− g(x) and denote by EP (F ) the set of
solutions of the following equilibrium problem, that is to find x ∈ C such that

F (x, y) ≥ 0, ∀y ∈ C.

Obviously, F (x, y) satisfies the conditions A(1)−A(4) and EP (F ) = A. Therefore,
from Corollary 2.3 we know that the following iterative algorithm{

F (un, y) + 〈y − un, un − xn〉 ≥ 0, ∀y ∈ C,
xn+1 = αnf(xn) + βnxn + γnun

for any initial guess x1 ∈ C and all n ≥ 1, converges strongly to a solution z = PAf(z)
of optimization problem (3.1), where {αn}, {βn} and {γn} satisfy the conditions in
Corollary 2.3.
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