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ON LEAST-SQUARES VARIATIONAL PRINCIPLES

FOR THE DISCRETIZATION OF OPTIMIZATION

AND CONTROL PROBLEMS∗

PAVEL B. BOCHEV† AND MAX D. GUNZBURGER‡

Abstract. The approximate solution of optimization and control problems for systems governed
by linear, elliptic partial differential equations is considered. Such problems are most often solved
using methods based on the application of the Lagrange multiplier rule followed by discretization
through, e.g., a Galerkin finite element method. As an alternative, we show how least-squares
finite element methods can be used for this purpose. Penalty-based formulations, another approach
widely used in other settings, have not enjoyed the same level of popularity in the partial differential
equation case perhaps because naively defined penalty-based methods can have practical deficiencies.
We use methodologies associated with modern least-squares finite element methods to develop and
analyze practical penalty methods for the approximate solution of optimization problems for systems
governed by linear, elliptic partial differential equations. We develop an abstract theory for such
problems; along the way, we introduce several methods based on least-squares notions, and compare
and constrast their properties.
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element methods

AMS subject classifications. 65N30, 65N22, 49J20, 49K20

1. Introduction. Optimization and control problems for systems governed by
partial differential equations arise in many applications. Experimental studies of
such problems go back 100 years [23]. Computational approaches have been applied
since the advent of the computer age. Most of the efforts in the latter direction
have employed elementary optimization strategies but, more recently, there has been
considerable practical and theoretical interest in the application of sophisticated local
and global optimization strategies, e.g., Lagrange multiplier methods, sensitivity or
adjoint-based gradient methods, quasi-Newton methods, evolutionary algorithms, etc.

The optimal control or optimization problems we consider consist of
• state variables, i.e., variables that describe the system being modeled;
• control variables or design parameters, i.e., variables at our disposal that can

be used to affect the state variables;
• a state system, i.e., partial differential equations relating the state and control

variables; and
• a functional of the state and control variables whose minimization is the goal.

Then, the problems we consider consist of finding state and control variables that
minimize the given functional subject to the state system being satisfied. Here, we
restrict attention to linear, elliptic state systems and to quadratic functionals.

The Lagrange multiplier rule is a standard approach for solving finite-dimensional,
constrained optimization problems. It is not surprising then that several popular ap-
proaches to solving optimization and control problems constrained by partial differen-
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tial equations are based on solving optimality systems deduced from the application of
the Lagrange multiplier rule. In these approaches, Galerkin weak forms of the partial
differential equation constraints are used. In the finite element method context, these
Galerkin variational formulations are usually used as the basis for defining discretiza-
tions; see, e.g., [14, 17, 20] for descriptions this approach. Another means for solving
the optimality system is to apply least-squares finite element methods; see [8] and
also [21].

Instead of constraining the cost functional with a Galerkin weak form of the
constraint equations, one can constrain with a least-squares minimization form of the
constraints. This leads to a different optimality system that has advantages over using
the Galerkin form of the constraints. This approach was considered in [9].

Penalty methods, which are another popular approach for finite-dimensional op-
timization problems, have not generated much interest for the infinite-dimensional
problems which are of interest here. In this paper, we will see why naively defined
penalty methods may not be practical and how, using methodologies developed in
modern least-squares finite element methods, the penalty approach can be rehabili-
tated to yield practical and efficient algorithms for optimal control problems. These
algorithms enforce the partial differential equations constraints by using well-posed
least-squares functionals as penalty terms that are added to the original cost func-
tional. This type of penalty methods offers certain efficiency-related advantages com-
pared to methods based on the solution of the Lagrange multiplier optimality system
either by Galerkin or least-squares finite element methods. Least-squares/penalty
methods have been considered, in concrete settings, in [1, 2, 4, 7, 22].

The paper is organized as follows. In §2, we define an abstract, quadratic opti-
mization and control problem constrained by linear, elliptic partial differential equa-
tions. Then, in §3, we review results about Galerkin and least-squares finite element
methods for the approximate solution of the constraint equations. In §4, we con-
sider the use of the Lagrange multiplier rule for deriving an optimality system whose
solution is also a solution of the control problem; we also consider Galerkin and least-
squares finite element methods for finding approximate solutions of the optimality
system. In §§5 and 6, we define and analyze several penalty-based methods for the
approximate solution of the abstract control problem of §2. In §5, we begin by directly
penalizing the cost functional of the optimal control problem by the least-squares
functional; in §6, we begin by constraining the cost functional by the least-squares
functional. The two approaches lead to different discrete systems. Methods that result
from the approach of §5, which is the more common way to define penalty methods,
are not as effective as those resulting from the approach of §6. In the former case, one
has methods that either require the satisfaction of discrete stability conditions or are
prone to locking. In the latter case, one can define a method that avoids both of these
undesirable features. In §7, we critically compare several theoretical properties of the
methods; we then briefly discuss some practical issues that also affect the choice of
method.

2. The model optimization and control problem. We begin with four given
Hilbert spaces Θ, Φ, Φ̂, and Φ̃ along with their dual spaces denoted by (·)∗. We assume

that Φ ⊆ Φ̂ ⊆ Φ̃ with continuous embeddings and that Φ̃ acts as the pivot space for
both the pairs {Φ∗,Φ} and {Φ̂∗, Φ̂} so that we not only have that Φ ⊆ Φ̂ ⊆ Φ̃ ⊆ Φ̂∗ ⊆
Φ∗, but also

〈
ψ, φ

〉
Φ∗,Φ

=
〈
ψ, φ

〉bΦ∗,bΦ =
(
ψ, φ

)eΦ ∀ψ ∈ Φ̂∗ ⊆ Φ∗ and ∀φ ∈ Φ ⊆ Φ̂ , (2.1)



LEAST-SQUARES FOR OPTIMIZATION AND CONTROL PROBLEMS 397

where (·, ·)eΦ denotes the inner product on Φ̃. Next, we define the functional

J (φ, θ) =
1

2
a1(φ− φ̂, φ− φ̂) +

1

2
a2(θ, θ) ∀φ ∈ Φ, θ ∈ Θ , (2.2)

where a1(·, ·) and a2(·, ·) are symmetric bilinear forms on Φ̂×Φ̂ and Θ×Θ, respectively,

and φ̂ ∈ Φ̂ is a given function. In the language of control theory, Φ is called the state

space, φ the state variable, Θ the control space, and θ the control variable. In many
applications, the control space is finite dimensional in which case θ is often referred
to as the vector of design variables. We note that often Θ is chosen to be a bounded
set in a Hilbert space but, for our purposes, we can consider the less general situation
of Θ itself being a Hilbert space. The second term in the functional (2.2) can be
interpreted as a penalty term1 which limits the size of the control θ.

We make the following assumptions about the bilinear forms a1(·, ·) and a2(·, ·):




a1(φ, µ) ≤ C1‖φ‖bΦ‖µ‖bΦ ∀φ, µ ∈ Φ̂

a2(θ, ν) ≤ C2‖θ‖Θ‖ν‖Θ ∀ θ, ν ∈ Θ

a1(φ, φ) ≥ 0 ∀φ ∈ Φ̂

a2(θ, θ) ≥ K2‖θ‖2
Θ ∀ θ ∈ Θ ,

(2.3)

where C1, C2, and K2 are all positive constants.
Given another Hilbert space Λ, the additional bilinear forms b1(·, ·) on Φ×Λ and

b2(·, ·) on Θ × Λ, and the function g ∈ Λ∗, we define the constraint equation2

b1(φ, ψ) + b2(θ, ψ) = 〈g, ψ〉Λ∗,Λ ∀ψ ∈ Λ . (2.4)

We make the following assumptions about the bilinear forms b1(·, ·) and b2(·, ·):




b1(φ, ψ) ≤ c1‖φ‖Φ‖ψ‖Λ ∀φ ∈ Φ, ψ ∈ Λ

b2(θ, ψ) ≤ c2‖θ‖Θ‖ψ‖Λ ∀ θ ∈ Θ, ψ ∈ Λ

sup
ψ∈Λ,ψ 6=0

b1(φ, ψ)

‖ψ‖Λ
≥ k1‖φ‖Φ ∀φ ∈ Φ

sup
φ∈Φ,φ 6=0

b1(φ, ψ)

‖φ‖Φ
> 0 ∀ψ ∈ Λ ,

(2.5)

where c1, c2, and k1 are all positive constants.
We consider the optimal control problem

min
(φ,θ)∈Φ×Θ

J (φ, θ) subject to b1(φ, ψ) + b2(θ, ψ) = 〈g, ψ〉Λ∗,Λ ∀ψ ∈ Λ . (2.6)

The following result is proved in, e.g., [8].

Theorem 2.1. Let the assumptions (2.3) and (2.5) hold. Then, the optimal

control problem (2.6) has a unique solution (φ, θ) ∈ Φ × Θ.

1The usage of the terminology “penalty term” in conjunction with the second term in (2.2) should
not be confused with the usage of that terminology below.

2One should view (2.4) as a Galerkin weak form of the given partial differential equation con-
straint, i.e., of the operator constraint equation (2.9). In fact, one usually formulates the partial
differential equation constraint in the operator form (2.9) and then derives a (Galerkin) weak formu-
lation of the form (2.4).
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It is instructive to rewrite the functional (2.2), the constraint (2.4), and the
optimal control problem (2.6) in operator notation. To this end, we note that the
bilinear forms serve to define operators

A1 : Φ̂ → Φ̂∗, A2 : Θ → Θ∗, B1 : Φ → Λ∗,
B∗

1 : Λ → Φ∗, B2 : Θ → Λ∗, B∗
2 : Λ → Θ∗

through the relations

a1(φ, µ) = 〈A1φ, µ〉bΦ∗,bΦ ∀φ, µ ∈ Φ̂

a2(θ, ν) = 〈A2θ, ν〉Θ∗,Θ ∀ θ, ν ∈ Θ

b1(φ, ψ) = 〈B1φ, ψ〉Λ∗,Λ = 〈B∗
1ψ, φ〉Φ∗,Φ ∀φ ∈ Φ, ψ ∈ Λ

b2(ψ, θ) = 〈B2θ, ψ〉Λ∗,Λ = 〈B∗
2ψ, θ〉Θ∗,Θ ∀ θ ∈ Θ, ψ ∈ Λ .

(2.7)

Then, the functional (2.2) and the constraint (2.4) respectively take the forms

J (φ, θ) =
1

2

〈
A1(φ− φ̂), (φ− φ̂)

〉bΦ∗,bΦ +
1

2
〈A2θ, θ〉Θ∗,Θ ∀φ ∈ Φ, θ ∈ Θ (2.8)

and

B1φ+B2θ = g in Λ∗ (2.9)

and the optimal control problem (2.6) takes the form

min
(φ,θ)∈Φ×Θ

J (φ, θ) subject to B1φ+B2θ = g in Λ∗. (2.10)

Assumptions (2.3) and (2.5) imply that A1, A2, B1, B2, B
∗
1 , and B∗

2 are bounded
with

‖A1‖bΦ→bΦ∗
≤ C1, ‖A2‖Θ→Θ∗ ≤ C2, ‖B1‖Φ→Λ∗ ≤ c1,

‖B∗
1‖Λ→Φ∗ ≤ c1, ‖B2‖Θ→Λ∗ ≤ c2, ‖B∗

2‖Λ→Θ∗ ≤ c2

and that the operator B1 is invertible with ‖B−1
1 ‖Λ∗→Φ ≤ 1/k1. See [8] for details.

3. Galerkin and least-squares finite element methods for the constraint

equations. The constraint equations are given by (2.9), or in equivalent variational
form by (2.4). We consider two finite element approaches for finding approximations
of solutions of the constraint equations. The first is a direct discretization of the weak
formulation (2.4); the second is based on a reformulation of the constraint equation
into a least-square variational principle. Throughout this section, we assume that
not only the data function g ∈ Λ∗ but also the control function θ ∈ Θ are given
and that we wish to determine the corresponding sate φ ∈ Φ satisfying (2.9), or,
equivalently, (2.4). In subsequent sections, we will again consider the optimization or
control problem problem (2.6) or, equivalently, (2.10), for which the control θ ∈ Θ as
well as the state φ ∈ Φ are unknown.

For the constraint equation (2.4), we have the following well-known result; see
[13, 14, 17].

Proposition 3.1. Let the assumptions (2.5) hold. Then, given θ ∈ Θ and

g ∈ Λ∗, (2.4) has a unique solution φ ∈ Φ. Moreover, we have that

‖φ‖Φ ≤ C
(
‖θ‖Θ + ‖g‖Λ∗

)
.
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Thus, we see that (2.5) are sufficient to guarantee that the constraint equation are
solvable for a state φ ∈ Φ for any control θ ∈ Θ. Note that, in terms of operators, we
have that φ = B−1(g − B2θ). Note also that the operator A2 is invertible by virtue
of (2.3).

3.1. Galerkin finite element methods for the constraint equations. We
consider finite element discretizations of the constraint equation (2.4). To this end,
we choose (conforming) families of finite-dimensional subspaces Φh ⊂ Φ and Λh ⊂ Λ
and then restrict (2.4) to the subspaces, i.e., given θ ∈ Θ and g ∈ Λ∗, we seek φh ∈ Φh

that satisfies

b1(φ
h, ψh) + b2(θ, ψ

h) = 〈g, ψh〉Λ∗,Λ ∀ψh ∈ Λh . (3.1)

It is well known (see, e.g., [13, 14, 17]) that in order to guarantee that (3.1) is stably
solvable, it is not enough to require that (2.5) hold; one must additionally assume
that3





sup
ψh∈Λh,ψh 6=0

b1(φ
h, ψh)

‖ψh‖Λ
≥ kh1 ‖φh‖Φ ∀φh ∈ Φh

sup
φh∈Φh,φh 6=0

b1(φ
h, ψh)

‖φh‖V
> 0 ∀ψh ∈ Λh ,

(3.2)

where kh1 is a positive constant whose value is independent of h.

Proposition 3.2. Let the assumptions (2.5) and (3.2) hold. Then, for any θ ∈ Θ
and g ∈ Λ∗, (3.1) has a unique solution φh ∈ Φh. Moreover,

‖φh‖Φ ≤ C
(
‖g‖Λ∗ + ‖θ‖Θ

)
.

Furthermore, let φ ∈ Φ denote the unique solution of (2.4). Then,

‖φ− φh‖Φ ≤ C inf
µh∈Φh

‖φ− µh‖Φ .

Let {φj}Jj=1 and {λm}Mm=1 denote bases for Φh and Λh, respectively. Then, the
problem (3.1) is equivalent to the matrix problem

B1
~φ = ~g0 ,

where ~φ is the vector of coefficients for φh,

(B1)ij = b1(φi, ψj) = 〈B1φi, ψj〉Λ∗,Λ for i, j = 1, . . . , J,

and

(
~g0

)
i
= 〈g, ψi〉Λ∗,Λ − b2(θ, ψi) = 〈g −B2θ, ψi〉Λ∗,Λ for i = 1, . . . , J.

The assumption (3.2) guarantee that B1 is a square, invertible matrix.

3One of the main motivations for defining least-squares finite element methods for problems of
the type (2.4) is to develop discretization methods that do not require the imposition of the discrete
stability conditions (3.2).
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3.2. Least-squares finite element methods for the constraint equations.

The constraint equations are given in variational form in (2.4) and in equivalent
operator form in (2.9). The may also be defined through a least-squares minimization
problem. Let D : Λ → Λ∗ be a self-adjoint, strongly coercive operator, i.e., there exist
constants cd > 0 and kd > 0 such that

〈Dλ,ψ〉Λ∗,Λ ≤ cd‖λ‖Λ‖ψ‖Λ and 〈Dλ, λ〉Λ∗ ,Λ ≥ kd‖λ‖2
Λ ∀λ, ψ ∈ Λ . (3.3)

Note that then kd ≤ ‖D‖Λ→Λ∗ ≤ cd and 1/cd ≤ ‖D−1‖Λ∗→Λ ≤ 1/kd. In the sequel,
we will also use the induced bilinear form

d(λ, ψ) = 〈Dλ,ψ〉Λ∗,Λ ∀λ, ψ ∈ Λ . (3.4)

The following results are immediate.

Proposition 3.3. Assume that the operator D is symmetric and that (3.3) holds.

Then, the bilinear form d(·, ·) is symmetric and

d(λ, ψ) ≤ cd‖λ‖Λ‖ψ‖Λ ∀λ, ψ ∈ Λ and d(λ, λ) ≥ kd‖λ‖2
Λ ∀λ ∈ Λ . (3.5)

Let4,5

K(φ; θ, g) =
〈
B1φ+B2θ−g,D−1(B1φ+B2θ−g)

〉
Λ∗,Λ

∀φ ∈ Φ, θ ∈ Θ, g ∈ Λ∗. (3.6)

Given θ ∈ Θ and g ∈ Λ∗, consider the problem

min
φ∈Φ

K (φ; θ, g) . (3.7)

Clearly, this problem is equivalent to (2.4) and (2.9), i.e., solutions of (3.7) are solu-
tions of (2.4) or (2.9) and conversely. The Euler-Lagrange equation corresponding to
the problem (3.7) is given, in variational form, by

b̃1(φ, µ) = 〈g̃1, µ〉Φ∗,Φ − b̃2(θ, µ) ∀µ ∈ Φ , (3.8)

where

b̃1(φ, µ) =
〈
B1µ,D

−1B1φ
〉
Λ∗,Λ

=
〈
B∗

1D
−1B1φ, µ

〉
Φ∗,Φ

∀φ, µ ∈ Φ (3.9)

b̃2(θ, µ) =
〈
B1µ,D

−1B2θ
〉
Λ∗,Λ

=
〈
B∗

1D
−1B2θ, µ

〉
Φ∗,Φ

∀ θ ∈ Θ, µ ∈ Φ (3.10)

and

g̃1 = B∗
1D

−1g ∈ Φ∗ . (3.11)

4The reason for using D−1 and not simply D will become apparent in §5 when we discuss penalty
methods.

5Let R : Λ → Λ∗ denote the Reisz operator, i.e., we have that if υ = Rλ and χ = Rψ for λ,ψ ∈ Λ
and υ, χ ∈ Λ∗, then ‖λ‖Λ = ‖υ‖Λ∗ , ‖ψ‖Λ = ‖χ‖Λ∗ , and

(ψ, λ)Λ =< Rψ, λ >Λ∗,Λ=< χ,R−1υ >Λ∗,Λ= (υ, χ)Λ∗ .

Then, if one chooses D = R, the functional (3.6) reduces to K(φ; θ, g) = (B1φ+B2θ−g,B1φ+B2θ−
g)Λ∗ = ‖B1φ + B2θ − g‖2

Λ∗ . Note that, in general, (3.6) can also be written as an inner product,
i.e., K(φ; θ, g) = (B1φ+B2θ − g, RD−1(B1φ+B2θ − g))Λ∗ .
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As is shown in the following proposition, the bilinear forms b̃1(·, ·) and b̃2(·, ·) are
continuous and the former is strongly coercive; see [8, 9] for details.

Proposition 3.4. Assume that (2.5) and (3.3) hold. Then, the bilinear form

b̃1(·, ·) is symmetric and there exist positive constants c̃1, c̃2, and k̃1 such that






b̃1(φ, µ) ≤ c̃1‖φ‖Φ‖µ‖Φ ∀φ, µ ∈ Φ

b̃2(θ, µ) ≤ c̃2‖µ‖Φ‖θ‖Θ ∀ θ ∈ Θ, µ ∈ Φ

b̃1(φ, φ) ≥ k̃1‖φ‖2
Φ ∀φ ∈ Φ .

(3.12)

Moreover, ‖g̃1‖Φ∗ ≤ c1
kd

‖g‖Λ∗ and the problem (3.8), or equivalently (3.7), has a unique

solution.

As an immediate consequence of Proposition 3.4, we have that the least-squares
functional (3.6) is norm equivalent in the following sense.

Corollary 3.1. Assume that (3.3) and the conditions on the bilinear form

b1(·, ·) in (2.5) hold. Then,

k̃1‖φ‖2
Φ ≤ K(φ; 0, 0) = b̃1(φ, φ) =

〈
B1φ,D

−1B1φ
〉
Λ∗,Λ

≤ c̃1‖φ‖2
Φ ∀φ ∈ Φ . (3.13)

For all µ ∈ Φ, we can the rewrite (3.8) as
〈
B1µ,D

−1(B1φ+B2θ − g)
〉
Λ∗,Λ

= 0

or
〈
B∗

1D
−1(B1φ+B2θ − g), µ

〉
Φ∗,Φ

= 0 so that, in operator form, we have that (3.8)

is equivalent to

B̃1φ+ B̃2θ = g̃1 in Φ∗, (3.14)

where

B̃1 = B∗
1D

−1B1 : Φ → Φ∗, and B̃2 = B∗
1D

−1B2 : Θ → Φ∗. (3.15)

Note that (3.13) implies that the operator B̃1 = B∗
1D

−1B1 in (3.14) is symmetric and
coercive even when the operator B1 in (2.9) is indefinite and/or non-symmetric; these
observations, of course, follow from the facts that the bilinear form b1(·, ·) is weakly

coercive (see (2.5)) while the bilinear form b̃1(·, ·) is strongly coercive (see (3.12)). It
is also easy to see that (3.14) has the same solutions as (2.9).

Discretization of (3.8), or equivalently of (3.14), is accomplished in the standard
manner. One chooses a subspace Φh ⊂ Φ and then, given θ ∈ Θ and g̃ ∈ Φ∗, one
solves the problem

b̃1(φ
h, µh) = 〈g̃1, µh〉Φ∗,Φ − b̃2(θ, µ

h) ∀µh ∈ Φh . (3.16)

Then, (3.13) and the Lax-Milgram and Cea lemmas immediately imply the following
results.

Proposition 3.5. Assume that (2.5) and (3.3) hold. Then, the problem (3.16)
has a unique solution and, if φ denotes the solution of the problem (3.8), or equiva-

lently, of (3.14), there exists a constant C > 0 whose value is independent of h, φ,
and φh such that

‖φ− φh‖Φ ≤ C infeφh∈Φ
‖φ− φ̃h‖Φ .
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Again, if {φj}Jj=1 denotes a basis for Φh, then the problem (3.16) is equivalent to
the matrix problem

B̃1
~φ = ~̃g0 , (3.17)

where ~φ is the vector of coefficients for φh,

(B̃1)ij = b̃1(φi, φj) = 〈B̃1φi, φj〉Φ∗,Φ for i, j = 1, . . . , J,

and, for i = 1, . . . , J ,

(
~̃g0

)
i
= 〈g̃1, φi〉Φ∗,Φ−b̃2(θ, φi) = 〈g̃1 − B̃2θ, φi〉Φ∗,Φ = 〈B∗

1D
−1g−B∗

1D
−1B2θ , φi〉Φ∗,Φ.

The following result follows easily from Proposition 3.4 and Corollary 3.1.

Corollary 3.2. Assume that (3.3) and the conditions on the bilinear form

b1(·, ·) in (2.5) hold. Then, the matrix B̃1 is symmetric positive definite and spectrally

equivalent to the Gramm matrix G, (G)i,j = (φi, φj)Φ.

The main advantages of using a least-squares finite element method to solve the
constraint equation (2.9) are that the matrix B̃1 in (3.17) is symmetric and positive
definite even when the operator B1 in (2.9) is indefinite and/or non-symmetric, and
that the conforming finite element subspace Φh ⊂ Φ is not subject to any additional
discrete stability conditions such as (3.2).6 In incorporating the least-squares formal-
ism into the optimization setting of §2, we want to preserve these advantages.

4. Solution of the optimization problem via Lagrange multipliers. For
all {µ, ν, ψ} ∈ Φ × Θ × Λ, we introduce the Lagrangian functional

L({µ, ν}, {ψ}) = J ({µ, ν}) + b({µ, ν}, {ψ})− 〈g, ψ〉Λ∗,Λ

=
1

2
a1(µ− φ̂, µ− φ̂) +

1

2
a2(ν, ν) + b1(µ, ψ) + b2(ν, ψ) − 〈g, ψ〉Λ∗,Λ .

Then, (2.6) is equivalent to the unconstrained optimization problem of finding saddle
points {φ, θ, λ} ∈ Φ × Θ × Λ of the Lagrangian functional. These saddle points may
be found by solving the optimality system, i.e., the first-order necessary conditions





a1(φ, µ) + b1(µ, λ) = a1(φ̂, µ) ∀µ ∈ Φ

a2(θ, ν) + b2(ν, λ) = 0 ∀ ν ∈ Θ

b1(φ, ψ) + b2(θ, ψ) = 〈g, ψ〉Λ∗,Λ ∀ψ ∈ Λ .

(4.1)

The third equation in the optimality system (4.1) is simply the constraint equation.
The first equation is commonly referred to as the adjoint or co-state equation and
the Lagrange multiplier λ is referred as the adjoint or co-state variable. The second
equation in (4.1) is referred to as the optimality condition since it is merely a statement
that the gradient of the functional J (·, ·) defined in (2.2) vanishes at the optimum.

The following result is proved in [8].

Theorem 4.1. Let the assumptions (2.3) and (2.5) hold. Then, the optimality

system (4.1) has a unique solution (φ, θ, λ) ∈ Φ × Θ × Λ. Moreover

‖φ‖Φ + ‖θ‖Θ + ‖λ‖Λ ≤ C
(
‖g‖Λ∗ + ‖φ̂‖bΦ)

6The direct, conforming Galerkin finite element discretization considered in §3.1 requires that
that discrete stability conditions be satisfied.
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and (φ, θ) ∈ Φ × Θ is the unique solution of the optimal control problem (2.6).

Using the operators introduced in (2.7), the optimality system (4.1) takes the
form






A1φ + B∗
1λ = A1φ̂ in Φ∗

A2θ + B∗
2λ = 0 in Θ∗

B1φ + B2θ = g in Λ∗ .

(4.2)

In analogy to the discussion of §3 concerning the discretization of the constraint
equation, we consider Galerkin and least-squares finite element methods for finding
approximate solutions of the optimality system (4.1). We note that (4.2) is a type
of “nested” saddle-point problem that is quite different from that considered in, e.g.,
[15]

4.1. Galerkin finite element methods for the optimality system. We
choose (conforming) finite dimensional subspaces Φh ⊂ Φ, Θh ⊂ Θ, and Λh ⊂ Λ and
then restrict (4.1) to the subspaces, i.e., we seek (φh, θh, λh) ∈ Φh × Θh × Λh that
satisfies






a1(φ
h, µh) +b1(µ

h, λh) = a1(φ̂, µ
h) ∀µh ∈ Φh

a2(θ
h, νh) +b2(ν

h, λh) = 0 ∀ νh ∈ Θh

b1(φ
h, ψh) +b2(θ

h, ψh) = 〈g, ψh〉Λ∗,Λ ∀ψh ∈ Λh .

(4.3)

This is also the optimality system for the minimization of (2.2) over Φh×Θh subject to
the constraint b1(φ

h, ψh)+ b2(ψ
h, θh) = 〈g, ψh〉Λ∗,Λ for all ψh ∈ Λh. The assumptions

(2.3) and (2.5) are not sufficient to guarantee that the discrete optimality system (4.3)
is solvable. Again, we must assume that the discrete stability conditions (3.2) on the
bilinear form b1(·, ·) hold. In this case, we have the following result which is again
proved in [8].

Theorem 4.2. Let the assumptions (2.3), (2.5), and (3.2) hold. Then, the

discrete optimality system (4.3) has a unique solution (φh, θh, λh) ∈ Φh × Θh × Λh

and moreover

‖φh‖Φ + ‖θh‖Θ + ‖λh‖Λ ≤ C
(
‖g‖Λ∗ + ‖φ̂‖bΦ)

.

Furthermore, let (φ, θ, λ) ∈ Φ × Θ × Λ denote the unique solution of the optimality

system (4.1), or, equivalently, of the optimal control problem (2.6). Then,

‖φ− φh‖Φ + ‖θ − θh‖Θ + ‖λ− λh‖Λ

≤ C
(

inf
µh∈Φh

‖φ− µh‖Φ + inf
ξh∈Θh

‖θ − ξh‖Θ + inf
ψh∈Λh

‖λ− ψh‖Λ

)
.

In the usual way, the discrete optimality system (4.3) is equivalent to a matrix
problem. Let {φj}Jj=1, {θk}Kk=1, and {λm}Mm=1, where J = dim(Φh), K = dim(Θh),

and M = dim(Λh), denote chosen basis sets for Φh, Θh, and Λh, respectively. We
then define the matrices




(A1)ij = a1(φi, φj) for i, j = 1, . . . , J

(A2)kℓ = a2(θk, θℓ) for k, ℓ = 1, . . . ,K

(B1)mj = b1(φj , λm) for j = 1, . . . , J, m = 1, . . . ,M

(B2)km = b2(θk, λm) for k = 1, . . . ,K, m = 1, . . . ,M
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and the vectors
{

(~f )j = a1(φ̂, φj) for j = 1, . . . , J

(~g)m = 〈g, λm〉Λ∗,Λ for m = 1, . . . ,M .

We then have that the problem (4.3) is equivalent to the matrix problem




A1 0 BT1

0 A2 BT2

B1 B2 0







~φ

~θ

~λ


 =




~f

~0

~g


 , (4.4)

where ~φ, ~θ, and ~λ are the vector of coefficients for φh, θh, and λh, respectively.

Remark 4.1. The discrete optimality system (4.3) or its matrix equivalent (4.4),
have the typical saddle point structure. This remains true even if the state equations
involve a strongly coercive bilinear form b1(·, ·) so that the last two inequalities in
(2.5) can be replaced by b1(φ, φ) ≥ k1‖φ‖2

Φ for all φ ∈ Φ. If the assumptions (2.3) and
(2.5) hold, then the stability and convergence properties associated with solutions of
(4.3) or (4.4) hold merely by assuming that (3.2) holds for the bilinear form b1(·, ·) and
the spaces Φh and Λh. Thus, these properties depend solely on the ability to stably
solve, given any discrete control variable, the discrete state equation for a discrete
state variable. On the other hand, if (3.2) does not hold, then (4.3) or its matrix
equivalent (4.4) may not be solvable, i.e., the coefficient matrix in (4.4) may not be
invertible. In fact, the assumptions (3.2) imply that B1 is uniformly invertible. This,
and the facts (which follow from (2.3)) that the symmetric matrices A1 and A2 are
positive semi-definite and positive definite, respectively, is enough to guarantee that
the coefficient matrix in (4.4) is invertible. On the other hand, if (3.2) does not hold
so that the matrix B1 has a nontrivial null space, then, under the other assumptions
that have been made, one cannot guarantee the invertibility of the coefficient matrix
in (4.4). See [8] for details.

Remark 4.2. Solving the discrete optimality system (4.3), or equivalently, the
linear system (4.4), is often a formidable task. If the constraint equations (2.4) are a
system of partial differential equations, then the last (block) row of (4.4) represents a
Galerkin finite element discretization of that system. The discrete adjoint equations,
i.e., the first row in (4.4), are also a discretization of a system of partial differential

equations. Moreover, the dimension of the discrete adjoint vector ~λ is essentially the
same as that of discrete state vector ~φ. Thus, (4.4) is at least twice the size (we have

yet to account for the discrete control variables in ~θ) of the discrete system corre-
sponding to the discretization of the partial differential equation constraints. Thus,
if these equations are difficult to approximate, the discrete optimality system will be
even more difficult to deal with. For this reason, there have been many approaches
suggested for uncoupling the three components of discrete optimality systems such
as (4.3), or equivalently, (4.4). See, e.g., [20], for a discussion of several of these ap-
proaches. We note that these approaches rely on the invertibility of the matrices B1

and A2, properties that follow from (3.2) and (2.3), respectively.

4.2. Least-squares finite element methods for the optimality system.

Even if the state equation (2.4) (or (2.9)) involves a symmetric, positive definite op-
erator B1, i.e., even if the bilinear form b1(·, ·) is symmetric and strongly coercive, the
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discrete optimality system (4.3) (or (4.4)) obtained through a Galerkin discretization
is indefinite. For example, if B1 = −∆ with zero boundary conditions, then B1 is a
symmetric, positive definite matrix, but the coefficient matrix in (4.4) is indefinite.
In order to obtain a discrete optimality system that is symmetric and positive defi-
nite, we will apply a least-squares finite element discretization. In fact, these desirable
properties for the discrete system will remain in place even if the state system bilinear
form b1(·, ·) is only weakly coercive, i.e., even if the operator B1 is merely invertible
but not necessarily positive definite.

Given a system of partial differential equations, there are many ways to define
least-squares finite element methods for determining approximate solutions. Practi-
cality issues can be used to select the “best” methods from among the many choices
available. See, e.g., [5] for a discussion of what factors enter into the choice of a par-
ticular least-squares finite element method for a given problem. Here, we will consider
the most straightforward means for defining a least-squares finite element method.

4.2.1. A least-squares finite element method for a generalized optimal-

ity system. We start with the generalized form of the optimality system (4.2) written
in operator form, i.e.,





A1φ + B∗
1λ = f in Φ∗

A2θ + B∗
2λ = s in Θ∗

B1φ + B2θ = g in Λ∗ ,

(4.5)

where (f, s, g) ∈ Φ∗ ×Θ∗×Λ∗ is a general data triple and (φ, θ, λ) ∈ Φ×Θ×Λ is the
corresponding solution triple. In the same way that Theorem 4.1 is proved, we have
the following result.

Proposition 4.1. Let the assumptions (2.3) and (2.5) hold. Then, for any

(f, s, g) ∈ Φ∗ ×Θ∗×Λ∗, the generalized optimality system (4.5) has a unique solution

(φ, θ, λ) ∈ Φ × Θ × Λ. Moreover,

‖φ‖Φ + ‖θ‖Θ + ‖λ‖Λ ≤ C
(
‖f‖Φ∗ + ‖s‖Θ∗ + ‖g‖Λ∗

)
. (4.6)

A least-squares functional can be defined by summing the squares of the norms
of the residuals of the three equations in (4.5) to obtain

K(φ, θ, λ; f, s, g) = ‖A1φ+B∗
1λ−f‖2

Φ∗+‖A2θ+B
∗
2λ−s‖2

Θ∗+‖B1φ+B2θ−g‖2
Λ∗ . (4.7)

Clearly, the unique solution of (4.5) is also the solution of the problem

min
(φ,θ,λ)∈Φ×Θ×Λ

K(φ, θ, λ; f, s, g) . (4.8)

The first-order necessary conditions corresponding to (4.8) are easily found to be

B
(
(φ, θ, λ), (µ, ν, ψ)

)
= F

(
(µ, ν, ψ); (f, s, g)

)
∀ (µ, ν, ψ) ∈ Φ × Θ × Λ , (4.9)

where

B
(
(φ, θ, λ), (µ, ν, ψ)

)
= (A1µ+B∗

1ψ,A1φ+B∗
1λ)Φ∗

+(A2ν +B∗
2ψ,A2θ +B∗

2λ)Θ∗ + (B1µ+B2ν,B1φ+B2θ)Λ∗

∀ (φ, θ, λ), (µ, ν, ψ) ∈ Φ × Θ × Λ

(4.10)
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and

F
(
(µ, ν, ψ); (f, s, g)

)
= (A1µ+B∗

1ψ, f)Φ∗ + (A2ν +B∗
2ψ, s)Θ∗

+(B1µ+B2ν, g)Λ∗ ∀ (µ, ν, ψ) ∈ Φ × Θ × Λ .
(4.11)

The following result is proved in [8].

Lemma 4.1. Let the assumptions (2.3) and (2.5) hold. Then, the bilinear form

B(·, ·) is symmetric and continuous on (Φ × Θ × Λ) × (Φ × Θ × Λ) and the linear

functional F (·) is continuous on (Φ × Θ × Λ). Moreover, the bilinear form B(·, ·) is

coercive on (Φ × Θ × Λ), i.e.,

B
(
(φ, θ, λ), (φ, θ, λ)

)
≥ C(‖φ‖2

Φ + ‖θ‖2
Θ + ‖λ‖2

Λ) ∀ (φ, θ, λ) ∈ Φ × Θ × Λ . (4.12)

Remark 4.3. Since

K(φ, θ, λ; 0, 0, 0) = ‖A1φ+B∗
1λ‖2

Φ∗ + ‖A2θ +B∗
2λ‖2

Θ∗ + ‖B1φ+B2θ‖2
Λ∗

= B
(
(φ, θ, λ), (φ, θ, λ)

)
,

the coercivity and continuity of the bilinear form B(·, ·) are equivalent to stating
that the functional K(φ, θ, λ; 0, 0, 0) is norm-equivalent, i.e., that there exist constants
γ1 > 0 and γ2 > 0 such that

γ1(‖φ‖2
Φ + ‖θ‖2

Θ + ‖λ‖2
Λ) ≤ K(φ, θ, λ; 0, 0, 0) ≤ γ2(‖φ‖2

Φ + ‖θ‖2
Θ + ‖λ‖2

Λ) (4.13)

for all (φ, θ, λ) ∈ Φ × Θ × Λ.

The following results follow from Lemma 4.1 and the Lax-Milgram lemma.

Proposition 4.2. Let the assumptions (2.3) and (2.5) hold. Then, for any

(f, s, g) ∈ Φ∗×Θ∗×Λ∗, the problem (4.9) has a unique solution (φ, θ, λ) ∈ Φ×Θ×Λ.

Moreover, this solution coincides with the solution of the problems (4.5) and (4.8) and

satisfies the estimate (4.6).

We define a finite element discretization of (4.5) or, equivalently, of (4.9), by
choosing conforming finite element subspaces Φh ⊂ Φ, Θh ⊂ Θ, and Λh ⊂ Λ and then
requiring that (φh, θh, λh) ∈ Φh × Θh × Λh satisfy

B
(
(φh, θh, λh), (µh, νh, ψh)

)
= F

(
(µh, νh, ψh); (f, s, g)

)

∀ (µh, νh, ψh) ∈ Φh × Θh × Λh .
(4.14)

Note that (φh, θh, λh) can also be characterized as the solution of the problem

min
(φh,θh,λh)∈Φh×Θh×Λh

K(φh, θh, λh; f, s, g) .

The following result follows from Lemma 4.1 and standard finite element analyses.

Proposition 4.3. Let the assumptions (2.3) and (2.5) hold. Then, for any

(f, h, g) ∈ Φ∗ × Θ∗ × Λ∗, the problem (4.14) has a unique solution (φh, θh, λh) ∈
Φh × Θh × Λh. Moreover, we have the optimal error estimate

‖φ− φh‖Φ + ‖θ − θh‖Θ + ‖λ− λh‖Λ

≤ C
(

infeφh∈Φh

‖φ− φ̃h‖Φ + infeθh∈Θh

‖θ − θ̃h‖Θ + infeλh∈Λh

‖λ− λ̃h‖Λ

)
,

(4.15)

where (φ, θ, λ) ∈ Φ×Θ×Λ is the unique solution of the problem (4.9), or equivalently,

of the problems (4.5) or (4.8).
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4.2.2. A least-squares finite element method for the optimality system.

The results of §4.2.1 easily specialize to the optimality system (4.2). Indeed, letting

f = A1φ̂ ∈ Φ̂∗ ⊂ Φ∗ and s = 0, we have that (4.5) reduces to (4.2). We now have the
least-squares functional,

K(φ, θ, λ; φ̂, g) = ‖A1φ+B∗
1λ−A1φ̂‖2

Φ∗ +‖A2θ+B
∗
2λ‖2

Θ∗ +‖B1φ+B2θ−g‖2
Λ∗ , (4.16)

the minimization problem

min
(φ,θ,λ)∈Φ×Θ×Λ

K(φ, θ, λ; φ̂, g) , (4.17)

the first-order necessary conditions

B
(
(φ, θ, λ), (µ, ν, ψ)

)
= F

(
(µ, ν, ψ); (A1φ̂, 0, g)

)
∀ (µ, ν, ψ) ∈ Φ × Θ × Λ , (4.18)

where B(·, ·) and F (·) are defined as in (4.10) and (4.11), respectively.

We define a finite element discretization of (4.18) by again choosing conforming
finite element subspaces Φh ⊂ Φ, Θh ⊂ Θ, and Λh ⊂ Λ and then requiring that
(φh, θh, λh) ∈ Φh × Θh × Λh satisfy

B
(
(φh, θh, λh), (µh, νh, ψh)

)
= F

(
(µh, νh, ψh); (A1φ̂, 0, g)

)

∀ (µh, νh, ψh) ∈ Φh × Θh × Λh .
(4.19)

Then, Proposition 4.3 takes the following form.

Theorem 4.3. Let the assumptions (2.3) and (2.5) hold. Then, for any (φ̂, g) ∈
Φ̂∗ × Λ∗, the problem (4.19) has a unique solution (φh, θh, λh) ∈ Φh × Θh × Λh.
Moreover, we have the optimal error estimate: there exists a constant C > 0 whose

value is independent of h, such that

‖φ− φh‖Φ + ‖θ − θh‖Θ + ‖λ− λh‖Λ

≤ C
(

infeφh∈Φh

‖φ− φ̃h‖Φ + infeθh∈Θh

‖θ − θ̃h‖Θ + infeλh∈Λh

‖λ− λ̃h‖Λ

)
,

(4.20)

where (φ, θ, λ) ∈ Φ×Θ×Λ is the unique solution of the problem (4.18) or, equivalently,

of the problems (4.2) or (4.1). Note also that (φ, θ) ∈ Φ× Θ is the unique solution of

the problem (2.6).

Remark 4.4. The discrete problem (4.19) is equivalent to the linear algebraic
system




K1 CT1 CT2

C1 K2 CT3

C2 C3 K3







~φ

~θ

~λ


 =




~f

~h

~g


 . (4.21)

Indeed, if one chooses bases {µhj (x)}Jj=1, {νhk (x)}Kk=1, and {ψhℓ (x)}Lℓ=1 for Φh, Θh,

and Λh, respectively, we then have φh =
∑J
j=1 φjµ

h
j , θ

h =
∑K
k=1 θkµ

h
k , and λh =
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∑L
ℓ=1 λℓψ

h
ℓ for some sets of coefficients {φj}Jj=1, {θk}Kk=1, and {λℓ}Lℓ=1 that are deter-

mined by solving (4.21). In (4.21), we have that ~φ = (φ1, . . . , φJ)T , ~θ = (θ1, . . . , θK)T ,
~λ = (λ1, . . . , λL)T ,

(
K1

)
ij

= (A1µi, A1µj)Φ∗ + (B1µi, B1µj)Λ∗ for i, j = 1, . . . , J,

(
K2

)
ik

= (A2νi, A1νk)Θ∗ + (B2νi, B2νk)Λ∗ for i, k = 1, . . . ,K,

(
K3

)
iℓ

= (B∗
1ψi, B

∗
1ψℓ)Φ∗ + (B2ψi, B2ψℓ)Θ∗ for i, ℓ = 1, . . . , L,

(
C1

)
ij

= (B2νi, B1µj)Λ∗ for i = 1, . . . ,K, j = 1, . . . , J,

(
C2

)
ij

= (B∗
1ψi, A1νj)Φ∗ for i = 1, . . . , L, j = 1, . . . , J,

(
C3

)
ik

= (B∗
2ψi, A2νk)Θ∗ for i = 1, . . . , L, k = 1, . . . ,K,

(
~f
)
i
= (A1µi, A1φ̂)Φ∗ + (B1µi, g)Λ∗ for i = 1, . . . , J,

(
~h
)
i
= (B2νi, g)Λ∗ for i = 1, . . . ,K,

(
~g
)
i
= (B∗

1ψi, A1φ̂)Φ∗ for i = 1, . . . , L.

Remark 4.5. It easily follows from Lemma 4.1 that the coefficient matrix of
(4.21) is symmetric and positive definite. This should be compared to the linear
system (4.4) that results from a Galerkin finite element discretization of the optimality
system (4.1) for which the coefficient matrix is symmetric and indefinite.

Remark 4.6. The stability of the discrete problem (4.19), the convergence and
optimal accuracy of the approximate solution (φh, θh, λh), and the symmetry and
positive definiteness of the discrete system (4.21) obtained by the least-squares finite
element method follow from the assumptions (2.3) and (2.5) that guarantee the well
posedness of the infinite-dimensional optimization problem (2.6) and its corresponding
optimality system (4.1). It is important to note that all of these desirable properties
of the least-squares finite element method do not require that the bilinear form b1(·, ·)
and the finite element spaces Φh and Λh satisfy the discrete inf-sup conditions (3.2)
that are necessary for the well posedness of the Galerkin finite element discretization
(4.3) of the optimality system (4.1). In fact, this is why least-squares finite element
methods are often an attractive alternative to Galerkin discretizations; see, e.g., [5].

Remark 4.7. The observations made in Remark 4.2 about the possible need to
uncouple the equations in (4.4) hold as well for the linear system (4.21). Uncoupling
approaches for (4.4) rely on the invertibility of the matrices B1 and A2; the first of
these is, in general, non-symmetric and indefinite, even when the necessary discrete
inf-sup conditions in (3.2) are satisfied. For (4.21), uncoupling strategies would rely
on the invertibility of the matrices K1, K2, and K3; all three of these matrices are
symmetric and positive definite even when (3.2) is not satisfied. An example of a
simple uncoupling strategy is to apply a block-Gauss-Seidel method to (4.21), which
would proceed as follows.

Start with initial guesses ~φ
(0)

and ~θ
(0)

for the discretized state and
control; then, for k = 1, 2, . . ., successively solve the linear systems
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K3
~λ

(k+1)
= ~g − C2

~φ
(k) − C3

~θ
(k)

K1
~φ

(k+1)
= ~f − CT1

~θ
(k) − CT2

~λ
(k+1)

K2
~θ

(k+1)
= ~h− C1

~φ
(k+1) − CT3

~λ
(k+1)

(4.22)

until satisfactory convergence is achieved, e.g., until some norm of
the difference between successive iterates is less than some prescribed
tolerance.

Since the coefficient matrix in (4.21) is symmetric and positive definite, this iteration
will converge. Moreover, all three coefficient matrices K3, K1, and K2 of the linear
systems in (4.22) are themselves symmetric and positive definite so that very efficient
solution methodologies, including parallel ones, can be applied for their solution. We
also note that, in order to obtain faster convergence rates, better uncoupling iterative
methods, e.g., over-relaxation schemes or a conjugate gradient method, can be applied
instead of the block Gauss-Seidel iteration of (4.22).

Remark 4.8. The discrete problem (4.19) (or equivalently, (4.21)) resulting from
the least-squares method for the optimality system (4.2) can be viewed as a Galerkin
discretization of the system

(A∗
1A1 +B∗

1B1)φ+ (B∗
1B2)θ + (A∗

1B
∗
1 )λ = (A∗

1A1)φ̂ + (B∗
1)g in Φ

(A∗
2A2 +B∗

2B2)θ + (A∗
2B

∗
2 )λ+ (B∗

2B1)φ = (B∗
2 )g in Θ

(B1B
∗
1 +B2B

∗
2)λ+ (B1A1)φ + (B2A2)θ = (B1A1)φ̂ in Λ .

(4.23)

The first equation of this system is the sum of A∗
1 applied to the first equation of the

optimality system (4.2) and B∗
1 applied to the third equation of that system. The

other equations of (4.23) are related to the equations of (4.2) in a similar manner.
The system (4.23) shows that the discrete system (4.21) essentially involves the dis-
cretization of “squares” of operators, e.g., A∗

1A1, B
∗
1B1, etc. This observation has a

profound effect in how one chooses the form of the constraint equation in (2.6), i.e.,
the form of (2.9). In particular, practical considerations lead to the need to recast a
given partial differential equation system into an equivalent first-order form; see, e.g.,
[5, 8], for details.

5. Methods based on direct penalization by the least-squares func-

tional. A straightforward way to use least-squares notions in the optimization setting
of §2 is to enforce the constraint equations (2.4), or equivalently (2.9), by penalizing
the functional (2.2), or its equivalent form (2.8), by the least-squares functional (3.6);
see [7, 22] for examples of the use of this approach in concrete settings. Thus, instead
of solving the constrained problem (2.6) or its equivalent form (2.10), we solve the
unconstrained problem

min
(φ,θ)∈Φ×Θ

Jǫ(φ, θ) , (5.1)

where, for given φ̂ ∈ Φ̂ and g ∈ Λ∗,

Jǫ(φ, θ) = J (φ, θ) +
1

2ǫ
K(φ; θ, g) ∀φ ∈ Φ, θ ∈ Θ (5.2)
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so that

Jǫ(φ, θ) =
1

2

〈
A1(φ− φ̂), (φ− φ̂)

〉bΦ∗,bΦ +
1

2
〈A2θ, θ〉Θ∗,Θ

+
1

2ǫ

〈
B1φ+B2θ − g,D−1(B1φ+B2θ − g)

〉
Λ∗,Λ

=
1

2
a1(φ− φ̂, φ− φ̂) +

1

2
a2(θ, θ)

+
1

2ǫ

(
b̃1(φ, φ) + 2b̃2(θ, φ) + c(θ, θ)

)

− 1

2ǫ

(
2〈g̃1, φ〉Φ∗,Φ + 2〈g̃2, θ〉Θ∗,Θ − 〈g,D−1g〉Λ∗,Λ

)
.

(5.3)

where

c(θ, ν) =
〈
B2ν,D

−1B2θ
〉
Λ∗,Λ

=
〈
B∗

2D
−1B2θ, ν

〉
Θ∗,Θ

∀ θ, ν ∈ Θ (5.4)

and

g̃2 = B∗
2D

−1g ∈ Θ∗. (5.5)

The following results about the bilinear form c(·, ·) and the function g̃2 are immediate.

Proposition 5.1. Assume that the operator D is symmetric and that (3.3) and

the condition on the bilinear form b2(·, ·) in (2.5) hold. Then, the bilinear form c(·, ·)
is symmetric and, for some constant Cc > 0,

c(θ, ν) ≤ Cc‖θ‖Θ‖ν‖Θ ∀ θ, ν ∈ Θ and c(θ, θ) ≥ 0 ∀ θ ∈ Θ . (5.6)

Moreover, ‖g̃2‖Θ∗ ≤ c2
kd

‖g‖Λ∗.

Associated with the bilinear form c(·, ·) we have the operator C = B∗
2D

−1B2 :
Θ → Θ∗, i.e., c(θ, ν) = 〈Cθ, ν〉Θ∗,Θ for all θ, ν ∈ Θ.

The Euler-Lagrange equations corresponding to the minimization problem (5.1)
are given by





a1(φǫ, µ) +
1

ǫ
b̃1(φ, µ) +

1

ǫ
b̃2(θ, µ) = a1(φ̂, µ) +

1

ǫ
〈g̃1, µ〉Φ∗,Φ ∀µ ∈ Φ

a2(θ, ν) +
1

ǫ
c̃(θ, ν) +

1

ǫ
b̃2(ν, φǫ) =

1

ǫ
〈g̃2, ν〉Θ∗,Θ ∀ν ∈ Θ

(5.7)

or equivalently





〈A1φǫ, µ〉bΦ∗,bΦ +
1

ǫ

〈
B1µ,D

−1(B1φǫ +B2θǫ)
〉
Λ∗,Λ

= 〈A1φ̂, µ〉bΦ∗,bΦ +
1

ǫ

〈
B1µ,D

−1g
〉
Λ∗,Λ

∀µ ∈ Φ

〈A2θǫ, ν〉Θ∗,Θ +
1

ǫ

〈
B2ν,D

−1(B1φǫ +B2θǫ)
〉
Λ∗,Λ

=
1

ǫ

〈
B2ν,D

−1g
〉
Λ∗,Λ

∀ ν ∈ Θ .

(5.8)

For φǫ ∈ Φ and θǫ ∈ Θ, (3.3) guarantees that

ǫDλǫ = B1φǫ +B2θǫ − g in Λ∗ (5.9)
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has a unique solutions λǫ ∈ Λ. Then, one easily sees that (5.7) or (5.8) can be
expressed in the equivalent form





a1(φǫ, µ) + b1(µ, λǫ) = a1(φ̂, µ) ∀µ ∈ Φ

a2(θǫ, ν) + b2(ν, λǫ) = 0 ∀ν ∈ Θ

b1(φǫ, ψ) + b2(θǫ, ψ) − ǫd(λǫ, ψ) = 〈g, ψ〉Λ∗,Λ ∀ψ ∈ Λ .

(5.10)

One recognizes the system (5.10) to be a regular perturbation of the system (4.1)
that is the Euler-Lagrange equations for the minimization problem (2.6) or its equiv-
alent form (2.10).7 The following result is proved in, e.g., [8].

Concerning the penalized control problem (2.6), we have the following results.

Theorem 5.1. Let the assumptions (2.3), (2.5), and (3.3) hold. Then, for each

0 < ǫ ≤ 1, (5.10) or, equivalently, (5.8) and (5.9), or, equivalently, the penalized

optimal control problem (5.1), has a unique solution (φǫ, θǫ, λǫ) ∈ Φ × Θ × Λ. Let

(φ, θ, λ) ∈ Φ × Θ × Λ denote the unique solution of the optimality system (4.2) or,

equivalently, of the optimal control problem (2.6). Then, for some constant C > 0
whose value is independent of ǫ,

‖φ− φǫ‖Φ + ‖θ − θǫ‖Θ + ‖λ− λǫ‖Ψ ≤ Cǫ
(
‖g‖Ψ∗ + ‖φ̂‖bΦ)

. (5.14)

Proof. Define the bilinear forms

a({φ, θ}, {µ, ν}) = a1(φ, µ) + a2(θ, ν) ∀ {φ, θ}, {µ, ν} ∈ Φ × Θ

and

b({φ, θ}, {ψ}) = b1(φ, ψ) + b2(θ, ψ) ∀ {φ, θ} ∈ Φ × Θ, ψ ∈ Λ .

Then, (4.2) and (5.10) can be respectively written as

{
a({φ, θ}, {µ, ν}) + b({µ, ν}, {λ}) = a1(φ̂, µ) ∀ {µ, ν} ∈ Φ × Θ

b({φ, θ}, {ψ}) = 〈g, ψ〉Λ∗,Λ ∀ψ ∈ Λ
(5.15)

7The systems (5.7), (5.8), and (5.10) can be respectively be expressed in equivalent operator form
as 8>><>>: �

A1 +
1

ǫ
eB1

�
φǫ +

1

ǫ
eB2θǫ = A1

bφ+
1

ǫ
eg1 in Φ∗�

A2 +
1

ǫ
C

�
θǫ +

1

ǫ
eB∗
2φǫ =

1

ǫ
eg2 in Θ∗ ,

(5.11)8>><>>: �
A1 +

1

ǫ
B∗

1D
−1B1

�
φǫ +

1

ǫ
B∗

1D
−1B2θǫ = A1

bφ+
1

ǫ
B∗

1D
−1g in Φ∗�

A2 +
1

ǫ
B∗

2D
−1B2

�
θǫ +

1

ǫ
B∗

2D
−1B1φǫ =

1

ǫ
B∗

2D
−1g in Θ∗ ,

(5.12)

and 8><>: A1φǫ + B∗
1λǫ = A1

bφ in Φ∗

A2θǫ + B∗
2λǫ = 0 in Θ∗

B1φǫ + B2θǫ − ǫDλǫ = g in Λ∗.

(5.13)

Incidentally, we can now see why we use D−1 in (3.6), i.e., so that in (5.13) D and not D−1 appears.
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and
{
a({φǫ, θǫ}, {µ, ν}) + b({µ, ν}, {λǫ}) = a1(φ̂, µ) ∀ {µ, ν} ∈ Φ × Θ

b({φǫ, θǫ}, {ψ}) − ǫd(λǫ, ψ) = 〈g, ψ〉Λ∗,Λ ∀ψ ∈ Λ .
(5.16)

Let the subspace Z be defined by

Z =
{
{φ, θ} ∈ Φ × Θ | b1(φ, ψ) + b2(θ, ψ) = 0 ∀ψ ∈ Λ

}
.

In operator notation, the elements {φ, θ} ∈ Z ⊂ Φ × Θ satisfy B1φ+ B2θ = 0. Note
that as a result of (2.5), given any θ ∈ Θ, there exists a φθ ∈ Φ satisfying

b1(φθ, ψ) = −b2(θ, ψ) ∀ψ ∈ Λ and ‖φθ‖Φ ≤ c2
k1

‖θ‖Θ (5.17)

so that Z can be completely characterized by (φθ, θ) ∈ Φ × Θ where, for arbitrary
θ ∈ Θ, φθ ∈ Φ satisfies (5.17).

In [8], it is shown that if (2.3) and (2.5) hold, then the subspace Z is closed and




a({φ, θ}, {µ, ν}) ≤ Ca‖{φ, θ}‖Φ×Θ‖{µ, ν}‖Φ×Θ ∀ {φ, θ}, {µ, ν} ∈ Φ × Θ

b({φ, θ}, {λ}) ≤ Cb‖{φ, θ}‖Φ×Θ‖{λ}‖Λ ∀ {φ, θ} ∈ Φ × Θ, {λ} ∈ Λ

a({φ, θ}, {φ, θ}) ≥ 0 ∀ {φ, θ} ∈ Φ × Θ

a({φ, θ}, {φ, θ}) ≥ Ka‖{φ, θ}‖2
Φ×Θ ∀ {φ, θ} ∈ Z

sup
{µ,ν}∈Φ×Θ,{µ,ν}6={0,0}

b({µ, ν}, {λ})
‖{µ, ν}‖Φ×Θ

≥ Kb‖{λ}‖Λ ∀ {λ} ∈ Λ ,

(5.18)

where Ca = max{C1, C2}, Cb = max{c1, c2}, Ka = 1
2 min{1, k

2

1

c2
2

}, and Kb = k1.

The results of the theorem then easily follow from well-known results about the
systems (5.15) and (5.16) whenever (5.18) holds; see, e.g., [8, 10, 13, 14, 17, 19].

Now, let us return to the system (5.8) that can be written in more compact form
as

Aǫ({φǫ, θǫ}, {µ, ν}) = Gǫ({µ, ν}) ∀ {µ, ν} ∈ Φ × Θ (5.19)

where, for all {φǫ, θǫ}, {µ, ν} ∈ Φ × Θ,

Aǫ({φ, θ}, {µ, ν}) = a1(φ, µ)+a2(θ, ν)+
1

ǫ

〈
B1µ+B2ν,D

−1(B1φ+B2θ)
〉
Λ∗,Λ

(5.20)

and

Gǫ({µ, ν}) = a1(φ̂, µ) +
1

ǫ

〈
B1µ+B2ν,D

−1g
〉
Λ∗,Λ

. (5.21)

Concerning the bilinear form Aǫ(·, ·) and the linear functional Gǫ(·), we have the
following results.8

8The results of Lemma 5.1 provide and alternate means for proving, for any 0 < ǫ ≤ 1, that
the system (5.8) has a unique solution. Indeed, those results assert that the symmetric bilinear
form Aǫ(·, ·) is continuous and coercive and that the linear functional Gǫ(·) is continuous so that the
existence and uniqueness of the solution of (5.19), or equivalently, of (5.8) follows by the Lax-Milgram
lemma. However, due to the ǫ−1 in the right-hand side of (5.22), the results of Lemma 5.1 cannot
be used to derive the estimate (5.14) for the solution of (5.8); this is done indirectly by using the
equivalence of (5.8) and (5.9) with (5.10).
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Lemma 5.1. Let the bilinear form Aǫ(·, ·) be defined by (5.20) and let the linear

functional Gǫ(·) be defined by (5.21). Let the assumptions (2.3), (2.5), and (3.3) hold

and let 0 < ǫ ≤ 1. Then, there exist positive constants ca1, ca2, cg1, cg2, and ka whose

values do not depend on ǫ such that for all {φ, θ}, {µ, ν} ∈ Φ × Θ,

Aǫ({φ, θ}, {µ, ν}) ≤
(
ca1 +

ca2
ǫ

)
‖{φ, θ}‖Φ×Θ‖{µ, ν}‖Φ×Θ (5.22)

and

Aǫ({φ, θ}, {φ, θ}) ≥ ka‖{φ, θ}‖2
Φ×Θ . (5.23)

Furthermore,

Gǫ({µ, ν}) ≤
(
cg1‖φ̂‖bΦ +

cg2
ǫ
‖g‖Λ∗

)
‖{µ, ν}‖Φ×Θ . (5.24)

Proof. Using (5.18), we have that

Aǫ({φ, θ}, {µ, ν})

≤ Ca‖{φ, θ}‖Φ×Θ‖{µ, ν}‖Φ×Θ +
1

ǫ
‖D−1‖Λ∗→Λ‖B1φ+B2θ‖Λ∗‖B1µ+B2ν‖Λ∗

≤
(
Ca +

C2
b

ǫkd

)
‖{φ, θ}‖Φ×Θ‖{µ, ν}‖Φ×Θ

so that (5.22) holds with ca1 = Ca = max{C1, C2} and ca2 =
C2

b

kd

= (max{c1,c2})
2

kd

.

The proof of (5.24) proceeds in a similar manner; one obtains that cg1 = C1 and
cg2 = 1

kd

max{c1, c2}.
Next, suppose {φ, θ} ∈ Z so that B1φ+B2θ = 0 and, by (5.17), ‖φ‖Λ ≤ c2

k1
‖θ‖Θ.

Then,

Aǫ({φ, θ}, {φ, θ}) = a1(φ, φ) + a2(θ, θ) ≥ a2(θ, θ) ≥ K2‖θ‖2
Θ

≥ K2

2

(
‖θ‖2

Θ +
k2
1

c22
‖φ‖2

Φ

)
≥ K2

2
min

{
1,
k2
1

c22

}
‖{φ, θ}‖2 ∀ {φ, θ} ∈ Z .

(5.25)

Now, it is well known (see, e.g., [17]) that if (5.18) holds, then

sup
{ψ}∈Λ,{ψ}6={0}

b({φ, θ}, {ψ})
‖{ψ}‖Λ

≥ k1‖{φ, θ}‖Φ×Θ ∀ {φ, θ} ∈ Z⊥ .

Then, since for all {φ, θ} ∈ Φ × Θ,

b({φ, θ}, {ψ}) = b1(φ, ψ) + b2(θ, ψ) = 〈B1φ+B2θ, ψ〉Λ∗,Λ ,

we have that

‖B1φ+B2θ‖Λ∗ ≥ k1‖{φ, θ}‖Φ×Θ ∀ {φ, θ} ∈ Z⊥

so that, using (5.18) and 0 < ǫ ≤ 1,

Aǫ({φ, θ}, {φ, θ})

= a1(φ, φ) + a2(θ, θ) +
1

ǫ

〈
B1φ+B2θ,D

−1(B1φ+B2θ)
〉
Λ∗,Λ

≥
〈
B1φ+B2θ,D

−1(B1φ+B2θ)
〉
Λ∗,Λ

≥ kd
c2d

‖B1φ+B2θ‖2
Λ∗

≥ kdk
2
1

c2d
‖{φ, θ}‖2 ∀ {φ, θ} ∈ Z⊥.

(5.26)
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Since Z ⊂ Φ×Θ is closed, we obtain (5.23) with ka = min
{
K2

2 min{1, k
2

1

c2
2

}, kdk
2

1

c2
d

}

by combining (5.25) and (5.26).
As a result of the assumptions in (3.3) for the operator D, we see that (5.8)

and (5.10) are completely equivalent. One may then proceed to discretize either of
these systems. It is important to note that the two resulting discrete systems are not

equivalent and can, in fact, have significantly different properties.

5.1. Discretization of the regularized optimality system. We consider
obtaining a discretization of (5.8) by first discretizing (5.10) and then eliminating
the Lagrange multiplier. Discretization can be effected by choosing conforming finite
element spaces Φh ⊂ Φ, Θh ⊂ Θ, and Λh ⊂ Λ and then restricting (5.10) to the
subspaces to obtain

a1(φ
h
ǫ , µ

h) + b1(µ
h, λhǫ ) = a1(φ̂, µ

h) ∀µh ∈ Φh

a2(θ
h
ǫ , ν

h) + b2(ν
h, λhǫ ) = 0 ∀νh ∈ Θh

b1(φ
h
ǫ , ψ

h) + b2(θ
h
ǫ , ψ

h) − ǫd(λhǫ , ψ
h) = 〈g, ψh〉Λ∗,Λ ∀ψh ∈ Λh.

(5.27)

In the usual way, the discrete system (5.27) is equivalent to a matrix problem. In

addition to the matrices A1, A2, B1, and B2 and the vectors ~f and ~g defined in §4.1,
we define the matrix D by

(D)mn = d(λm, λn) for m,n = 1, . . . ,M .

Then, the discrete regularized problem (5.27) is equivalent to the linear system




A1 0 BT1

0 A2 BT2

B1 B2 −ǫD







~φǫ

~θǫ

~λǫ


 =




~f

~0

~g


 . (5.28)

It is now easy to see how one can eliminate ~λǫ from (5.28), or equivalently, λhǫ
from (5.27). Indeed, (3.5) implies that D is symmetric and positive definite, and
therefore invertible. Then, one easily deduces from (5.28) that





(
A1 +

1

ǫ
B
T
1 D

−1
B1

)
~φǫ +

1

ǫ
B
T
1 D

−1
B2
~θǫ = ~f +

1

ǫ
B
T
1 D

−1~g

(
A2 +

1

ǫ
B
T
2 D

−1
B2

)
~θǫ +

1

ǫ
B
T
2 D

−1
B1
~φǫ =

1

ǫ
B
T
2 D

−1~g .

(5.29)

Note that (5.29) only involves the approximations φhǫ ∈ Φh and θhǫ ∈ Θh of the state
variable φ ∈ Φ and the control variable θ ∈ Θ, respectively, and does not involve
the approximation λhǫ ∈ Ψh of the adjoint variable λ ∈ Ψ. Once (5.29) is used to

determine ~φǫ and ~θǫ, ~λǫ may be determined from the last equation in (5.28).
Now, consider what is required to guarantee that the coefficient matrix of the

linear system (5.28) or, equivalently, of (5.29) is stably invertible as either or both
the grid size h and the penalty parameter ǫ tend to zero. It is not difficult to show,
based on the assumptions (2.3), (2.5), and (3.5) that we have made about the bilinear
forms appearing in (5.27), that a necessary and sufficient condition for the stable
invertibility of (5.28) or (5.29) is that the matrix B1 be stably invertible. We have
already seen in §3.1 that this guarantee can be made if and only if the subspaces Φh
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and Λh satisfy (3.2), i.e., the same requirement needed to insure that the Galerkin
discretization (4.3) of the unperturbed optimality system is stably invertible; see §4.1.
In other words, despite the fact that

(5.10) is equivalent to enforcing the constraint (2.9) by penalizing the
functional (2.8) by the well-posed least-squares functional (3.6)

and despite the fact that
given a control θ, stable approximations of the state φ may be ob-
tained by minimizing the least-squares functional (3.6) without hav-
ing to assume that the discrete spaces Φh and Λh satisfy (3.2),

the stable solution of (5.27), or equivalently (5.28) or (5.29), requires that (3.2) is
satisfied. Thus, one of the main advantages of using least-squares finite element
methods, i.e., being able to circumvent (3.2), is lost.9

The following error estimate is easily derived using well-known techniques.

Theorem 5.2. Let (2.3), (2.5), (3.3), and (3.2) hold. Then, (5.27), or equiva-

lently (5.29), has a unique solution φhǫ ∈ Φh and θhǫ ∈ Θh. Moreover, if φ ∈ Φ and

θ ∈ Θ denotes the unique solution of the optimization problem (2.6) or equivalently,

of (5.8), or equivalently, of (5.10), then there exist a constant C > 0 whose value is

independent of ǫ and h such that

‖φ− φhǫ ‖Φ + ‖θ − θhǫ ‖Θ + ‖λ− λhǫ ‖Λ ≤ Cǫ
(
‖g‖Λ∗ + ‖φ̂‖bΦ)

+C
(

infeφh∈Φh

‖φ− φ̃h‖Φ + infeθh∈Θh

‖θ − θ̃h‖Θ + infeλh∈Λh

‖λ− λ̃h‖Λ

)
.

(5.30)

Proof. Standard finite element analyses [10, 13, 14, 17] yield, for the pair of
systems (5.10) and (5.27), that

‖φǫ − φhǫ ‖Φ + ‖θǫ − θhǫ ‖Θ + ‖λǫ − λhǫ ‖Λ ≤ C
(
‖φǫ − φ̃h‖Φ + ‖θǫ − θ̃h‖Θ + ‖λǫ − λ̃h‖Λ

)

for all φ̃h ∈ Φh , θ̃h ∈ Θh, and λ̃h ∈ Λh. Then, (5.14) and the triangle inequality
yields (5.30).

Our discussion serves to point out an important observation about penalty meth-
ods, namely that they are not stabilization methods, i.e., penalty methods do not
circumvent the discrete conditions (3.2).10 Penalty methods are properly viewed as
being methods for facilitating the solution of (4.1) or (4.4). Since here we are pri-
marily interested in retaining the advantage that least-squares finite element methods
provide for circumventing conditions such as (3.2), we do not consider discretizations
of (5.10) as the best way to incorporate least-square notions into the optimization
problems we are considering.

It is usually the case that the approximation-theoretic terms on the right-hand
side of (5.30) satisfy inequalities of the type

infeφh∈Φh

‖φ− φ̃h‖Φ ≤ Chα, infeλh∈Λh

‖λ− λ̃h‖Λ ≤ Chα, and infeθh∈Θh

‖θ− θ̃h‖Θ ≤ Chβ ,

(5.31)

9Although discretizations of (4.2) and (5.10) both require the imposition of (3.2) on the finite
element spaces Φh and Λh, using the system (5.28) still has some advantages. Foremost among

these is that one can reduce the number of variables by eliminating ~λǫ from (5.28) to obtain (5.29).
Furthermore, as long as (3.2) is satisfied, the system (5.29) is symmetric and positive definite while
(5.28) is symmetric but indefinite as is, of course, (4.4).

10The fact that discretizations of (4.2) and (5.10) both require the imposition of (3.2) should not
be surprising, given that the latter is a regular perturbation of the former.
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where α > 0 and β > 0 depend on the degree of the polynomials used for the spaces
Φh and Θh and the regularity of the solution φǫ and θǫ of (5.10), or equivalently, of
(5.8). Then, (5.30) implies that

‖φ− φhǫ ‖Φ + ‖θ − θhǫ ‖Θ + ‖λ− λhǫ ‖Λ ≤ C
(
ǫ+ hα + hβ

)
(5.32)

with C independent of ǫ and h.

5.2. Discretization of the eliminated system. Instead of discretizing (5.10)
and then eliminating the approximation of the Lagrange multiplier to obtain (5.29),
one can directly discretize the eliminated system (5.8) or, equivalently, minimize the
functional Jǫ(·, ·) over (φh, θh) ∈ Φh×Θh. Choosing approximating subspaces Φh ⊂ Φ
and Θh ⊂ Θ, the discrete problem is then given by






a1(φ
h
ǫ , µ

h) +
1

ǫ

〈
B1µ

h, D−1(B1φ
h
ǫ +B2θ

h
ǫ )

〉
Λ∗,Λ

= a1(φ̂, µ
h) +

1

ǫ

〈
B1µ

h, D−1g
〉
Λ∗,Λ

∀µh ∈ Φh

a2(θ
h
ǫ , ν

h) +
1

ǫ

〈
B2ν

h, D−1(B1φ
h
ǫ +B2θ

h
ǫ )

〉
Λ∗,Λ

=
1

ǫ

〈
B2ν

h, D−1g
〉
Λ∗,Λ

∀ νh ∈ Θh .

(5.33)

This system can be written in the more compact form

Aǫ({φhǫ , θhǫ }, {µh, νh}) = Gǫ({µh, νh}) ∀ {µh, νh} ∈ Φh × Θh , (5.34)

where the bilinear form Aǫ(·, ·) and linear functional Gǫ(·) are defined in (5.20) and
(5.21), respectively.11

Theorem 5.3. Let (2.3), (2.5), and (3.3) hold. Then, for 0 < ǫ ≤ 1, (5.33),
or equivalently, (5.34) has a unique solution φhǫ ∈ Φh and θhǫ ∈ Θh. Moreover, if

φ ∈ Φ and θ ∈ Θ denotes the unique solution of the optimization problem (2.6) or

equivalently, of (5.8), or equivalently, of (5.10), then there exist a constant C > 0
whose value is independent of ǫ and h such that

‖φ− φhǫ ‖Φ + ‖θ − θhǫ ‖Θ ≤ Cǫ
(
‖g‖Λ∗ + ‖φ̂‖bΦ)

+C
(
1 +

1

ǫ

)(
infeφh∈Φh

‖φǫ − φ̃h‖Φ + infeθh∈Θh

‖θǫ − θ̃h‖Θ

)
.

(5.35)

Proof. Because of Lemma 5.1, the existence and uniqueness of the solution of
(5.34) follow from the Lax-Milgram lemma. Moreover, standard finite element analy-
ses for the problem (5.19) and its discretization (5.34) yield that

‖φǫ − φhǫ ‖Φ + ‖θǫ − θhǫ ‖Θ ≤ C
(
1 +

1

ǫ

)(
infeφh∈Φh

‖φǫ − φ̃h‖Φ + infeθh∈Θh

‖θǫ − θ̃h‖Θ

)
.

Then, (5.14) and the triangle inequality yields (5.35).

In the usual way, the discrete system (5.33) is equivalent to a matrix problem.
Let {φj}Jj=1 and {θk}Kk=1, where J = dim(Φh) and K = dim(Θh), denote the chosen

11The results of Theorem 5.3 do not require that the discrete inf-sup conditions (3.2) holds.
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basis sets for Φh and Θh, respectively. In addition to the matrices A1, A2, and B̃1

and the vectors ~f and ~̃g defined previously, we define the matrices





(B̃2)jk = b̃2(θk, φj) =
〈
B2θk, D

−1B1φj
〉
Λ∗,Λ

for k = 1, . . . ,K, j = 1, . . . , J

(C)kℓ = c(θk, θℓ) =
〈
B2θk, D

−1B2θℓ
〉
Λ∗,Λ

for k, ℓ = 1, . . . ,K

and the vectors




(~g1)i = 〈g̃1, φi〉Φ∗,Φ =

〈
B1φi, D

−1g
〉
Λ∗,Λ

for k = 1, . . . ,K

(~g2)k = 〈g̃2, θk〉Θ∗,Θ =
〈
B2θk, D

−1g
〉
Λ∗,Λ

for k = 1, . . . ,K .

Then, (5.33) is equivalent to the matrix problem




A1 +
1

ǫ
B̃1

1

ǫ
B̃2

1

ǫ
B̃
T
2 A2 +

1

ǫ
C







~φǫ

~θǫ


 =



~f +

1

ǫ
~g1

1

ǫ
~g2


 , (5.36)

where ~φǫ and ~θǫ are the vectors of coefficients for φhǫ and θhǫ , respectively.
It is clear that (5.29) and (5.36) are different, i.e., the discretize-then-eliminate

approach yields a discrete system that is not equivalent to the system obtained by
the eliminate-then-discretize approach, despite the fact that their respective parent
continuous systems (5.10) and (5.8) are equivalent. In other words, elimination and
discretization steps do not commute!

Note that (5.36) is determined without the need for choosing a subspace Λh for
the approximation of the Lagrange multiplier. As a result, unlike what is the case
for (5.29), for a fixed value of ǫ, the stable invertibility of the system (5.36) does not
require the state approximation space Φh to satisfy (3.2). In fact, because of (5.22)
and (5.23), for a fixed value of ǫ, the coefficient matrix in (5.36) is uniformly (with
respect to h) positive definite for any choices for Φh and Θh.

The approximation-theoretic terms on the right-hand side of (5.35) satisfy in-
equalities of the type (5.31). Then, (5.35) implies that

‖φ− φhǫ ‖Φ + ‖θ − θhǫ ‖Θ ≤ C

(
ǫ+

hα + hβ

ǫ

)
, (5.37)

where the value of C > 0 is independent of h and ǫ. The estimate (5.37) shows that
nothing bad happens as h → 0 for fixed ǫ. In fact, as h → 0, the error in φhǫ and θhǫ
is of order ǫ which is the best one can hope for for a fixed value of ǫ. However, (5.37)
suggests that something bad may12 happen as ǫ→ 0. In fact, this effect is well known
as locking and indeed does happen for at least some choices of Φh; see, e.g., [10] for a
discussion of locking phenomena. Thus, to be safe, (5.37) suggests that as ǫ → 0, h
should be chosen to depend on ǫ in such a way that the right-hand side tends to zero
as ǫ and h tend to zero. For example, if β ≥ α, as is often the case, then to equilibrate
the two terms in the right-hand side of (5.37), we choose h = ǫ2/α so that

‖φ− φhǫ ‖Φ + ‖θ − θhǫ ‖Θ ≤ Cǫ = Chα/2.

12Since (5.37) only provides an upper bound for the error, it does not with certainty predict what
happens as ǫ → 0.
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In this case, convergence is guaranteed for any choice for Φh and Θh, but the rate
of convergence (with respect to h) may be suboptimal. This should be compared to
the results for the discretization of the regularized optimality system (see (5.32)) for
which optimal rates of convergence with respect to h are obtained and locking does
not occur. Of course, the estimate (5.32) requires that the finite element spaces satisfy
the discrete stability conditions in (3.2), while the estimate (5.37) holds without the
need to impose those stability conditions.

6. Methods based on constraining by the least-squares functional. An-
other means of incorporating least-squares notions into a solution method for the
constrained optimization problem of §2 is to solve, instead of (2.6) or its equivalent
form (2.10), the bilevel minimization problem

min
(φ,θ)∈Φ×Θ

J (φ, θ) subject to min
φ∈Φ

K(φ; θ, g) . (6.1)

From (3.14), one sees that this is equivalent to the problem

min
(φ,θ)∈Φ×Θ

J (φ, θ) subject to B̃1φ+ B̃2θ = g̃ in Φ∗. (6.2)

The Euler-Lagrange equations corresponding to the minimization problem (6.2) are
given by






A1φ + B̃1µ = A1φ̂ in Φ∗

A2θ + B̃∗
2µ = 0 in Θ∗

B̃1φ + B̃2θ = g̃1 in Φ∗,

(6.3)

where µ ∈ Φ is the Lagrange multiplier introduced to enforce the constraint in (6.2).
The problem (6.2) should be contrasted with the problem (2.10). Both (2.10)

and (6.2) involve the same functional J (·, ·), but are constrained differently. As a
result, the former leads to the optimality system (4.2) while the latter leads to the
optimality system (6.3). Although both optimality systems are of saddle point type,
their internal structures are significantly different. For example, the operator B1

that plays a central role in (4.2) may be non-symmetric and indefinte; on the other

hand, the operator B̃1 = B∗
1D

−1B1 that plays the analogous role in (6.3) is always
symmetric and positive definite whenever the assumptions (2.5) and (3.3) hold.

Penalization can be used to facilitate the solution of the system (6.3) in just the

same way as (5.10) is related to (4.2). To this end, we let D̃ : Φ → Φ∗ be a self-adjoint,

strongly coercive operator, i.e., there exist constants c̃d > 0 and k̃d > 0 such that

〈D̃µ, φ〉Φ∗,Φ ≤ c̃d‖µ‖Φ‖φ‖Φ and 〈D̃µ, µ〉Φ∗,Φ ≥ k̃d‖µ‖2
Φ (6.4)

for all φ, µ ∈ Φ. Corresponding to the operator D̃, we have the symmetric, coercive
bilinear form

d̃(φ, µ) = 〈D̃µ, φ〉Φ∗,Φ ∀φ, µ ∈ Φ .

We then consider the penalized functional

J̃ǫ(φ, θ) = J (φ, θ) +
〈
B̃1φ+ B̃2θ − g̃1, D̃

−1(B̃1φ+ B̃2θ − g̃1)
〉
Φ∗,Φ



LEAST-SQUARES FOR OPTIMIZATION AND CONTROL PROBLEMS 419

and the unconstrained optimization problem

min
φ∈Φ, θ∈Θ

J̃ǫ(φ, θ) . (6.5)

The Euler-Lagrange equations corresponding to this problem are given by





(
A1 +

1

ǫ
B̃1D̃

−1B̃1

)
φǫ +

1

ǫ
B̃1D̃

−1B̃2θǫ = A1φ̂+
1

ǫ
B̃1D̃

−1g̃1 in Φ∗

(
A2 +

1

ǫ
B̃∗

2D̃
−1B̃2

)
θǫ +

1

ǫ
B̃∗

2D̃
−1B̃1φǫ =

1

ǫ
B̃∗

2D̃
−1g̃1 in Θ∗

(6.6)

or




(
A1 +

1

ǫ
B∗

1D
−1B1D̃

−1B∗
1D

−1B1

)
φǫ

+
1

ǫ
B∗

1D
−1B1D̃

−1B∗
1D

−1B2θǫ = A1φ̂+
1

ǫ
B∗

1D
−1B1D̃

−1B∗
1D

−1g in Φ∗

(
A2 +

1

ǫ
B∗

2D
−1B1D̃

−1B∗
1D

−1B2

)
θǫ

+
1

ǫ
B∗

2D
−1B1D̃

−1B∗
1D

−1B1φǫ =
1

ǫ
B∗

2D
−1B1D̃

−1B∗
1D

−1g in Θ∗.

(6.7)

Letting µǫ = D̃−1(B̃1φǫ+ B̃2θǫ− g̃1), it is easy to see that is (6.6) is equivalent to the
following regular perturbation of (6.3):






A1φǫ + B̃1µǫ = A1φ̂ in Φ∗

A2θǫ + B̃T2 µǫ = 0 in Θ∗

B̃1φǫ + B̃2θǫ − ǫD̃µǫ = g̃1 in Φ∗.

(6.8)

The systems (6.6) and (6.8) are equivalent, but once again, their discretizations
are not, even if we use the same subspaces Φh ⊂ Φ and Θh ⊂ Θ to discretize both
systems. However, unlike the situation for (5.10) and (4.2), now discretization of
either (6.6) or (6.8) will result in matrix systems (after elimination in the second
case) that are uniformly (with respect to h) positive definite without requiring that
(3.2) holds.

6.1. Discretize-then-eliminate. Discretizing the equivalent weak formulation
corresponding to (6.8) results in the matrix problem13




A1 0 B̃1

0 A2 B̃T2

B̃1 B̃2 −ǫD̃







~φǫ

~θǫ

~µǫ


 =




~f

~0

~g1


 , (6.10)

where the matrices A1, A2, B̃1, and B̃2 and the vectors ~f and ~g1 are as in (5.36) and

the matrix D̃ corresponds to the bilinear form d̃(φ, µ) = 〈D̃µ, φ〉Φ∗,Φ for φ, µ ∈ Φ.

13Discretization of the unperturbed system (6.3) yields the related discrete system0BB� A1 0 eB1

0 A2
eBT

2eB1
eB2 0

1CCA0BB� ~φ

~θ

~µ

1CCA =

0BB� ~f

~0

~g1

1CCA . (6.9)
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The system (6.10) is symmetric and indefinite, but it is uniformly (with respect to h)

invertible without regard to (3.2). Indeed, we have that the matrices B̃1 and A2 are
symmetric and positive definite whenever (2.3), (2.5), and (3.3) hold. This should be
contrasted with the situation for (5.28) whose uniform invertibility required that the
discrete spaces satisfy (3.2).

The vector of coefficients ~µǫ may be eliminated from (6.10) to yield





(
A1 +

1

ǫ
B̃1D̃

−1
B̃1

)
~φǫ +

1

ǫ
B̃1D̃

−1
B̃2
~θǫ = ~f +

1

ǫ
B̃1D̃

−1~g1

(
A2 +

1

ǫ
B̃
T
2 D̃

−1
B̃2

)
~θǫ +

1

ǫ
B̃
T
2 D̃

−1
B̃1
~φǫ =

1

ǫ
B̃
T
2 D̃

−1~g1 .

(6.11)

Theorem 6.1. Let (2.3), (2.5), and (3.3) hold. Then, (6.10) has a unique solution

φhǫ ∈ Φh and θhǫ ∈ Θh. Moreover, if φ ∈ Φ and θ ∈ Θ denotes the unique solution

of the optimization problem (2.6) or equivalently, of (5.8), or equivalently, of (5.10),
then there exist a constant C > 0 whose value is independent of ǫ and h such that

‖φ− φhǫ ‖Φ + ‖θ − θhǫ ‖Θ + ‖µ− µhǫ ‖Φ ≤ Cǫ
(
‖g‖Λ∗ + ‖φ̂‖bΦ)

+C
(

infeφh∈Φh

‖φǫ − φ̃h‖Φ + infeθh∈Θh

‖θǫ − θ̃h‖Θ + infeµh∈Φh

‖µǫ − µh‖Φ

)
.

(6.12)

Using (5.31), we have from (6.12) that

‖φ− φhǫ ‖Φ + ‖θ − θhǫ ‖Θ + ‖µ− µhǫ ‖Φ ≤ C(ǫ+ hα + hβ) (6.13)

so that if β ≥ α and one chooses ǫ = hα, one obtains the optimal error estimate

‖φ− φhǫ ‖Φ + ‖θ − θhǫ ‖Θ + ‖µ− µhǫ ‖Φ ≤ Cǫ = Chα . (6.14)

Note that unlike for Theorem 5.2, the result (6.1) does not require that (3.2) is
satisfied. Also, unlike for Theorem 5.3, we get better convergence rates and locking
cannot occur.

6.2. Eliminate-then-discretize. Alternately, one could discretize (6.6) to ob-
tain




A1 +
1

ǫ
K1

1

ǫ
K2

1

ǫ
K
T
2 A2 +

1

ǫ
C̃







~φǫ

~θǫ


 =



~f +

1

ǫ
~̃g1

1

ǫ
~̃g2


 . (6.15)

The matrices A1 and A2 and the vector~f are defined as before; we also have, in terms
of the basis vectors for Φh and Θh, that





(K1)ij = 〈B̃1φi, D̃
−1B̃1φj〉Φ∗,Φ = 〈B∗

1D
−1B1φi, D̃

−1B∗
1D

−1B1φj〉Φ∗,Φ

(K2)jk = 〈B̃2θk, D̃
−1B̃1φj〉Φ∗,Φ = 〈B∗

1D
−1B2θk, D̃

−1B∗
1D

−1B1φj〉Φ∗,Φ

(C̃)kℓ = 〈B̃2θk, D̃
−1B̃2θℓ〉Φ∗,Φ = 〈B∗

1D
−1B2θk, D̃

−1B∗
1D

−1B2θℓ〉Φ∗,Φ;

and
{

(~̃g1)j = 〈B̃1φj , D̃
−1g̃1〉Φ∗,Φ = 〈B∗

1D
−1B1φj , D̃

−1B∗
1D

−1g〉Φ∗,Φ

(~̃g2)k = 〈B̃2θk, D̃
−1g̃2〉Φ∗,Φ = 〈B∗

1D
−1B2θk, D̃

−1B∗
1D

−1g〉Φ∗,Φ .
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Theorem 6.2. Let (2.3), (2.5), and (3.3) hold. Then, for 0 < ǫ ≤ 1, (6.15) has

a unique solution φhǫ ∈ Φh and θhǫ ∈ Θh. Moreover, if φ ∈ Φ and θ ∈ Θ denotes

the unique solution of the optimization problem (2.6) or equivalently, of (5.8), or

equivalently, of (5.10), then there exist a constant C > 0 whose value is independent

of ǫ and h such that

‖φ− φhǫ ‖Φ + ‖θ − θhǫ ‖Θ ≤ Cǫ
(
‖g‖Λ∗ + ‖φ̂‖bΦ)

+C
(
1 +

1

ǫ

)(
infeφh∈Φh

‖φǫ − φ̃h‖Φ + infeθh∈Θh

‖θǫ − θ̃h‖Θ

)
.

(6.16)

Clearly, (6.11) and (6.15) are not the same. However, the coefficient matrices
of both systems are symmetric and uniformly (with respect to h) positive definite
without regards to (3.2).

7. Concluding discussion.

7.1. Preliminary comparison of the different approaches. In the preced-
ing sections, we have discussed several ways to incorporate least-squares finite element
notions into optimal control problems. We provide a summary list of the various pos-
sibilities. In addition to the various least-squares-related methods, we include the
standard approach of applying a Galerkin finite element method to the optimality
system obtained after applying the Lagrange multiplier rule to the optimization prob-
lem. In the list, equation references that are listed within parentheses correspond to
equivalent formulations.
0. Lagrange multiplier rule applied to the optimization problem followed by a mixed-

Galerkin finite element discretization of the resulting optimality system
{
optimization problem (2.6 , 2.10)

}
−→ Lagrange multiplier rule −→

{
optimality system (4.1 , 4.2)

}
−→ Galerkin FE discretization −→

{
discrete equations (4.3 , 4.4)

}

1. Lagrange multiplier rule applied to the optimization problem followed by a least-
squares formulation of the resulting optimality system followed by a finite
element discretization�

optimization problem (2.6 , 2.10)
	

−→ Lagrange multiplier rule −→�
optimality system (4.1 , 4.2)

	
−→ least-squares formulation −→�

least-squares optimality system (4.17 , 4.18)
	

−→ FE discretization −→�
discrete system (4.19 , 4.21)

	
2. Lagrange multiplier rule applied to the optimization problem followed by a penalty

perturbation of the resulting optimality system followed by a finite element

discretization followed by the elimination of the discrete Lagrange multiplier
{
optimization problem (2.6 , 2.10)

}
−→ Lagrange multiplier rule −→

{
optimality system (4.1 , 4.2)

}
−→ penalty perturbation −→

{
perturbed optimality system (5.10 , 5.13)

}
−→ FE discretization −→

{
discrete system (5.27 , 5.28)

}
−→ elimination of unknowns −→

{
reduced discrete system (5.29)

}
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3. Penalization of the cost functional by a least-squares functional followed by opti-
mization followed by a finite element discretization of the resulting optimality
equations�

optimization problem (2.6 , 2.10)
	

−→ penalization of the cost functional −→�
penalized optimization problem (5.1)

	
−→ optimization −→�

reduced optimality system (5.7 , 5.8)
	

−→ FE discretization −→�
discrete system (5.33 , 5.36)

	
or, equivalently, the Lagrange multiplier rule applied to the optimization prob-
lem followed by a penalty perturbation of the resulting optimality system fol-
lowed by the elimination of the Lagrange multiplier followed by a finite element
discretization�

optimization problem (2.6 , 2.10)
	

−→ Lagrange multiplier rule −→�
optimality system (4.1 , 4.2)

	
−→ penalty perturbation −→�

perturbed optimality system (5.10 , 5.13)
	

−→ elimination of unknowns −→�
reduced optimality system (5.7 , 5.8)

	
−→ FE discretization −→�

reduced discrete system (5.33 , 5.36)
	

4. Constraining the cost functional by a least-squares formulation of the state equa-
tions to obtain a modified optimization problem followed by the Lagrange mul-
tiplier rule to obtain an optimality system followed by a finite element dis-
cretization�

modified optimization problem (6.1 , 6.2)
	

−→ Lagrange multiplier rule −→�
optimality system (6.3)

	
−→ FE discretization −→�

discrete system (6.9)
	

5. Constraining the cost functional by a least-squares formulation of the state equa-
tions to obtain a modified optimization problem followed by the Lagrange mul-
tiplier rule followed by a penalty perturbation of the resulting optimality sys-
tem followed by a finite element discretization followed by the elimination of
the discrete Lagrange multiplier�

modified optimization problem (6.1 , 6.2)
	

−→ Lagrange multiplier rule −→�
optimality system (6.3)

	
−→ penalty perturbation −→�

perturbed optimality system (6.8)
	

−→ FE discretization −→�
discrete system (6.10)

	
−→ elimination of unknowns −→�

reduced discrete system (6.11)
	

6. Constraining the cost functional by a least-squares formulation of the state equa-
tions to obtain a modified optimization problem followed by penalization of
the cost functional followed by optimization followed by a finite element dis-
cretization of the resulting optimality equations�

modified optimization problem (6.1 , 6.2)
	

−→ penalize the cost functional −→�
penalized optimization problem (6.5)

	
−→ optimization −→�

reduced optimality system (6.6 , 6.7)
	

−→ FE discretization −→�
discrete system (6.15)
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In Table 1, we compare the seven methods just listed with respect to several
desirable properties. The properties are posed in the form of the following questions.
discrete inf-sup not required – are the finite element spaces required to satisfy (3.2)

in order that the resulting discrete systems be stably invertible as h→ 0?
locking impossible – is it possible to guarantee that the discrete systems are stably

invertible as ǫ→ 0 with fixed h?
optimal error estimate – are optimal estimates for the error in the approximate

solutions obtainable, possibly after choosing ǫ to depend on h?
symmetric matrix system – are the discrete systems symmetric?
reduced number of unknowns – is it possible to eliminate unknowns to obtain a smaller

discrete system?
positive definite matrix system – do the discrete systems, possible after the elimina-

tion of unknowns, have a positive definite coefficient matrix?

Table 1

Properties of different approaches for the approximate solution of the optimization problem.

Method
0 1 2 3 4 5 6

discrete inf-sup not required × √ × √ √ √ √

locking impossible
√ √ √ × √ √ ×

optimal error estimate
√ √ √ × √ √ ×

symmetric matrix system
√ √ √ √ √ √ √

reduced number of unknowns × × √ √ × √ √

positive definite matrix system × √ √ √ × √ √

From Table 1, we see that only approach 5 has all its boxes checked, so that as far
as the six properties used for comparison purposes in that table, that approach seems
preferable. However, there are other issues that arise in the practical implementation
of this and other methods that can influence the choice of a “best” method. In
§7.2, we discuss some of these issues in the context of concrete examples. When
including practical considerations, it seems that Method 1 is also a good candidate.
It is probably the case that there is no universal “best” way to incorporate least-square
notions into control and optimization problems.

7.2. Some practical issues arising in implementations. One difficulty that
arises in the implementation of Method 5 and, indeed, of the other methods we have
discussed is that, in concrete practical settings such as the Stokes equations, H−1(Ω)
norms appear in the least-squares functional (4.16). For example, for Method 5,
this leads to the appearance of the H−1(Ω) inner product in the definition of the
matrices and vectors that form the discrete system. The equivalence relation (·, ·)−1 =
(·, (−∆)−1·) is not of much help since, in general, one cannot exactly invert the Laplace
operator, even in the case of zero Dirichlet boundary conditions. Fortunately, there
are several approaches available for ameliorating this difficulty; these are discussed
in [8] in the context of Method 1 of §7.1; see also [3, 11, 12]. All the approaches
discussed in [8] can be applied to the methods introduced in this paper, with similar
comparative effectiveness; thus, here, we do not consider this issue any further.

A second issue that needs to be discussed is the conditioning of the discrete
systems. Actually, there are two issues here, i.e., the conditioning with respect to
either h as h→ 0 or with respect to ǫ as ǫ→ 0. First, let us discuss the h→ 0 issue.
Least-squares finite element methods typically result in a “squaring” of operators,
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e.g., the normal equations in the linear algebra context. This is clearly indicated
in (3.14) and (3.15) where one sees that the operator B̃1 that results from applying
the least-squares principle (3.7) to the constraint equations involves the product of
the operators B∗

1 and B1. It is well known that “squaring” operators can result in
the squaring of the condition number of the corresponding matrices one obtains after
discretization. This is the principal reason for using first-order formulations of the
constraint equations. The idea here is that after “squaring” first-order operators,
one obtains second-order operators so that the h-condition number of the resulting
squared system is hopefully similar to that for Galerkin formulations of second-order
equations. However, penalty formulations of optimal control problems can result in a
second “squaring” of operators. For example, look at (6.7); we see there operators such

as B∗
1D

−1B1D̃
−1B∗

1D
−1B1 which involves four copies of the operator B1. However,

that is not the whole story; that operator also involves two copies of the operator
D−1 and also the operator D̃−1. Given the nature of all these operators, it is not at
all clear that the h-condition number of the discrete systems of §§4.2, 5, and 6 are
similar to those that result from a naive double “squaring” of first-order operators;
indeed, norm equivalence relations such as (3.13) and (4.13) can sometimes be used
to show that h-condition numbers for least-squares-based methods are no worse than
those for Galerkin-based methods.

The situation regarding the conditioning of the discrete systems as ǫ → 0 is
problematic for all penalty methods, even for those for which locking does not occur.
Note that to obtain a result such as (6.14), one chooses ǫ = hα; with such a choice, ǫ is
likely to be small. This situation can be greatly ameliorated by introducing an iterated

penalty method; see, e.g., [16] and also [14, 18, 19]. To this end, let {~φǫ, ~θǫ, ~µǫ} denote

the solution of (6.10) and set ~φ
(0)

= ~φǫ,
~θ

(0)
= ~θǫ, and ~µ(0) = ~µǫ. Then, for n ≥ 1,

we solve the sequence of problems




A1 0 B̃1

0 A2 B̃T2

B̃1 B̃2 −ǫD̃







~φ
(n)

~θ
(n)

~µ(n)


 =




~0

~0

−ǫD̃~µ(n−1)


 . (7.1)

Then, for any N > 0, we let

~φǫ,N =

N∑

n=0

~φ
(n)
, ~θǫ,N =

N∑

n=0

~θ
(n)
, and ~µǫ,N =

N∑

n=0

~µ(n) (7.2)

and we let φhǫ,N ∈ Φh, θhǫ,N ∈ Θh, and µhǫ,N ∈ Φh be the finite element functions
corresponding to the coefficients collected in the respective vectors in (7.2). Then,
instead of the estimate (6.13), one obtains the estimate (see, e.g., [16] and also [14, 18])

‖φ− φhǫ,N‖Φ + ‖θ − θhǫ,N‖Θ + ‖µ− µhǫ,N‖Φ ≤ C(ǫN+1 + hα + hβ)

so that if β ≥ α and one chooses ǫ = hα/N+1, one obtains the optimal error estimate

‖φ− φhǫ,N‖Φ + ‖θ − θhǫ,N‖Θ + ‖µ− µhǫ,N‖Φ ≤ CǫN+1 = Chα

instead of (6.14). These estimates tell us that we can make the error due to penal-
ization as small as we want in two ways: we can choose either ǫ sufficiently small or
N sufficiently large. Making the former choice, e.g., choosing N = 0 and ǫ = hα,
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can lead to conditioning problems for the discrete systems since ǫ << 1. Making the
latter choice allows us obtain the same effect but with a much larger value for ǫ.

Note that ~µ(n) may be eliminated from (7.1) to yield a reduced system with fewer

unknowns. Thus, the iteration to compute the pairs {~φ(n)
, ~θ

(n)} for n = 0, 1, . . . , using

reduced systems proceeds as follows. Let ~φ
(0)

= ~φǫ and ~θ
(0)

= ~θǫ, where ~φǫ and ~θǫ
denote the solution of (6.11), and then set

~g(0) = B̃1
~φ

(0)
+ B̃2

~θ
(0) − ~g1 .

Then, for n = 1, 2, . . . , solve the systems





(
A1 +

1

ǫ
B̃1D̃

−1
B̃1

)
~φ

(n)
+

1

ǫ
B̃1D̃

−1
B̃2
~θ

(n)
=

1

ǫ
B̃1D̃

−1~g(n−1)

(
A2 +

1

ǫ
B̃
T
2 D̃

−1
B̃2

)
~φ

(n)
+

1

ǫ
B̃
T
2 D̃

−1
B̃1
~θ

(n)
=

1

ǫ
B̃
T
2 D̃

−1~g(n−1).

In order to define the next iterate, we set

~g(n) = ~g(n−1) + B̃1
~φ

(n)
+ B̃2

~θ
(n)
.
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