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AN ASYMPTOTIC ANALYSIS OF LINEAR INTERFACIAL MOTION∗

JIN WANG†

Abstract. In this paper, we perform an asymptotic study on slightly viscous flows between
two immiscible incompressible fluids. The motion is governed by linearized Navier-Stokes equations
together with interfacial conditions. A second-order asymptotic expansion with respect to viscosity is
obtained by using the method of multiple scales. In particular, viscous decay rate for the interfacial
wave amplitude and viscous correction for the phase speed are explicitly identified.
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1. Introduction. Although both viscosities in air and water are very small,
they play a crucial role in transferring energy between the two fluids, and directly
affect the evolution of water waves. No doubt great success has been achieved in the
broad study of viscous flows. However, understanding of viscous effects on interfacial
motions, typically in a system of air and water, remains limited due to the physical
phenomena implicit in both air flow and water wave evolution. Most of such problems
are nonlinear and analytical solutions are impossible. Numerical simulations provide
a good way to study the complicated physics involved in those problems [8][14][16].
However, the design of a numerical algorithm which allows an accurate representation
of the interface and does not introduce numerical smoothing can be a real challenge
[3].

Asymptotic theory offers another effective way to study the viscous flows. In gen-
eral, this approach applies to problems involving one or more small parameters. As-
ymptotic methods construct a series expansion, called asymptotic expansion, in terms
of the small parameter(s) to approximate the solution. This approximation becomes
increasingly accurate when letting the small parameter(s) tend to zero. Probably the
two most common asymptotic methods applied to fluid dynamics are the matched as-
ymptotic expansions [18] and the multiple scales [10][12]. The first method constructs
the outer and inner solutions for the regions out of and inside the boundary layers,
respectively, and these two solutions are then matched to form a single uniformly
valid composite solution. The second method introduces one or more independent
variables with different scales, known as fast and slow variables, and derive a single
asymptotic expansion dependent on these variables. The removal of secularity then
ensures the uniformity of the solution.

The nature of the asymptotic theory makes itself an excellent tool for studying
fluid flows with small viscosities, such as those in air and water. However, to date few
work has ever been published for the asymptotic solutions of viscous interfacial flows.
The difficulty stems from the strong coupling between the viscosity and nonlinearity in
both the Navier-Stokes equations and interfacial conditions, resulting in the presence
of thin boundary layers near the interface in both fluids, which makes the asymptotic
expansions extremely complicated.

The strategy we are taking to attack such problems is to start from a simpler case.
The linear interfacial motion thus provides a perfect starting point. The present paper
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is the first in a series of papers to study viscous interfacial flows through asymptotic
analysis. In this paper, we perform asymptotic expansions for the linear motion by
using the method of multiple scales. Although analytical solutions have already been
calculated in the linear case [2][6], the asymptotic solutions can improve our under-
standing of the influence of viscosity. In particular, the asymptotic study explicitly
identifies the viscous decay rate for the amplitude and the viscous correction for the
phase speed of the motion. Such information is not revealed from the analytic results
since that requires a nonlinear equation, known as the dispersion relation [2][6], to
be solved. On the other hand, the analytical results can provide a good validation
of the asymptotic expansions. Furthermore, the techniques applied in studying the
linear motions and the results found will be used to attack the nonlinear interfacial
problems. The forthcoming paper [19] will be concerned with the asymptotic study
of viscous effects on nonlinear progressive interfacial waves, especially those with per-
manent forms (Stokes waves [15][17]).

The outline of the present paper is as follows. First, we present the basic formula-
tion of the two-variable expansions for solutions of two-dimensional linear interfacial
flows. Then, we derive the first and second order formal solutions in closed form. As
should be clear from our discussion, there is nothing inherently difficult to carry the
procedure to even higher order solutions.

2. Asymptotic Formulation. Consider a region of two-dimensional space that
contains the upper fluid (air, for example) and the lower fluid (water, for example),
which are separated by a sharp interface h . Let us denote the spatial coordinates by
(x, z) , the temporal coordinate by t , the velocity components by (u, w) , the pressure
by p , the density by ρ , the kinematic viscosity by ν , the gravitational acceleration by
g and the surface tension coefficient by T . We consider the linearized Navier-Stokes
equations:

ut = −
1

ρ
Px + ν(uxx + uzz) , (1)

wt = −
1

ρ
Pz + ν(wxx + wzz) , (2)

ux + wz = 0 , (3)

where P is the hydrodynamic pressure which includes the gravity term, P = p+ ρgz .
The motion of the interface is governed by the kinematic condition; other interfacial
conditions are determined by the continuity of velocities and the balance of stresses
[4]. Specifically,

u(1) = u(2) , (4)

ht = w(1) = w(2) , (5)

ρ(1)ν(1)
(

u(1)
z + w(1)

x

)

= ρ(2)ν(2)
(

u(2)
z + w(2)

x

)

, (6)

(ρ(2) − ρ(1))gh + P (1) − P (2) − 2
(

ρ(1)ν(1)w(1)
z − ρ(2)ν(2)w(2)

z

)

= Thxx . (7)

Here and in what follows, we use the superscripts (1) and (2) to distinguish the
quantities in the upper and lower fluids but we shall use them only when it is important
to distinguish which fluid is being considered.

We assume periodic boundary conditions in the horizontal direction. Meanwhile,
solutions are required to decay away from the interface. In order to simplify the
calculations, we consider solutions in complex form. Real solutions can be generated
by simply adding the complex conjugates.
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Let k be the wave number. For convenience of presentation, k > 0 . We assume
solutions take the form









u
w
P
h









= eikx eσt









U
W
P
a









(8)

where a is a fixed number which measures the initial amplitude of the interface. Our
goal is then to derive asymptotic expansions for U , W , P and σ in terms of small
viscosity ν .

By substituting (8) into the equations (1)-(7), we obtain

σU = − ik

ρ
P + ν(−k2U + Uzz) , (9)

σW = −1

ρ
Pz + ν(−k2W + Wzz) , (10)

ikU + Wz = 0 , (11)

and

U (1) = U (2) , (12)

a σ = W(1) = W(2) , (13)

ρ(1)ν(1)
(

U (1)
z + ikW(1)

)

= ρ(2)ν(2)
(

U (2)
z + ikW(2)

)

, (14)

(ρ(2) − ρ(1))ga + P(1) − P(2) − 2
(

ρ(1)ν(1)W(1)
z − ρ(2)ν(2)W(2)

z

)

= −k2Ta . (15)

It is convenient to introduce two dimensionless parameters

r =
ρ(1)

ρ(2)
, R =

√

ν(2)

ν(1)
. (16)

In this paper, r and R are constants, which means the ratios of the two densities, and
the two viscosites, are fixed. We will use the method of multiple scales [10][12] to derive
the asymptotic expansions. In considering the boundary layers near the interface
which have thickness proportional to

√
ν , we introduce scaled vertical coordinates

η0 , η1 by

η0 =
z√
ν

, η1 =
√

ν η0 = z . (17)

Consequently,

∂

∂z
=

1√
ν

∂

∂η0
+

∂

∂η1
,

∂2

∂z2
=

1

ν

∂2

∂η2
0

+
2√
ν

∂2

∂η0 ∂η1
+

∂2

∂η2
1

. (18)

Then we assume the following expansions:

U = u0(η0 , η1) +
√

ν u1(η0 , η1) + ν u2(η0 , η1) + · · · ,

W = w0(η0 , η1) +
√

ν w1(η0 , η1) + ν w2(η0 , η1) + · · · ,

P = P0(η0 , η1) +
√

ν P1(η0 , η1) + ν P2(η0 , η1) + · · · ,

σ = σ0 +
√

ν σ1 + ν σ2 + · · · . (19)
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Note that σ is the same in the upper and lower fluids but with different expansions.
They are related by

σ
(1)
0 = σ

(2)
0 ; σ(1)

m = Rm σ(2)
m , m = 1, 2, · · · . (20)

By substituting (19) into (9), we obtain

(σ0 +
√

ν σ1 + ν σ2 + · · · )u0 +
√

ν (σ0 +
√

ν σ1 + ν σ2 + · · · )u1 +

ν (σ0 +
√

ν σ1 + ν σ2 + · · · )u2 + · · · = − ik

ρ
P0 −

√
ν

ik

ρ
P1 − ν

ik

ρ
P2 + · · ·

+ν
(

− k2u0 −
√

ν k2u1 − ν k2u2 − · · · + 1

ν

∂2u0

∂η2
0

+
2√
ν

∂2u0

∂η0 ∂η1
+

∂2u0

∂η2
1

+

1√
ν

∂2u1

∂η2
0

+ 2
∂2u1

∂η0 ∂η1
+
√

ν
∂2u1

∂η2
1

+
∂2u2

∂η2
0

+ 2
√

ν
∂2u2

∂η0 ∂η1
+ ν

∂2u2

∂η2
1

+ · · ·
)

. (21)

Comparison of the coefficients of νn yields,

order ν0 : σ0 u0 = − ik

ρ
P0 +

∂2u0

∂η2
0

, (22)

order ν
1
2 : σ1 u0 + σ0 u1 = − ik

ρ
P1 + 2

∂2u0

∂η0 ∂η1
+

∂2u1

∂η2
0

, (23)

order ν1 : σ2 u0 + σ1 u1 + σ0 u2 = − ik

ρ
P2 − k2u0

+
∂2u0

∂η2
1

+ 2
∂2u1

∂η0 ∂η1
+

∂2u2

∂η2
0

. (24)

If we substitute (19) into (10) and equate the coefficients of like powers of νn , we
obtain,

order ν− 1
2 :

∂P0

∂η0
= 0 , (25)

order ν0 : σ0 w0 = −1

ρ

∂P0

∂η1
− 1

ρ

∂P1

∂η0
+

∂2w0

∂η2
0

, (26)

order ν
1
2 : σ1 w0 + σ0 w1 = −1

ρ

∂P1

∂η1
− 1

ρ

∂P2

∂η0
+ 2

∂2w0

∂η0 ∂η1
+

∂2w1

∂η2
0

. (27)

Similarly, the substitution of (19) into (11) yields,

order ν− 1
2 :

∂w0

∂η0
= 0 , (28)

order ν0 : iku0 +
∂w0

∂η1
+

∂w1

∂η0
= 0 , (29)

order ν
1
2 : iku1 +

∂w1

∂η1
+

∂w2

∂η0
= 0 . (30)

We also expand the interfacial conditions (12)-(15). Let ν = ν(1) . Using (16),
the substitution of (19) and (20) into (12) yields,

order ν0 : u
(1)
0 = u

(2)
0 , (31)

order ν
1
2 : u

(1)
1 = R u

(2)
1 . (32)
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Substitution into (13) yields,

order ν0 : a σ
(1)
0 = w

(1)
0 = w

(2)
0 = a σ

(2)
0 , (33)

order ν
1
2 : a σ

(1)
1 = w

(1)
1 = R w

(2)
1 = aR σ

(2)
1 . (34)

Substitution into (14) yields,

order ν− 1
2 : r

∂u
(1)
0

∂η0
= R

∂u
(2)
0

∂η0
, (35)

order ν0 : r
(∂u0

∂η1
+

∂u1

∂η0
+ ikw0

)(1)
= R2

(∂u0

∂η1
+

∂u1

∂η0
+ ikw0

)(2)
. (36)

Finally, substitution into (15) yields,

order ν0 : (ρ(2) − ρ(1))ga + P
(1)
0 − P

(2)
0 = −k2Ta , (37)

order ν
1
2 : P

(1)
1 − R P

(2)
1 − 2

(

ρ(1) ∂w
(1)
0

∂η0
− Rρ(2) ∂w

(2)
0

∂η0

)

= 0 . (38)

Based on equations (22)-(38), etc., solutions will be determined order by order.

3. First-order solutions. We start the calculation by seeking solutions at the
first order, i.e., the solutions to u0 , w0 , P0 and σ0 . Application of secularity con-
ditions in the higher order equations will then be used to determine the additional
dependency of the solutions on the scaled variables η0 , η1 . The interfacial conditions
at the lowest orders are applied to determine the coefficients in the solutions. Details
are as follows.

Equation (25) implies that P0 is independent of η0 , i.e.,

P0 = P0(η1) . (39)

Equation (28) implies that

w0 = w0(η1) . (40)

From (22) we obtain

( ∂2

∂η2
0

− σ0

)

u0 =
ik

ρ
P0(η1) . (41)

Since we want decaying solutions, (41) yields

u0 =











B1(η1) e−
√

σ0 η0 − ik

ρ σ0
P0(η1) for z ≥ 0 ,

B2(η1) e
√

σ0 η0 − ik

ρ σ0
P0(η1) for z ≤ 0 ,

(42)

where B1(η1) and B2(η1) are to be determined, and where the square root of σ0 must
be taken with positive real part, as σ0 may be complex. The Substitution of (42) and
(40) into (29) yields, for z ≥ 0 ,

ikB1(η1) e−
√

σ0 η0 +
k2

ρ σ0
P0(η1) +

dw0(η1)

dη1
+

∂w1

∂η0
= 0 . (43)
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Elimination of secular terms yields

k2

ρ σ0
P0(η1) +

dw0(η1)

dη1
= 0 . (44)

Note that (44) also holds for z ≤ 0 . Meanwhile, substitution of (39) and (40) into
(26) yields

σ0 w0(η1) = −1

ρ

dP0(η1)

dη1
− 1

ρ

∂P1

∂η0
. (45)

To remove the secularity we require

σ0 w0(η1) = −1

ρ

dP0(η1)

dη1
. (46)

By substituting (46) into (44), we obtain

( d2

dη2
1

− k2
)

w0 = 0 , (47)

which implies

w0 =

{

A1 e−kη1 for z ≥ 0 ,
A2 ekη1 for z ≤ 0 ,

(48)

where A1 , A2 are constants. Equations (44) and (48) show that

P0 = −ρ σ0

k2

dw0(η1)

dη1
=











ρ(1) σ0

k
A1 e−kη1 for z ≥ 0 ,

−
ρ(2) σ0

k
A2 ekη1 for z ≤ 0 .

(49)

Equations (42) and (49) show that

u0 =

{

B1(η1) e−
√

σ0 η0 − iA1 e−kη1 for z ≥ 0 ,
B2(η1) e

√
σ0 η0 + iA2 ekη1 for z ≤ 0 .

(50)

Now we determine the forms of B1(η1) and B2(η1) . First notice that (45) and
(46) indicate that

P1 = P1(η1) . (51)

By substituting (50) into (23) we obtain, for z ≥ 0 ,

( ∂2

∂η2
0

−σ0

)

u1 =
ik

ρ
P1(η1)+

(

σ1 B1(η1)+2
√

σ0
dB1(η1)

dη1

)

e−
√

σ0 η0−iA1 σ1 e−kη1 . (52)

The secularity condition requires

σ1 B1(η1) + 2
√

σ0
dB1(η1)

dη1
= 0 , (53)

which implies

B1(η1) = b1 e
− σ1

2
√

σ0
η1 , (54)
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where b1 is a constant. Similarly, for z ≤ 0 , we obtain

σ1 B2(η1) − 2
√

σ0
dB2(η1)

dη1
= 0 , (55)

which implies

B2(η1) = b2 e
σ1

2
√

σ0
η1 , (56)

where b2 is a constant.
Now the interfacial conditions at the lowest order, (31), (33), (35) and (37), will

determine the unknowns A1 , A2 , b1 , b2 and σ0 , while σ1 will be determined by the
next-order solutions.

Equation (33) implies that

aσ0 = A1 = A2 , (57)

where σ0 = σ
(1)
0 = σ

(2)
0 . By substituting (49) and (57) into (37), we obtain

σ2
0 = −

(ρ(2) − ρ(1)

ρ(2) + ρ(1)
gk +

k3 T

ρ(2) + ρ(1)

)

∆
= −F 2 . (58)

Remark 1. Equation (58) shows that when r > 1 (i.e., ρ(1) > ρ(2)), the motion

is unstable for all wave numbers 0 < k <
√

(ρ(1) − ρ(2))g/T . This is the well-known
Rayleigh-Taylor instability [6]. When r < 1 , the motion is stable and σ0 is purely
imaginary. As should be expected, the value of σ0 recovers the phase speed for the
linear inviscid flow.

By substituting (54), (56) and (57) into (50) and applying the condition (31), we
have

b1 − ia σ0 = b2 + ia σ0 . (59)

Meanwhile, (35) implies that

r (−
√

σ0) b1 = R (
√

σ0) b2 . (60)

From (59) and (60), we find

b1 =
2iaRσ0

R + r
, b2 = −2iarσ0

R + r
. (61)

Therefore, the solutions at the first order are

u0 =











2iaRσ0

R + r
e
− σ1

2
√

σ0
η1 e−

√
σ0 η0 − iaσ0 e−kη1 for z ≥ 0 ,

−2iarσ0

R + r
e

σ1
2
√

σ0
η1 e

√
σ0 η0 + iaσ0 ekη1 for z ≤ 0 ,

(62)

w0 =

{

aσ0 e−kη1 for z ≥ 0 ,
aσ0 ekη1 for z ≤ 0 ,

(63)

P0 =











ρ(1) aσ2
0

k
e−kη1 for z ≥ 0 ,

−
ρ(2) aσ2

0

k
ekη1 for z ≤ 0 ,

(64)
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where σ0 is given by (58) and σ1 will be determined by solutions at the next order.

Remark 2. It appears that the viscosity does not make contributions to the
solutions of w and P at the present order, but it does contribute to u . There is a
boundary layer formed in each fluid for the horizontal velocity starting from the very
first order solution.

4. Second-order solutions. Here the second-order solutions refer to u1 , w1 ,
P1 and σ1 . The idea is essentially the same as that in calculating the first-order
solutions. The governing equations at the present order and the secularity conditions
from equations at the next order determine the forms of the solutions. Then the
interfacial conditions at the present order determine the coefficients in the solutions.
Here are the details.

For z ≥ 0 , (43), (44) and (54) imply that

ikb1 e
− σ1

2
√

σ0
η1 e−

√
σ0 η0 +

∂w1

∂η0
= 0 . (65)

Hence

w1 =
ikb1√

σ0
e
− σ1

2
√

σ0
η1 e−

√
σ0 η0 + F1(η1) . (66)

Similarly, for z ≤ 0 we obtain

w1 = − ikb2√
σ0

e
σ1

2
√

σ0
η1 e

√
σ0 η0 + F2(η1) . (67)

Here b1 and b2 are given in (61) while F1(η1) and F2(η1) are to be determined.
Equations (52), (53) and (57) imply that, for z ≥ 0 ,

( ∂2

∂η2
0

− σ0

)

u1 =
ik

ρ
P1(η1) − iaσ0 σ1 e−kη1 . (68)

Similarly for z ≤ 0 , we obtain

( ∂2

∂η2
0

− σ0

)

u1 =
ik

ρ
P1(η1) + iaσ0 σ1 ekη1 . (69)

Hence

u1 =















D1(η1) e−
√

σ0 η0 +
iaσ0 σ1 e−kη1 − ik

ρ
P1(η1)

σ0
for z ≥ 0 ,

D2(η1) e
√

σ0 η0 +
−iaσ0 σ1 ekη1 − ik

ρ
P1(η1)

σ0
for z ≤ 0 .

(70)

Substitute (70) and (66) into (30) to obtain, for z ≥ 0 ,

ikD1(η1) e−
√

σ0 η0 +
ikb1√

σ0

(

− σ1

2
√

σ0

)

e
− σ1

2
√

σ0
η1 e−

√
σ0 η0+

[

− akσ1 e−kη1 +
k2

ρ σ0
P1(η1) +

dF1(η1)

dη1

]

= −
∂w2

∂η0
. (71)

To remove the secularity, we must have

−akσ1 e−kη1 +
k2

ρ σ0
P1(η1) +

dF1(η1)

dη1
= 0 . (72)
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Meanwhile, substitution of (51), (63) and (66) into (27) yields, for z ≥ 0 ,

aσ0 σ1 e−kη1 + σ0 F1(η1) = −1

ρ

dP1(η1)

dη1
− 1

ρ

∂P2

∂η0
. (73)

The secularity condition requires

aσ0 σ1 e−kη1 + σ0 F1(η1) = −1

ρ

dP1(η1)

dη1
. (74)

Now by substituting (72) into (74), we obtain

( d2

dη2
1

− k2
)

F1 = 0 , (75)

which implies

F1(η1) = f1 e−kη1 , (76)

where f1 is a constant. Similarly for z ≤ 0 , we obtain

( d2

dη2
1

− k2
)

F2 = 0 , (77)

which implies

F2(η1) = f2 ekη1 , (78)

where f2 is a constant. Hence,

w1 =















ikb1√
σ0

e
− σ1

2
√

σ0
η1 e−

√
σ0 η0 + f1 e−kη1 for z ≥ 0 ,

− ikb2√
σ0

e
σ1

2
√

σ0
η1 e

√
σ0 η0 + f2 ekη1 for z ≤ 0 .

(79)

Consequently, we obtain

P1 =











ρ(1) σ0

k

(

aσ
(1)
1 + f1

)

e−kη1 for z ≥ 0 ,

−
ρ(2) σ0

k

(

aσ
(2)
1 + f2

)

ekη1 for z ≤ 0 .

(80)

Remark 3. Equation (79) indicates that viscosity starts making contributions to
the vertical velocity from this order. Equation (80), on the other hand, shows no
influence of viscosity for the pressure. This pattern is true in general, as is known
that the pressure does not have viscous boundary layers in linear motions.

Substitute (80) into (70) to obtain

u1 =

{

D1(η1) e−
√

σ0 η0 − if1 e−kη1 for z ≥ 0 ,
D2(η1) e

√
σ0 η0 + if2 ekη1 for z ≤ 0 .

(81)

Now we determine the forms of D1(η1) and D2(η1) . First notice that (73) and
(74) indicate that

P2 = P2(η1) . (82)
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Substitute (62), (81) and (82) into (24) to obtain, for z ≥ 0 ,

[

(

σ2 + k2 − σ2
1

4σ0

)

b1 e
− σ1

2
√

σ0
η1 + σ1 D1(η1) + 2

√
σ0

dD1(η1)

dη1

]

e−
√

σ0 η0

−i
(

aσ0 σ2 + f1 σ1

)

e−kη1 +
ik

ρ
P2(η1) =

( ∂2

∂η2
0

− σ0

)

u2 . (83)

Elimination of secularity in (83) requires that

(

σ2 + k2 − σ2
1

4σ0

)

b1 e
− σ1

2
√

σ0
η1 + σ1 D1(η1) + 2

√
σ0

dD1(η1)

dη1
= 0 . (84)

From (84) we can determine the solution for D1 ,

D1(η1) =
[

d1 −
b1

2
√

σ0

(

σ2 + k2 − σ2
1

4σ0

)

η1

]

e
− σ1

2
√

σ0
η1 , (85)

where b1 is given in (61) and d1 is a constant to be determined. Corresponding to
(83), for z ≤ 0 , we obtain

[

(

σ2 + k2 − σ2
1

4σ0

)

b2 e
σ1

2
√

σ0
η1 + σ1 D2(η1) − 2

√
σ0

dD2(η1)

dη1

]

e
√

σ0 η0

−i
(

aσ0 σ2 − f2 σ1

)

ekη1 +
ik

ρ
P2(η1) =

( ∂2

∂η2
0

− σ0

)

u2 . (86)

Elimination of secularity of in (86) requires that

(

σ2 + k2 − σ2
1

4σ0

)

b2 e
σ1

2
√

σ0
η1 + σ1 D2(η1) − 2

√
σ0

dD2(η1)

dη1
= 0 . (87)

From (87) we can determine the solution for D2 ,

D2(η1) =
[

d2 +
b2

2
√

σ0

(

σ2 + k2 − σ2
1

4σ0

)

η1

]

e
σ1

2
√

σ0
η1 , (88)

where b2 is given in (61) and d2 is a constant to be determined. We note, in both (85)
and (88), that η1 occurs in the square brackets in the form

± b1

2
√

σ0

(

σ2 + k2 − σ2
1

4σ0

)

η1

and its origin is from the expansion of

exp
[

±
b1

2
√

σ0

(

σ2 + k2 −
σ2

1

4σ0

)√
ν η1

]

. (89)

This exponential form can be recovered by introducing another scaled coordinate
η2 =

√
ν η1 =

√
ν z . By following the same procedure as for the determination of η1

in (85) and (88), the elimination of secularity determines the dependency on η2 .
At this stage, the solutions at the current order are expressed in (79), (80) and

(81), with D1(η1) and D2(η1) given by (85) and (88), respectively. What remains is
to use the interfacial conditions (32), (34), (36) and (38) to determine the unknown



AN ASYMPTOTIC ANALYSIS OF LINEAR INTERFACIAL MOTION 11

coefficients f1 , f2 , d1 , d2 and σ1 , while σ2 has to be determined by solutions at the
next order. First, by substituting (79) into (34), we obtain

aσ
(1)
1 =

ikb1√
σ0

+ f1 = −
ikb2R√

σ0
+ Rf2 = aR σ

(2)
1 . (90)

Substitution of (61) yields

f1 = aσ
(1)
1 +

2akR
√

σ0

R + r
, f2 = aσ

(2)
1 +

2akr
√

σ0

R + r
. (91)

Combine (80) and (91) to obtain

P1 =















ρ(1) σ0

k

(

2aσ
(1)
1 +

2akR
√

σ0

R + r

)

e−kη1 for z ≥ 0 ,

− ρ(2) σ0

k

(

2aσ
(2)
1 +

2akr
√

σ0

R + r

)

ekη1 for z ≤ 0 .

(92)

By substituting (92) into (38) and recalling (40), we obtain

σ
(1)
1 = R σ

(2)
1 = −

2kRr
√

σ0

(R + r)(1 + r)
. (93)

Remark 4. Now the real part of σ1 is nonzero and it determines the leading
term of the decay rate for the wave amplitude due to viscous dissipation, while the
imaginary part of σ1 gives viscous correction to the inviscid phase speed.

Finally, we calculate d1 and d2 . By substituting (81), (85) and (88) into (32) we
obtain

d1 − if1 = Rd2 + iRf2 , (94)

or

d1 = Rd2 + 2iaσ
(1)
1 +

2iakR
√

σ0

R + r
(1 + r) . (95)

Meanwhile, (36) yields

r
(

2iakσ0 −
√

σ0 d1

)

= R2
(

2iakσ0 +
√

σ0 d2

)

. (96)

Combine (95) and (96) to obtain

d1 =
1

R + r

{

2iaRσ
(1)
1 + 2iak

√
σ0

[

R(1 + r) + r − R2 − Rr(1 + r)

R + r

]

}

,

d2 =
1

R(R + r)

{

− 2iarσ
(1)
1 + 2iak

√
σ0

[

r − R2 − Rr(1 + r)

R + r

]

}

. (97)

5. Discussion. Except for σ2 , derivation of the second-order asymptotic solu-
tions is complete. This procedure can be certainly continued to find solutions at even
higher orders. For example, σ2 can be found through the calculations at next order:

σ
(1)
2 = R2 σ

(2)
2 =

−2k2

(R + r)2(1 + r)2
[

(1 + r)R4 − 2r2R2 + r3(1 + r)
]

. (98)
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This shows that σ2 is real and only influences the wave decay rate, and has no con-
tribution for the phase speed. When the viscosity is small, the first few terms in the
series expansion, such as

σ0 +
√

ν σ1 + ν σ2 , (99)

will give a good estimate for σ . Otherwise, one has to solve a nonlinear equation of
dispersion relation [2][6], usually by numerical methods, to find an approximate value
of σ . Other flow variables can be determined as well in higher orders, though more
complicated calculations will be involved.

It is worth noting that when r is very small (in a system of air and water, for
example, r

.
= 0.001), equations (99) together with (58), (93) and (98) yield a simplified

approximation

σ
.
= −2ν(2)k2 ± i

√

gk + k3 T/ρ(2) . (100)

From (100), it is clear that the wave amplitude will decay exponentially as

a exp[−2ν(2)k2t] , (101)

so that the total energy dissipation rate per wavelength is given by

d

dt

[1

2
ρ(2)k(ae−2ν(2)k2t)2c2

]

= −2ρ(2)ka2c2e−4ν(2)k2t , (102)

where c is the phase speed of the wave. This is consistent with the result in Sec. 348
of Lamb’s classical book [11].

Although we have treated the ratio of the two viscosities as a constant in this
paper, our analysis does allow us to discuss different values of R . One special case
is R → 0 (i.e., the viscosity of the upper fluid is relatively much bigger than that
of the lower fluid, though both viscosites should be kept small in our framework).

From equations (79) - (81), we can observe that w
(1)
1 and P

(1)
1 both approach zero,

while u
(1)
1 is nonzero and has a major boundary-layer component. It appears that

the horizontal (shear) flow dominates in the upper fluid which has larger viscosity.
Similar observation can be made in the lower fluid if we instead let R approach ∞ .

The asymptotic solutions presented in this paper have been validated by using
the analytic results [2]. Hence, they provide a solid background for us to study the
nonlinear problems, to which we perform asymptotic expansions in terms of both the
viscosity ν and the wave amplitude a . The linear expansions thus provide solutions
at the level a1 , and are used to calculate higher-level solutions in terms of an , n =
2, 3, · · · . At each order of an , solutions are expanded with respect to ν in a form
similar to (19); they are determined by solving the nonlinear Navier-Stokes equations
together with interfacial conditions, and using lower-order solutions already obtained.
The details are given in a separate paper [19].

In addition, the linear analysis presented in this paper can be naturally extended
to three-dimensional interfacial motion, especially when periodicity is assumed for the
additional horizontal direction, say y . In such a case, we seek the solution of u in the
form

u = ei(kx+ly) eσt U ;

similar forms hold for w , P and h . By substituting them into the flow equations,
we can derive equations with respect to the vertical coordinate z , similar to those in
(9)-(15), and then determine solutions order by order.
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