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ON THE RIEMANN SOLUTIONS OF THE BALANCE EQUATIONS
FOR STEAM AND WATER FLOW IN A POROUS MEDIUM∗

W. LAMBERT† , D. MARCHESIN‡ , AND J. BRUINING§

Abstract. Conservation laws have been used to model a variety of physical phenomena and
therefore the theory for this class of equations is well developed. However, in many problems, such
as transport of hot fluids and gases undergoing mass transfer, balance laws are required to describe
the flow.

As an example, in this work we obtain the solutions for the basic one-dimensional profiles that
appear in the clean up problem or in recovery of geothermal energy. We consider the injection of a
mixture of steam and water in several proportions in a porous rock filled with a different mixture
of water and steam. We neglect compressibility, heat conductivity and capillarity and present a
physical model for steam injection based on the mass balance and energy conservation equations.

We describe completely all possible solutions of the Riemann problem. We find several types
of shock between regions and develop a scheme to find the solution from these shocks. A new type
of shock, the evaporation shock, is identified in the Riemann solution. This work generalizes the
work of Bruining et. al. [2], where the condensation shock appears. It is a step towards obtaining
a general method for solving Riemann problems for a wide class of balance equations with phase
changes (see [8]).
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1. Introduction. Professor Joel Smoller has made significant contributions in
several mathematical fields, especially in the theory of conservation laws. For several
years, the most complete and well written reference in conservation laws and shock
theory was the great book “Shock Waves and Reaction-Diffusion Equations” [11].
This book has been the standard reference in conservation laws worldwide for two
decades.

In this paper, we use part of the theory developed for conservation laws to solve
a system of balance equations for steam and water flow in a porous medium. The
solution exhibits an intriguing yet systematic structure. It is desirable to obtain a
theory for balance equations as complete as that for conservation laws, (see [8] for an
initial discussion); combustion phenomena are also modelled by balance equations,
see [1] and references theirein.

This class of balance equations has appeared in mathematical models for clean-up,
see [2]. Soil and groundwater contamination due to spills of non-aqueous phase liquids
(NAPL’s) have received a great deal of attention from society, because, in general,
these components can cause damage to the ecosystem and environmental impact to a
large area around the spills. Removal of contaminants with steam is considered to be
an attractive groundwater remediation technique. We consider here a model for steam
injection presented in [2]. Steam injection is widely studied in Petroleum Engineering,
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see [2] and references theirein. Steam production from geothermal sources is a related
application [3, 12].

We consider the constant rate injection of a mixture of steam/water in a specified
proportion into a porous medium filled with another homogeneous steam/water mix-
ture. We study all possible proportions of steam and water as boundary and initial
conditions for the problem. We present a physical model for steam injection based
on mass balance and energy conservation equations. We present the main physical
definitions and equations; we refer to [2] for more details. We study the three possible
physical phase mixture situations: single-phase gaseous situation, which represents a
region with superheated steam, called steam region, sr; a two-phase situation, which
represents a region where the water and steam coexist called boiling region, br; and a
single-phase liquid situation which represents a region with water only, called water
region, wr. We reduce the three balance equations system presented in Sec. 2 to a
system of conservation laws that has the following form in each physical situation:

∂

∂t
G(V ) +

∂

∂x
uF (V ) = 0, (1.1)

where V = (V1) : R × R
+ −→ Ω ⊂ R represents the variables to be determined;

G = (G1, G2) : Ω −→ R
2 and F = (F1, F2) : Ω −→ R

2 are the accumulation vector
and the flux vector, respectively; u : R × R

+ −→ R , u = u(x, t) is the total velocity.
It is useful to define U = (V, u). The vector V represents the water saturation sw and
the temperature T . The state of the system is represented by (sw, T, u). Eq. (1.1)
has an important feature, the variable u does not appear in the accumulation term, it
appears isolated in the flux therm, therefore this equation has an infinite speed mode
associated to u. Nevertheless we are able to solve the complete Riemann problem
associated to Eq. (1.1). Moreover, under certain hypothesis it is possible to solve
numerically the problem, in [6] Lambert et. al. consider a model in the balance form
for nitrogen and steam injection.

In [2], Bruining et. al. considered as initial condition for the Riemann problem,
a porous rock filled with water at a temperature T 0, in which a mixture of water
and steam at saturation temperature (boiling temperature) in given proportions is
injected. The main feature was the existence of a Steam Condensation Front (SCF),
which is a shock between the br and the wr. The analysis of the shock between each
pair of regions is important because bifurcations occur and frequently non-classical
structures appear in the solution.

In this work, we completely solve the Riemann problem. We study the three
possible physical phase mixture situations: single-phase superheated steam gaseous
situation, in the sr; a two-phase situation where the water and steam coexist in
equilibrium in the br; and a single-phase wr.

The Riemann problem A is the injection of a mixture of water and steam at boiling
temperature in a porous rock filled with steam at temperature above the boiling
temperature (superheated steam). In this case, a new wave, a vaporization shock
(VS), appears between the br and the sr. In the Riemann problem B, we inject liquid
water in a porous rock containing water and steam at boiling temperature. These
initial and boundary conditions are the reverse of those considered in [2]. There
is a water evaporation shock (WES) between the sr and the br. In the Riemann
problem C, we inject superheated steam in a porous rock containing water and steam
at boiling temperature. There appears a condensation shock (CS) between the sr and
the br. This Riemann solution is the most interesting solution; it has a rich bifurcation
structure. We obtain two bifurcation curves. The first bifurcation is the TCS locus,
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where the left thermal characteristic speed in the sr coincides with the condensation
shock speed vCS . The second bifurcation is the CSS locus, where the condensation
shock speed vCS coincides with the right saturation characteristic speed λb

s in the br.
These two bifurcation curves intersect at a point, the double bifurcation SHB (see
Fig. 6.2). This state is very important because it is an organizing point between
several different phase mixtures. In the Riemann problem D, we inject water at a
temperature below its boiling temperature in a porous rock containing superheated
steam. There is a br between the wr and the sr. So the Riemann solution consists
of a combination of the waves in the Riemann problem B and C. In the Riemann
problem E, we inject superheated steam in a porous rock containing water below its
boiling temperature. As in the Riemann problem D, there is a br between the wr and
the sr. For this Riemann problem, the solution is obtained combining the Riemann
solution B and the solution F , see [2] and [5].

In Sec. 2, we present the mathematical and physical formulations of the injection
problem in terms of balance equations. In Sec. 3, we consider separately each region
in different physical situations under thermodynamic equilibrium and we rewrite the
corresponding balance equations in conservative form. In Sec. 4 we study the shock
and rarefaction waves that occur in each physical situation separately. In Sec. 5,
we study the shocks in the transitions between regions. In Sec. 6, we present the
solution of the Riemann problem for the five types of injection. Sec. 7 summarizes our
conclusions. In Appendix A, we describe notation and physical quantities appearing
in the physical model. The omitted proofs are found in [7].

2. Mathematical and Physical model. We can distinguish a total of fives
zones in different physical situations in the porous rock: a steam zone at tempera-
ture above the boiling temperature, a steam zone at the boiling temperature, a zone
containing water and steam at the boiling temperature and a zone containing liquid
water at the boiling temperature (all these zones are hot); finally, one zone containing
liquid water below the boiling temperature called cold zone.

2.1. The model equations. Ignoring diffusive effects, the mass balance equa-
tion for liquid water and steam read:

∂

∂t
ϕρwsw +

∂

∂x
ρwuw = +q, (2.1)

∂

∂t
ϕρgsg +

∂

∂x
ρgug = −q, (2.2)

where ϕ is the rock porosity assumed to be constant; sw and sg are the water and
steam saturations; ρw is the water density, which is assumed to be constant for sim-
plicity; the steam density ρg is a function of the temperature T (i.e, we neglect the
effects of gas compressibility) and decreases with temperature; the term q is the mass
transfer between the gaseous and liquid water; uw and ug are the water and steam
phase velocity.

Disregarding heat conductivity, the energy balance equation can be written as:

∂

∂t
ϕ(Ĥr + ρwhwsw + ρghgsg) +

∂

∂x
(uwρwhw + ugρghg) = 0, (2.3)

where Hr is the rock enthalpy per unit volume and hw and hg are the water and gas

enthalpies per unit mass, respectively, and Ĥr = Hr/ϕ. The enthalpies and ρg are
functions only of temperature and their expressions are found in Appendix A. From
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these expressions, one can see that the enthalpies are increasing functions and that
hg is a convex function.

2.2. Physical Model. To determine the fluid flow rate, we use Darcy’s law for
multiphase flow without gravity and capillary pressure effects:

uw = −
kkrw

µw

∂p

∂x
, ug = −

kkrg

µg

∂p

∂x
, (2.4)

where k is the absolute permeability for rock (see Appendix A); the relative perme-
ability functions krw and krg are considered to be power functions of their respective
effective saturations (see Appendix A); µw and µg are the viscosity of liquid water
and the viscosity of steam and they are functions of temperature; p is the common
pressure of the liquid and gaseous phase. We define the fractional flow functions for
water and steam depending on the saturation and temperature as follows, see Figure
2.1:

fw =
krw/µw

d
, fg =

krg/µg

d
where d =

krw

µw
+

krg

µg
. (2.5)

Using (2.5) in Darcy’s law (2.4)

uw = ufw, ug = ufg, where u = uw + ug, (2.6)

and u is the total or Darcy velocity. The saturations sw and sg add to 1.

Increasing T
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Fig. 2.1. a) Left: The shape of water fractional flux fw, originating from typical krw(sw) and
krg(sg), given in (A.6) for different values of the temperature T . The separation between the curves
is tiny in reality. b) Center: Water viscosity µw(T ). c) Right: Gas viscosity µg(T ).

3. Regions under thermodynamical equilibrium. As we will see later, the
five zones can be organized in three regions in different physical situations where the
fluids are in thermodynamic equilibrium, which is often specified by an equation of
state (EOS). Each physical situation determines the structure of the governing system
of equations. One region consists of steam only, with temperature at least T b (the
condensation temperature of pure water, which is around 373.15K at atmospheric
temperature), where we must determine two variables: temperature and Darcy veloc-
ity u. The steam saturation is sg = 1 (sw = 0). There is a second region consisting
of steam and water, with liquid water saturation sw and gas saturation sg both less
than 1. We must determine two variables: the velocity and saturation (either sw or
sg, because they add to 1); the temperature here is known and its value is T = T b.
Finally there is a region of liquid water, where we must also determine two variables:
temperature and velocity. The saturation is known: sg = 0 and sw = 1.
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We summarize these regions as follows:

sw\T T > T b T = T b T < T b

sw = 0 superheated steam zone hot steam zone 3
sw < 1 1 hot steam-water zone 4
sw = 1 2 hot water zone cold water zone

Table 1: Classification according to saturation and temperature.

We call “steam region” (represented by “sr”) the superheated steam zone. We
call “boiling region” (represented by br) the hot steam zone together with the hot
steam-water zone and the hot water zone. We call “water region” (represented by
“wr”) the hot water zone together with the cold water zone. In [2], there is no region
with steam above the boiling temperature; the sr and wr are called “hot region” and
“liquid water region” respectively.

Notice that the hot steam zone at boiling temperature belongs to both sr and br;
also, the hot water zone belongs to both br and wr.

Remark 3.1. Because of thermodynamical equilibrium, steam cannot exist at
temperatures lower than T b; similarly, there is no liquid water at a temperature above
T b. Thus the regions with numbers 1-4 in Table 1 do not exist because of our re-
quirement of thermodynamic equilibrium. Regions 1-4 would represent the following
unstable mixtures: (1) superheated steam with water, (2) superheated water, (3) steam
below T b and (4) steam-water below T b.

3.1. Equations in conservative form. From the previous discussion, we no-
tice that in each region under thermodynamic equilibrium there are two variables to
be determined in the system (2.1)-(2.3); the other variables are trivial. For example,
in the br the temperature and Darcy speed are determined by the system of equa-
tions, but the saturation is trivial, its value is sw = 0. Thus we can rewrite the system
(2.1)-(2.3) as a system of two conservation laws and two variables as follows. We add
Eq. (2.1) to (2.2) and use (2.6):

∂

∂t
ϕ (ρwsw + ρgsg) +

∂

∂x
u (ρwfw + ρgfg) = 0. (3.1)

Using (2.6) in the energy conservation equation (2.3), it becomes:

∂

∂t
ϕ(Ĥr + ρwhwsw + ρghgsg) +

∂

∂x
u(ρwhwfw + ρghgfg) = 0. (3.2)

We will use (3.1)-(3.2) from now on. Not only this system models the flow in each
region under thermodynamic equilibrium, but it also determines the shocks between
regions (see Sec. 5), when supplemented by appropriate thermodynamic equations of
state.

As initial conditions, we assume that the porous rock is full of a mixture of water
and steam (saturation sw(x, t = 0) = sR) with constant temperature T (x, t = 0) =
TR. As boundary conditions at the injection point at the left of the porous rock, the
total injection rate uL is specified as a constant. The constant water-steam injection
ratio needs to be given too, which is (sL, TL). It is specified in terms of the water
fractional flow fw(sL, TL) at the injection point.
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4. Elementary waves under thermodynamical equilibrium. We consider
rarefaction and shocks waves for (3.1)-(3.2) in each region.

4.1. Steam region I-sr. The temperature is high, T > T b, so there is only
steam, sw = 0, (notice that from Eq. (2.1), q ≡ 0) and the state (sw, T, u) can be
represented by (0, T, u). The system (3.1)-(3.2) reduces to

∂

∂t
ϕρg +

∂

∂x
uρg = 0, (4.1)

∂

∂t
ϕ(Ĥr + ρghg) +

∂

∂x
uρghg = 0. (4.2)

4.1.1. Rarefaction wave. Assuming that all dependent variables are smooth,
we can differentiate (4.1) and (4.2) with respect to their variables:

ϕρ′g
∂T

∂t
+ uρ′g

∂T

∂x
+ ρg

∂

∂x
u = 0, (4.3)

ϕ
(

Ĥ ′
r + Cg

) ∂T

∂t
+ uCg

∂T

∂x
+ ρghg

∂

∂x
u = 0, (4.4)

where prime denotes derivative relative to T .
We use the notation Ĉr = Ĥ ′

r = dĤr/dT for the effective rock heat capacity
divided by ϕ and Cg = ∂(ρghg)/∂T for the steam heat capacity per unit volume; we

assume that the effective rock heat capacity Ĉr is constant (see Appendix A). We
rewrite (4.3)-(4.4) as:

B
∂

∂t

(

T
u

)

+ A
∂

∂x

(

T
u

)

= 0, (4.5)

where

B =

(

ϕρ′g 0

ϕ(Ĉr + Cg) 0

)

and A =

(

uρ′g ρg

uCg ρghg

)

. (4.6)

The characteristic speed λ and the eigenvector ~r = (r1, r2)
T = (dT, du)T in the

following system are the speed of rarefaction waves and the characteristic direction,
respectively:

det(A − λB) = 0, A~r = λB~r. (4.7)

We find only one characteristic speed and vector:

λg
T (T, u) =

u

ϕ

ρgCg − ρ′gρghg

ρg(Ĉr + Cg) − ρ′gρghg

=
u

ϕ

ρgcg

Ĉr + ρgcg

, (4.8)

and ~rT =

(

1,
uĈr

T (Ĉr + ρgcg)

)T

,

where ρg = ρg(T ), hg = hg(T ), Cg = Cg(T ), and the derivatives relative to tempera-

ture are ρ′g = ρ′g(T ), cg = h′
g(T ) and Ĉr is constant; we used the equality ρ′g = −ρg/T

which follows from Eq. (A.4). The notation for this wave has subscript T because it
is a thermal wave; the saturation (sw = 0) stays constant, but the temperature T and
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the speed u change. We obtain the thermal rarefaction curve in (T, u) space from ~rT

in (4.9):

du

dT
= u

Ĉr

T (Ĉr + ρg(T )cg(T ))
or

du

u
=

dT

T
(

1 + ρg(T )cg(T )/Ĉr

) . (4.9)

The rarefaction wave in the {x, t} plane is the solution of the following equations:

(

dT

dξ
,
du

dξ

)T

= ~rT , with ξ =
x

t
= λg

T (u(ξ), T (ξ)). (4.10)

Remark 4.1. In the sr, the temperature decreases from left to right along the
thermal rarefaction wave. In the Section 4.1.2 we consider a thermal steam shocks;
analogously, on the right of such a shock the temperature is higher than on the left
(see [7] and Remark 4.2 for the proofs).

4.1.2. Thermal steam shock. We assume now that T + > T− ≥ T b. Let us
consider the thermal discontinuity with speed vg

T between the (−) state (0, T−, u−)
and the (+) state (0, T +, u+). For such a thermal steam shock, Eqs. (4.1)-(4.2) yield
the following Rankine-Hugoniot (RH) condition:

vg
T =

u+ρ+
g − u−ρ−g

ϕ(ρ+
g − ρ−g )

=
u+ρ+

g h+
g − u−ρ−g h−

g

ϕ
(

(Ĥ+
r + ρ+

g h+
g ) − (Ĥ−

r + ρ−g h−
g )
) , (4.11)

where h±
g = hg(T

±), Ĥ±
r = Ĥr(T

±) and ρ±g = ρg(T
±). From the second equality in

Eq. (4.11), we obtain u+ as a function of u−:

u+ = u−
(Ĥ+

r − Ĥ−
r )/ρ+

g + h+
g − h−

g

(Ĥ+
r − Ĥ−

r )/ρ−g + h+
g − h−

g

; (4.12)

it is easy to see that the denominator of (4.12) is positive. Moreover u+ > u−.
We substitute (4.12) in Eq. (4.11); since u+ is function of u−, we obtain vg

T =
vg

T (T−, u−; T +) or vg
T = vg

T (T−; T +, u+):

vg
T =

u−

ϕ

h+
g − h−

g

(Ĥ+
r − Ĥ−

r )/ρ−g + h+
g − h−

g

=
u+

ϕ

h+
g − h−

g

(Ĥ+
r − Ĥ−

r )/ρ+
g + h+

g − h−
g

. (4.13)

Remark 4.2. Notice that we can rewrite (4.13.a) as:

vg
T = vg

T (T−, u−; T +) =
u−

ϕ

(

h+
g − h−

g

)

/ (T + − T−)

Ĉr/ρ−g +
(

h+
g − h−

g

)

/ (T + − T−)
.

Defining λ±
g = λg

T (T±, u±), from convexity of hg(T ) it follows that vg
T < λ−

g for
T + > T−. Using (4.13.b) we see that λ+

g < vg
T < λ−

g if T + > T−, so the steam shock
satisfies the Lax condition. The equality vg

T = λ−
g holds if, only if, T + = T−.
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4.2. Boiling region II - br. Because the temperature is constant and equal to
the boiling temperature T b it can be shown (see [2]), that there is no mass exchange
between phases and that the system (3.1)-(3.2) reduces to a single scalar equation
with fixed u = ub:

ϕ
∂

∂t
sw + ub ∂

∂x
fw = 0. (4.14)

Eq. (4.14) supports classical Buckley-Leverett rarefaction and shock waves.

4.2.1. Saturation shocks. Consider a (−) state (s−w , T b, ub) and a (+) state
(s+

w , T b, ub); we obtain the following RH condition, where ub is the common Darcy
velocity, T = T b and we use the nomenclature f b

w(sw) = fw(sw, T b):

vb
s(s

−
w , ub; s+

w) = vs(s
−
w , T b, ub; s+

w) =
ub

ϕ

f b
w(s+

w) − f b
w(s−w)

s+
w − s−w

=
ub

ϕ

f b
g(s+

g ) − f b
g(s−g )

s+
g − s−g

.

(4.15)
A particular shock for (4.14) separates a mixture of steam and water on the left from
pure water on the right, both at boiling temperature. Following [2] we call it the Hot
Isothermal Steam-Water shock (or HISW ) between the (−) state (s−w , T b, ub) and
the (+) state (s+

w = 1, T b, ub). It has speed vb
g,w given by:

vb
g,w(s−w , ub) = vg,w(s−w , T b, ub) =

ub

ϕ

1 − f b
w(s−w)

1 − s−w
=

ub

ϕ

f b
g(s−g )

s−g
. (4.16)

Another particular shock for (4.14) separates pure water on the left from a mixture
of steam and water on the right, both at boiling temperature. We call it the Hot
Isothermal Water-Steam shock (or HIWS) between the (−) state (s−w , T b, ub) and
the (+) state (s+

w = 0, T b, ub). It has speed vb
g,s given by

vb
g,s(s

−
w , ub) = vg,s(s

−
w , T b, ub) =

ub

ϕ

f b
w(s−w)

s−w
. (4.17)

Notice that vg,s(sw = 0, T b, ub) = vg,w(sw = 1, T b, ub) = 0.

4.2.2. Saturation rarefaction waves. We will denote by λb
s the speed of prop-

agation of saturation waves in the br. It is obtained from Eq. (4.14) as:

λb
s = λs(sw, T b, ub) =

ub

ϕ

∂f b
w

∂sw
(sw). (4.18)

4.3. Water region - wr. The system (3.1)-(3.2) reduces to a scalar equation,
with constant uw and sw = 1:

ϕ
∂

∂t

(

Ĥr(T ) + ρwhw(T )
)

+ uw ∂

∂x
ρwhw(T ) = 0. (4.19)

Between a (−) state (1, T−, uw) and a (+) state (1, T, uw), the following RH
condition for the thermal discontinuity is valid:

vw
T =

uw

ϕ

ρw (hw − h−
w)

Ĥr + ρwhw − (Ĥ−
r + ρwh−

w)
=

uw

ϕ

Cw

Ĉr + Cw

, (4.20)

where uw is Darcy speed in the wr and Cw = ρw∂hw/∂T ; the second equality is
obtained taking into account (A.5). If T− = T b or T = T b, then ub = uw. From
(4.20), the discontinuity is a contact wave and there is no other characteristic speed
in this region.
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5. Shocks between regions. Within shocks separating regions there is no ther-
modynamic equilibrium, so q is not zero; however we can still use the system (3.1)-
(3.2), because in each region the number of variable to be determined in the system
(2.1)-(2.3) is at most 2. This system contains another variable, namely the mass trans-
fer term q. However this variable is not essential to obtain the Riemann solution. It
is useful to define the cumulative mass transfer function:

Q(x, t) =

∫ x

q(ξ, t)dξ, (5.1)

where this integral should be understood in the distribution sense. From Eq. (5.1),
we can write q = ∂Q(x, t)/∂x.

We also define Q−(t) = Q(x−, t) and Q+(t) = Q(x+, t), where x− and x+ are the
points immediately on the left and right of the transition between regions. We define
the accumulative balance as the difference between Q+(t) and Q−(t) and denote it
by [Q].

We can rewrite the system (2.1)-(2.3) (in distribution sense) as:

∂

∂t
G(sw, T ) +

∂

∂x
(uF (sw, T ) − Q(sw, T )) = 0, (5.2)

where Q = (Q(V ),−Q(V ), 0)
T
; G = (G1, G2, G3)

T and F = (F1, F2, F3)
T . The

components of F and G are readily obtained from Eqs. (2.1)-(2.3) using (2.6).
The shock waves are discontinuous solutions of Eq. (5.2) and satisfy the RH

condition:

s(G(s+
w , T +) − G(s−w , T−)) = u+F (s+

w , T +) − u−F (s−w , T−) − [Q], (5.3)

The problem studied in this paper is an example of the global formalism proposed in
[8], where we study better the concept of shock between regions.

5.1. Water Evaporation Shock. WES - This is the discontinuity between a
(−) state (1, T−, u−) in the wr and a (+) state (s+

w , T b, u+) in the br. It satisfies the
following RH conditions for the speed vWES , obtained from Eqs. (3.1)-(3.2):

u+(ρwf+
w + ρb

gf
+
g ) − ϕvWES(ρws+

w + ρb
gs

+
g ) = u−ρw − ϕvWESρw, (5.4)

u+
(

ρwhb
wf+

w + ρb
gh

b
gf

+
g

)

− u−ρwh−
w (5.5)

= vWESϕ
(

Ĥb
r + ρwhb

ws+
w + ρb

gh
b
gs

+
g − Ĥ−

r − ρwh−
w

)

.

where fw(sw = 1, ·) = 1, f+
w = fw(s+

w , T b) and fg = 1 − fw.
The Darcy speed u+ is found from u− using (5.4) and (5.5) as:

u+ = u−

(Ĥb
r − Ĥ−

r ) + s+
wρw

�
hb

w − h−

w

�
+ s+

g ρb
g

�
hb

g − h−

w

�
(Ĥb

r − Ĥ−

r )
�

f+
g

�
ρb

g/ρw

�
+ f+

w

�
+
�

ρb
g(s+

w − f+
w ) + ρwf+

w

��
hb

w − h−

w

�
+ s+

g ρb
g

�
hb

g − h−

w

� .

(5.6)

Eq (5.6) is always valid because T− < T b, so each term in the denominator is positive.
The terms Ĥb

r − Ĥ−
r and hb

w − h−
w are positive because the enthalpies increase with

temperature. The term hb
g − h−

w is positive because hb
g > hb

w and since hb
w > h−

w the
positivity follows.
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Since we can write u+ as function of uw, we obtain vWES = vWES(T−, u−; s+
w):

vWES =
u+

ϕ

f+
g ρb

g

(

hb
g − h−

w

)

+ f+
w ρw

(

hb
w − h−

w

)

Ĥb
r − Ĥ−

r + s+
g ρb

g

(

hb
g − h−

w

)

+ s+
wρw

(

hb
w − h−

w

) . (5.7)

The denominator of vWES in (5.7) is never zero because each term in the sum is
positive.

Lemma 5.1. Define L(T ) as:

L(T ) = ρb
g(h

b
g − hT

w) − ρw

(

hb
w − hT

w

)

, (5.8)

where hT
w = hw(T ). There is a unique temperature T † < T b such that L(T †) = 0.

Moreover, L(T ) < 0 for T < T † and L(T ) > 0 for T > T †.

Substituting s+
g = 1− s+

w , f+
g = 1− f+

w , using Lemma 5.1 for T 6= T †, we rewrite
Eq. (5.7)

vWES =
u+

ϕ

f+
w − fWES

w

s+
w − sWES

w

, fWES
w ≡

ρb
g(h

b
g − h−

w)

L(T−)
, sWES

w ≡
Ĥb

r − Ĥ−
r + ρb

g(h
b
g − h−

w)

L(T−)
,

(5.9)
Eqs. (5.9) are the basis for a graphical construction of the WES, see Fig. 6.1.b.

For T− < T †, fWES
w and sWES

w are negative, while for T− > T †, fWES
w > 1 and

sWES
w > 1. When T− = T †, we obtain that ρb

g(h
b
g −h−

w) = ρw

(

hb
w − h−

w

)

, so Eq. (5.7)
reduces to:

vWES(1, T− = T †, uw; s+
w) =

u+

ϕ

ρw

(

hb
w − h†

w

) (

f b
w + f b

g

)

Ĥb
r − H†

r + ρw(hb
w − h†

w) (sw + sg)
=

u−

ϕ

Cw

Ĉr + Cw

.

(5.10)
Notice that if u− = u+, vWES = vw

T in the wr, see Eq (4.20).

5.2. Vaporization Shock. VS - It is a discontinuity between a (−) state
(s−w , T b, u−) in the br and a (+) state (0, T + > T b, u+) in the sr. The Vaporization
Shock satisfies the following RH conditions with speed vV S obtained from Eqs. (3.1)-
(3.2):

vV Sϕ(ρ+
g − ρb

gs
−
g − ρws−w) = u+ρ+

g − u−(ρwf−
w + ρb

gf
−
g ), (5.11)

vV Sϕ(H+
r − Hb

r + ρ+
g h+

g − s−g ρb
gh

b
g − s−wρwhb

w) = u+ρ+
g h+

g − u−(ρb
gh

b
gf

−
g + ρwhb

wf−
w ),

(5.12)

where h+
g = hg(T

+), h+
w = hw(T +), H+

r = Hr(T
+), ρ+

g = ρg(T
+) and f−

w =

fw(s−w , T b).

Since T > T b, we obtain vV S as the following fraction, which has positive denom-
inator:

vV S = vV S(s−w , u−; T +) =
u−

ϕ

f−
g ρb

g

(

h+
g − hb

g

)

+ f−
w ρw

(

h+
g − hb

w

)

Ĥ+
r − Ĥb

r + s−g ρb
g

(

h+
g − hb

g

)

+ s−wρw

(

h+
g − hb

w

) .

(5.13)
We rewrite Eq. (5.13) in a shorter form. Substituting sg = 1−sw and fg = 1−fg,

we define A(T +) = ρb
g

(

h+
g − hb

g

)

−ρw

(

h+
g − hb

w

)

. For T + > T b one proves that A < 0.
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We multiply and divide (5.13) by A and we obtain:

vV S =
u−

ϕ

f−
w − fV S

w

s−w − sV S
w

, (5.14)

where fV S
w ≡

ρw

(

h+
g − hb

w

)

A(T +)
, sV S

w ≡
Ĥ+

r − Ĥb
r + ρb

g

(

h+
g − hb

g

)

A(T +)
;

notice that fV S
w and sV S

w are negative. Eqs. (5.14) are the basis for a graphical
construction of V S, see Fig. 6.1.a.

The Darcy speed u+ in the sr is the fraction with positive denominator:

u
+ = u

− A+(ρw(s−g − f−
g ) + ρ+

g f−
g ) + B+(ρb

g(s
−
w − f−

w ) + f−
w ρ+

g ) + C+
�
f−

g ρb
g + f−

w ρw

��
A+s−g + B+s−w + C+

�
ρ+

g

,

(5.15)

where:

A+ = ρb
g

(

h+
g − hb

g

)

, B+ = ρw

(

h+
g − hb

w

)

, C+ = Ĥ+
r − Ĥb

r . (5.16)

5.3. Condensation Shock. CS - This is the discontinuity between a (−) state
(0, T− > T b, u−) in the sr and a (+) state (s+

w , T b, u+) in the br. It is the reverse of
the shock V S. From (5.15):

u
+ = u

−

�
A−s+

g + B−s+
w + C−

�
ρ−

g

A−(ρw(s+
g − f+

g ) + ρ−
g f+

g ) + B−(ρb
g(s

+
w − f+

w ) + f+
w ρ−

g ) + C−
�
f+

g ρb
g + f+

w ρw

� ,

(5.17)

A−, B− and C− are obtained from A+, B+ and C+ in (5.16) by substituting T + by
T−.

Since the CS is reverse of the V S and u+ is a function of u−, we obtain vCS =
vCS(T−, u−; s+

w):

v
CS =

u+

ϕ

f+
g ρb

g

�
h−

g − hb
g

�
+ f+

w ρw

�
h−

g − hb
w

�
Ĥ−

r − Ĥb
r + s+

g ρb
g

�
h−

g − hb
g

�
+ s+

wρw

�
h−

g − hb
w

� or v
CS =

u+

ϕ

f+
w − fCS

w

s+
w − sCS

w

.

(5.18)

Since the CS shock is reverse of the V S, fCS
w and sCS

w are obtained from fV S
w and

sV S
w in (5.14) by substituting T + by T−; notice that the denominator in (5.18.a) is

never zero.

5.4. Steam condensation front. SCF - This is the discontinuity between a
(−) state (s−w < 1, T b, u−) in the br and a (+) state (1, T +, u+) in the wr. It is the
reverse of the WES, so vSCF = vSCF (s−w , u−; T +) is given by:

vSCF =
u−

ϕ

f−
g ρb

g

(

hb
g − h+

w

)

+ f−
w ρw

(

hb
w − h+

w

)

Ĥb
r − Ĥ+

r + s−g ρb
g

(

hb
g − h+

w

)

+ s−wρw

(

hb
w − h+

w

) =
u−

ϕ

f−
w − fSCF

w

s−w − sSCF
w

.

(5.19)
Here (5.19) is derived as Eq. (5.9), with fSCF

w and sSCF
w obtained from fWES

w and
sWES

w in (5.9) by substituting T + by T−.
From Eqs. (5.4)-(5.5), we can find u+ as the following fraction with positive

denominator:

u+ = u−

(Ĥb
r − Ĥ+

r )
�

f−

g

�
ρb

g/ρw

�
+ f−

w

�
+
�

ρb
g(s−

w − f−

w ) + ρwf−

w

��
hb

w − h+
w

�
+ s−

g ρb
g

�
hb

g − h+
w

�
Ĥb

r − Ĥ+
r + s−

wρw

�
hb

w − h+
w

�
+ s−

g ρb
g

�
hb

g − h+
w

� .

(5.20)
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6. The Riemann Solution. The Riemann problem is the solution of (3.1)-(3.2)
with initial data

{

L = (sL, TL, uL) if x > 0
R = (sR, TR, ·) if x < 0,

(6.1)

where s := sw is the water saturation. We will see that the speed u cannot be
prescribed on both sides. Given a speed on one side the other one is obtained by
solving the system (2.1)-(2.3); in this case we have chosen to prescribe uL.

We consider in this paper the Riemann problem for all initial data; we divide the
data as follows (the Riemann problem with Data F was solved in [2]):

Riemann Problem L state R state

Data A Steam and Water, TL = T b Steam, TR > T b

Data B Water, TL < T b Steam and Water, TR = T b

Data C Steam, TL > T b Steam and Water, TR = T b

Data D Water, TL < T b Steam, TR > T b

Data E Steam, TL > T b Water, TR < T b

Data F Steam and water, TL = T b Water, TR < T b

6.1. Wave Sequences and Riemann Solution. A Riemann solution is a se-
quence of elementary waves wk for k = 1, 2, · · · , m (shocks and rarefactions) and
constant states Uk for k = 1, 2, · · · , m.

UL ≡ U0
w1−→ U1

w2−→ · · ·
wm−→ Um ≡ UR. (6.2)

We represent any state (s, T, u) by U . The wave wk has left and right states Uk−1 and
Uk and speeds ξ−k < ξ+

k in case of rarefaction waves and v = ξ−k = ξ+
k in case of shock

waves. The left state of the first wave w1 is (sL, TL, uL) and the right state of wm

is (sR, TR, uR), where uR needs to be found. In the Riemann solution it is necessary
that ξ+

k ≤ ξ−k+1; this inequality is called geometrical compatibility. When ξ+
k < ξ−k+1

there is a separating constant state Uk+1 between wk and wk+1; in this sequence the
wave wk is indicated by 7→. If ξ+

k = ξ−k+1 there is no actual constant state in physical
space, so the wave wk is a composite with wk+1 in this sequence; it is indicated by
։.

Different physical situations are separated by shocks respecting the geometrical
compatibility. Sometimes it is useful to emphasize the waves in the sequence (6.2)
and not the states. In such cases we use the notation:

w1 ֌ w2 ֌ · · · ֌ wm, (6.3)

where for each wk, ֌ stands for 7→ for ξ+
k < ξk+1 and ։ for ξ+

k = ξ−k+1.

The rarefaction waves are denoted by RT for thermal rarefactions in sr and Rs

for (Buckley-Leverett) saturation rarefactions in br. The shocks in regions under
thermodynamic equilibrium are denoted with a single subscript, ST for thermal shocks
in sr, Ss for (Buckley-Leverett) saturation shocks , SG for HIWS in br and SW for
thermal discontinuities in wr. We recall that the shocks between regions are WES,
V S, CS and SCF .
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6.2. Riemann Problem A.

6.2.1. Water injection. First, we inject water with temperature T b, i.e., L =
(1, T b, uL) in a porous rock filled with superheated steam, i.e., R = (0, TR > T b, uR),
which is a sr. In the br, generated by the L state, the flow is governed by a Buckley-
Leverett equation. It is well known that the Buckley-Leverett rarefaction has speed
λb

s given by (4.18) from sw = 1 to sw = s∗, which is defined by:

∂fw

∂sw
(s∗, T b) =

fw(s∗, T b)

s∗
. (6.4)

There is a saturation shock and the solution is continued by a shock in the br.
Since the temperature increases in the rarefaction joining the (−) state (0, T b, u−)

to the (+) state (0, T + > T b, u+), see Rem. 4.1, there is a shock with speed vg
T given

by (4.13).

Lemma 6.1. The speed vb
g,s of the HIWS shock between (s∗, T b, u−) and

(0, T b, u = u−) given by (4.17) is larger than the speed vg
T of the shock between

(0, T b, u−) and (0, T > T b, u+).

Thus we conclude that there is a shock with speed vV S between the br and the sr.
Let fV S

w and sV S
w be given by (5.14); from the Sec. 6.1, we find a saturation ŝ > s∗

defined by the following equality, (Fig. 6.1.a):

vV S(ŝ) =
ub

ϕ

fw(ŝ, T b) − fV S
w

ŝ − sV S
w

=
ub

ϕ

∂fw

∂sw
(ŝ, T b). (6.5)

Proposition 6.1. There are two saturation values that satisfy (6.5) for each
T + > T b. The largest value satisfies (6.5) and maximizes vV S while the other min-
imizes vV S; because of geometrical compatibility, we choose the largest value and we
denote it by ŝ. It is called “Hot-Bifurcation saturation I” or HBI.

Proof. Geometrically, Eq. (6.5) represents tangency points of the secant from
the point (sV S

w , fV S
w ) to the graph fw for each fixed T + (Fig. 6.1.a). See [7] for an

analytical proof.

Fig. 6.1. a) Left: Coincidence between vV S and λb
s. The largest water saturation maximizes

vV S and the other minimizes vV S. b) Right: We represent two possible points (sWES
w , fWES

w ). If
T− < T † (T † is defined in Lemma 5.1), both sWES

w and fWES
w are negative; otherwise both are

larger than 1.
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It is necessary that vV S(ŝ) > vg
T ; otherwise, the geometrical compatibility in

Sec. 6.1 says that the vaporization shock V S does not exists. This is summarized as
follows:

Lemma 6.2. The vaporization shock between (−) state (s−w , T b, u−) and (+) state
(1, T +, u+) with speed vV S given by (5.13) is larger than vg

T for s∗ ≤ s−w ≤ 1 and
T + > T b. (We recall that s∗ is defined in Eq. (6.4)).

From (4.17), we conclude that vb
g,s and sw decrease together. From (4.13), vg

T is

constant. So we expect that there is a saturation s∗∗ where vg
T = vb

g,s(s
∗∗, sw = 0),

which is called “Hot-Bifurcation II saturation”, or HBII. One can verify the following:

Proposition 6.2. For each fixed T +, there is a unique saturation s∗∗ for which

vg
T (T b, u−; T +) = vb

g,s(u
−; s∗∗) = vV S(s∗∗, u−; T +). (6.6)

Furthermore s∗∗ is defined in terms of T + by any of the following equivalent equalities:
1. vg

T (T b, u−; T +) = vb
g,s(u

−; s∗∗);

2. vb
g,s(u

−; s∗∗) = vV S(s∗∗, u−; T +);

3. vg
T (T b, u−; T +) = vV S(s∗∗, u−; T +).

See [8] for a more general result.

Lemma 6.3. For any T + > T b, the saturation s∗∗ given by Eq. (6.6) satisfies
s∗∗ < ŝ.

Solution. Now we can describe the possible solutions for Riemann Data A:
For ŝ ≤ sL ≤ 1. The waves Rs ։ V S, with ŝ given by Eq. (6.5) and the

sequence:

L = (sL, T b, uL)
Rs−−→ (ŝ, T b, uL)

V S
−−→ (0, TR, uR) = R. (6.7)

For s∗∗ ≤ sL < ŝ. The wave V S with s∗∗ given by Eq. (6.6) and the sequence:

L = (sL, T b, uL)
V S
−−→ (0, TR, uR) = R. (6.8)

For sL < s∗∗. The waves SG 7→ ST , with sequence:

(sL, T b, uL)
SG−−→ (0, T b, uL)

ST−−→ (0, TR, uR). (6.9)

6.3. Riemann Problem B. Since the flow in the wr is governed by the linear
Eq. (4.19) with constant characteristic speed vw

T given by (4.20), this wave is a contact
discontinuity.

For the Riemann problem L = (1, TL ≤ T b, uL) and R = (sR, T b, uR), we have
the following:

Proposition 6.3. For each (−) state (1, T− < T b, u−) and (+) state
(s+

w , T +, u+), there is a water saturation s♭ = s♭(T−), such that for s+
w satisfying

s♭ ≤ s+
w ≤ 1, the shock speeds vWES and vw

T satisfy:

vw
T ≥ vWES , s♭ ≤ s+

w ≤ 1; (6.10)

the equality occurs only if s+
w = 1 or s+

w = s♭. We call s♭ a “Cold Bifurcation saturation
I” or CBI. Moreover, there is a water saturation s†† = s††(T

−) satisfying s♭ < s††
such that:

λb
s(s††) = vWES(T−, u−; s††). (6.11)
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In the nomenclature of [4], the state sw = 1 is the left-extension of s†† with speed
λb

s. Also, s†† here coincides with s†† obtained in [2]. This saturation maximizes vWES

(and consequently vSCF ); we call s†† the “Cold Bifurcation saturation II” or CBII.

Remark 6.1. Notice that from Sec. 5.1, fWES
w and sWES

w are negative if T− <
T † and positive if T− > T † (see Fig. 6.1.b). The solution behavior is the same in
both cases.

Prop. 6.3 yields the following Corollaries used to obtain the solution in the br:

Corollary 6.1. If sinfl(T b) < s+
w < s††, the solution continues in the br as a

rarefaction to s+
w. If s+

w < sinfl the rarefaction continues to s§, where s§ is defined by
the second equality in:

v§,+ =
∂fw

∂sw
(s§, T b) =

fw(s+
w , T b) − fw(s§, T b)

s+
w − s§

, (6.12)

where sinfl = sinfl(T b) is the inflection saturation defined by:

∂2

∂s2
w

fw(sw, T b)

∣

∣

∣

∣

sw=sinfl

= 0. (6.13)

Corollary 6.2. As the left state temperature T− tends to the water boiling
temperature, the water saturation s†† tends to 1, i.e., the limit of s†† lies in the wr.

Solution. Now we can describe the possible solutions for Riemann Data B:
For sR > s††. As s†† satisfies (6.11), (ub/ϕ)∂fw(sR, T b)/∂sw < vWES , i.e, the

shock vWES is faster than the characteristic speed in the br, the wave sequence is:

L = (1, TL, uL)
WES
−−−→ (sR, T b, uR) = R. (6.14)

For sinfl(T b) < sR < s††. The waves WES ։ Rs, with sequence:

L = (1, TL, uL)
WES
−−−→ (s††, T

b, uR)
Rs−−→ (sR, T b, uR) = R. (6.15)

For sR < sinfl(T b). The waves WES ։ Rs ։ Ss with sequence:

L = (1, TL, uL)
WES
−−−→ (s††, T

b, uR)
Rs−−→ (s§, T b, uR)

Ss−→ (sR, T b, uR) = R, (6.16)

where s§ is given by Eq. (6.12).

6.4. Riemann Problem C. Let L = (0, TL > T b, uL) and R = (sR, T b, uR). In
this Riemann Problem, there are two relevant bifurcation curves. The first bifurcation
occurs at the points where the thermal rarefaction speed λg

T (Eq. (4.9.a)) equals the
shock speed vCS (Eq. (5.18)). The other bifurcation appears at the points where the
speed vCS coincides with the Buckley-Leverett rarefaction speed λb

s (Eq. (4.18)) in
the br.

Moreover, there is a point where all previous speeds coincide. It is a double
bifurcation point in the {T−; s+

w} plane of left state temperatures T− in sr and right
saturation s+

w in br (see Sec. 6.4.1). This point is denoted by (T̂ ; s†) and it should be
understood as the projection of (sw = 0, T̂ ; s†, T b) onto the {T−; s+

w} plane.
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6.4.1. Definition of T̂ and s†. Let Υ = Υ(T−; s+
w) be defined as:

Υ =
ρ−g c−g

Ĉr + ρ−g c−g
−

(

u+

u−

)

f+
w − fCS

w

s+
w − sCS

w

. (6.17)

The fraction u+/u− is obtained from Eq. (5.15). This fraction does not depend on
u− or u+, showing that also Υ does not depend on u− (or u+). Moreover, at the
points (T−; s+

w) where Υ = 0, the equality λg
T = vCS holds.

Now we can define the thermal coincidence as the curve where the left thermal
wave speed λg

T coincides with the condensation shock vCS ; it is denoted by TCS locus:

TCS = {(T, s) | Υ(T, s) = 0, for T ∈ sr and s ∈ br }. (6.18)

Analogously, we define Λ = Λ(T−; s+
w) as:

Λ =
f+

w − fCS
w

s+
w − sCS

w

−
∂f b

w

∂sw
, (6.19)

where fCS
w and sCS

w depend on T−, see (5.14). Now we can define the CSS locus as
the curve where vCS = λb

s and for each T− fixed, vCS(T−; s+
w) is understood as a

function of s+
w that is minimized (see Prop. 6.4) :

CSS = {(T−; s+
w) | Λ = 0 | vCS is minimum; T− ∈ sr, s+

w ∈ br}. (6.20)

In Fig. 6.2, the TCS and CSS loci are shown as curves in the plane {T, s}. The
horizontal axis represents the states in the sr and the vertical axis represents the
states in the br. The two loci intersect transversally at (T̂ ; s†), the double bifurcation
point “SHB”. It can be obtained numerically using root finders. The temperature T̂
satisfies T b < T̂ , and the saturation s† satisfies 0 < s† < 1.

For the Riemann solution, we need to study the relationships between TL and T̂
at (sw = 0, T−), and between sR and s† at (s+

w , T b) .
Defining Ξ(T−; s+

w) =
(

f+
w − fCS

w

)

/
(

s+
w − sCS

w

)

, the CSS locus is obtained using
the following proposition:

Proposition 6.4. There are always two water saturation values satisfying
Λ(T, s) = 0 for each fixed T > T b. The smallest value minimizes Ξ (and conse-
quently vCS), while the other value maximizes Ξ (and vCS). We define s• as the
smaller water saturation value.

From Prop. 6.4, one can prove:

Corollary 6.3. For each fixed T in the br, the solution after s• continues as a
rarefaction in the br.

Prop. 6.4 implies that for each fixed temperature T− there are two saturations
that satisfy Λ = 0, i.e. λb

s = vCS , but we choose the one that belongs to the CSS
and denote it by s⋆ (see [8], where this selection criterion is shown to be the Oleinik
entropy condition).

In Fig. 6.3.a, we obtain the water saturation s⋆, for each T−. We represent this
map of T− into s⋆, which is used in Item (2) of the following proposition, as:

s⋆ := s⋆(T−). (6.21)
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Fig. 6.2. Schematic phase space. The intersection of the TCS and CSS loci is the SHB at
(T̂ ; s†). The horizontal axis represents the sr and the vertical axis represents the br, so SHB

represents two points: T̂ is the projection of (sw = 0; T̂ ) on the sr; s† is the projection of (sw =
s†; T b) on the br; between the TCS locus and the water saturation axis Υ > 0, so λ

g
T

> vCS ; in the

complementary region λ
g
T

< vCS .

Fig. 6.3. a) Left: The graph of Λ = 0. For each T−, the vertical line crosses the graph at a
saturation s⋆ = s⋆(T−). b)-Right: The value TΠ(sR) is obtained from the TCS locus. We plot a
horizontal line from s+

w, the point where this line intersects the graph Υ is the point (TΠ(s+
w), s+

w).

Proposition 6.5. If T− < T̂ , then λg
T > vCS. Thus there is a shock between

(sw = 0, T−, u−) to (s⋆, T b, u+). Furthermore, the solution continues in the br as a
rarefaction.

Proof. The proof consist of two steps:
(1) The characteristic speed λg

T is larger than the shock speed vCS at (TL, s⋆).
From Figs. 6.3.a and 6.2, we can see that Υ > 0 at (T−, s⋆), so λg

T > vCS . Thus
there is a shock between (0, T−, u−) and (s⋆, T b, u+).

(2) The solution continues as a rarefaction in the br. As s⋆ satisfies Λ = 0, this
fact follows from Cor. 6.3.

Prop. 6.5 yields:

Corollary 6.4. When T− tends to T b, the saturation s⋆ tends to swc, the
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connate water saturation (see Appendix A); thus the solution is continuous when T
tends to T b between the sr and the br.

Remark 6.2. When T− = T b, the left state lies in the br. This solution was
obtained in [2]. In that case, there was a region with connate water saturation in
the br. From Cor. 6.4, our solution agrees with that in [2]. Notice that the connate
water in this region is immobile, but this water evaporates when the vaporization shock
advances.

Fix s+
w < s†. Using the TCS locus, we obtain T Π(s+

w) as a function of s+
w . For

each s+
w we draw a horizontal line. We project the intersection of this horizontal line

and the TCS onto the horizontal axis to obtain T Π; we denote this mapping by:

T Π := T Π(s+
w). (6.22)

It is important that T Π(s+
w) is monotone for s+

w < s†.

Proposition 6.6. For s+
w < s† and T− > T̂ , there is a rarefaction from

(0, T−, u−) to (0, T Π, uΠ). At (0, T Π, uΠ) the following speeds coincide:

λg
T (T Π, uΠ) = vCS(T Π, uΠ; s+

w), (6.23)

so there is a left characteristic shock between (0, T Π, uΠ) and (s+
w , T b, u+) with speed

vCS.

Proof. In Fig. 6.3.b, we plot an example of s+
w and its respective T Π(s+

w). Since
the temperature decreases from left to right along the thermal rarefaction wave, from
Rem. (4.1), this wave is a rarefaction.

Corollary 6.5. When s+
w tends to 0 in br, the temperature T Π converges to T b;

thus the solution is continuous between the br and the sr.

In Eq. (6.22), we find s⋆ = s⋆(T−); also T Π = T Π(s+
w) from Eq. (6.21), see Fig.

6.3.b. Using s⋆ and T Π, four possible solution candidates arise:
(i) T− < T Π, s⋆ < s−w . A shock from (0, T−, u−) to (s⋆, T b, u+), continuing to

(s+
w , T b, u+) through a Buckley-Leverett rarefaction.

(ii) T− < T Π, s⋆ > s+
w . A shock from (0, T−, u−) to (s+

w , T b, u+) with speed vCS .
(iii) T− > T Π, s⋆ < s+

w . A rarefaction from (0, T−, u−) to (0, T Π, uΠ) followed
by a shock to (s⋆, T b, u+) continuing to (s+

w , T b, u+) through a Buckley-Leverett rar-
efaction.

(iv) T− > T Π, s⋆ > s+
w . A rarefaction from (0, T−, u−) to (0, T Π, uΠ), followed

by a shock to (s⋆, T b, u+) with speed vCS .

Proposition 6.7. For left temperature T− and fixed right saturation s+
w satisfy-

ing T− < T̂ and s+
w < s†, (i) and (iii) do not occur.

Proof. From Fig. 6.4.a, we separate the water saturation in the br (the right
side states of the Riemann problem) in two intervals, sRegI and sRegII . The first
one is s+

w ∈ [swc, s
†, ]; the second one is s+

w ∈ [sw = 0, swc]. Recall Eq. (6.22),
which defines T Π as function of s+

w . So we define TRegI = T Π(sRegI ); similarly, we
define TRegII = T Π(sRegII). One can verify from Fig. 6.4.a that T Π(s+

w) is monotone
increasing.

Fig. 6.4.b represents the mapping from TRegI to the br. Each value of T− ∈ TRegI

defines a value for s⋆ in the br through the function s⋆(T−) in Eq. (6.21). The function
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Fig. 6.4. a)-Left: The map TΠ defines TRegI and TRegII . The saturation lies in the br, which

is subdivided in sRegI = [swc, s†] and in sRegII = [0, swc]. The corresponding intervals in the sr

are TRegI and TRegII . b)-Right: Mapping from TRegI to br. Each T− ∈ TRegI defines a s⋆ in the

br (see Prop. 6.6); notice that s⋆ satisfies s⋆ ≥ s†, which is the saturation at SHB.

s⋆(T−) is not monotone and all values of s⋆ = s⋆(T−) for T− ∈ TRegI are larger or
equal to s†, the saturation at the SHB point. Notice also that the mapping s⋆(T−) for
T− ∈ TRegI

⋃

TRegII is onto sRegI . So we obtain that s+
w < s⋆(T−) for T− ∈ TRegI ,

so (i) and (iii) do not occur.

Fig. 6.5. a)-Left: Riemann Solution. the point TL in the horizontal axis represents (sL =
0, TL). The rarefaction from (sL = 0, TL) to (sL = 0, TΠ) is represented by a line and an arrow to
indicate the direction of increasing speed; the rarefaction is followed by a shock from (sw = 0, TΠ) to
(sR, T b) with speed vCS with construction shown by dotted lines. b)-Right: the dotted line represents
the shock from (sL = 0, TL, uL) to (sR, T b, uR) with speed vCS . We draw the solution for a left
state (sL = 0, TL), which we represent by TL.

Solution: (summarized in Fig 6.6).
(I) For TL > T̂ and sR > sinfl > s†. The waves RT ։ CS ։ Rs ։ Ss with

sequence:

L = (0, TL, uL)
RT−−→ (0, T̂ , û)

CS
−−→ (s†, T b, uR)

Rs−−→ (s§, T b, uR)
Ss−→ (sR, T b, uR) = R,

(6.24)
where (T̂ , s†) is the SHB point and s§ is given by Eq. (6.12).
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(II) For TL > T̂ and sinfl > sR > s†. The waves RT ։ CS ։ Rs with sequence:

L = (0, TL, uL)
RT−−→ (0, T̂ , û)

CS
−−→ (s†, T b, uR)

Rs−−→ (sR, T b, uR) = R. (6.25)

(III) For T Π < TL and sR < s⋆(TL). The solution is sketched in Fig. 6.5.a,
based on Props. 6.7 and 6.6; the waves are RT ։ CS with sequence:

L = (0, TL, uL)
RT−−→ (0, T Π < T̂ , uΠ)

CS
−−→ (sR, T b, uR) = R. � (6.26)

(IV) For T Π > TL and sR < s⋆(TL), the solution is sketched in Fig. 6.5.b. It is
the wave CS with sequence:

L = (0, TL, uL)
CS
−−→ (sR, T b, uR) = R. (6.27)

(V) For TL < T̂ and sinfl > sR > s⋆(TL), where the mapping s⋆ = s⋆(TL) is
defined in Eq. (6.21). We obtain the waves CS ։ Rs with sequence:

L = (0, TL, uL)
CS
−−→ (s⋆, T b, uR)

Rs−−→ (sR, T b, uR) = R. (6.28)

(VI) For TL < T̂ and sR > sinfl > s†. See (6.28). The waves CS ։ Rs ։ Ss

with sequence:

L = (0, TL, uL)
CS
−−→ (s⋆, T b, uR)

Rs−−→ (s§, T b, uR)
Ss−→ (sR, T b, uR) = R, (6.29)

where s§ is given by Eq. (6.12) with s+
w = sR.

Remark 6.3. We remark that the CS is a double sonic transitional wave, see
[10].

Fig. 6.6. Phase diagram for Riemann Problem C. The dotted line delimits the physical range,
the dashed lines are bifurcation loci. The continuous curves are parts of the TCS and the CSS
bifurcations loci. The horizontal axis represents the left states (0, TL, uL) in sr; the vertical axis
represents the right states (sR, T b, uR) in br. The solutions are given in I-V I, Sec. 6.4.
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6.5. Riemann Problem D. We inject pure water at temperature TL < T b, i.e,
the left state is (1, TL, uL); on the right we have pure steam at temperature TR > T b.

Before describing our proposed Riemann solution, it is necessary to prove that
there is no possible Riemann solution with a direct shock between sr and the wr. Us-
ing the RH condition (5.4)-(5.5) with s+

w = 0 and T b replaced by T + > T b, we obtain
this hypothetical “complete water evaporation shock”, labelled CWES, with speed
vCWES . The superscript + (−) in the following equations represents the temperature
T + (T−). The speed of such shock between (sw = 1, T−, uw) to (sw = 0, T + > T b, u)
would be:

vCWES(T−, u−; s+
w = 0, T +) =

uw

ϕ

ρw(h+
g − h−

w)

H+
r − H−

r + ρw(h+
g − h−

w)
. (6.30)

Proposition 6.8. Complete Evaporation. For any T− < T b < T +, if there
exists a complete water evaporation shock from (1, T−, u−) to (0, T + > T b, u+) with
speed vCWES(T−, u−; s+

w = 0, T +) given by (6.30), then this shock satisfies:

vCWES > vw
T , (6.31)

where vw
T is the speed of thermal discontinuity given by Eq. (4.20).

If this shock exists, it would not satisfy the Oleinik condition for entropy [9].
Therefore we conclude that instead of a shock there is a br between the (−) and
(+) state. The solution is constructed using results from Sections 6.2 and 6.3. Since
s+

w = 0, from Sec. 6.3 we obtain:

Proposition 6.9. The saturation s†† in (6.11) is larger than ŝ (defined in (6.5)),
thus there is a rarefaction from (s††, T

b, u+) to (ŝ, T b, u+).

Solution. The solution consists of the waves WES ։ Rs ։ CS with sequence:

L = (1, TL, uL)
WES
−−−→ (s††, T

b, uR)
Rs−−→ (ŝ, T b, uR)

SC
−−→ (0, TR, uR) = R. (6.32)

6.6. Riemann Problem E. We inject pure steam at temperature TL > T b, i.e,
L = (0, TL > T b, uL); on right we have pure water at TR < T b, i.e., the right state is
R = (1, TR < T b, uR). We use results from Section 6.5 to obtain the solution.

We remark that the vaporization shock, VS, is the reverse of the condensation
shock, CS, so there could exist a hypothetical “complete condensation shock”, labelled
CCS, with speed vCCS . This shock would be obtained using the RH condition (5.11)-
(5.12) with the (−) state replaced by (sw = 1, T + < T b, u+), and the (+) state
replaced by (s−w = 0, T− > T b, u−). The speed of such shock would be:

vCCS(T−, u−; s+
w = 1, T +) =

u−

ϕ

ρ−g (h+
g − h−

w)

H+
r − H−

r + ρ+
g (h+

g − h−
w)

. (6.33)

The following fact indicates that instead of this shock, there is always a br between
the sr and the wr.

Proposition 6.10. Complete Condensation. For any T− ≥ T b the com-
plete condensation shock from (sw = 0, T−, u−) to (sw = 1, T +, u+) with speed
vCCS(T, u−; s+

w = 1) satisfies:

vCCS > λg
T (T−, u−). (6.34)
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The inequality (6.34) in Prop. 6.10 shows that there is a br between (sw =
0, T−, u−) and (sw = 1, T +, u+). In [2], Bruining at al. obtained the solution for
injection of water and steam at boiling temperature in a porous rock filled with
water. In that work, the water and rock enthalpies were made to vanish at a certain
temperature T 0. In the current work we do not use T 0, so the formulae for shock
speeds appear to be slightly different from formulae in [2]; however, both are equivalent
since the enthalpy is defined in up to a constant. In that paper, two saturations
denoted by s† and s†† were found both satisfying Eq. (6.11); the choice for s†† was
also made.

To complete the Riemann solution, we obtain a relationship between s⋆ and s†:

Proposition 6.11. The water saturation s⋆, defined in (6.21), obtained in the
br by a shock from (0, T−, u−) to (s⋆, T b, u+) satisfies the following inequality:

s⋆ < s†,

so from (s⋆, T b, u+) the solution continues as a rarefaction to (s†, T
b, u+).

Solution. We obtain the Riemann solution using the results in [2], [5] and (6.29),
(6.24).

For TL < T̂ . As in (6.29), there is a shock from L = (0, T−, u−) to (s⋆, T b, u+)
where s⋆ = s⋆(TL) is given by (6.21) and s† satisfies Eq. (6.11). The waves are
CS ։ Rs ։ SCF with sequence:

L = (0, TL, uL)
CS
−−→ (s⋆, T b, uR)

Rs−−→ (s†, T
b, uR)

SCF
−−−→ (sR, T b, uR) = R. (6.35)

For TL > T̂ . The waves RT ։ CS ։ Rs ։ SCF with sequence:

L = (0, TL, u)
RT
−−→ (0, T̂ , u)

CS
−−→ (s†, T b

, u
b)

Rs
−−→ (s†, T

b
, u

b)
SCF
−−−→ (s, T < T

b
, uR) = R,

(6.36)

where (T̂ , s†) is the SHB point.

7. Summary and Conclusions. We have described completely all possible
solutions of the Riemann problem for the injection of a mixture of steam and water in
several proportions and temperature into a porous rock filled with a different mixture
of steam and water in all proportions, (of course, the temperature must be lower than
the thermodynamical critical temperature of water). The set of solutions depends L1

continuously on the Riemann data.
We found several types of shock between regions and systematized a scheme to

find the solution from these shocks. A new type of shock, the evaporation shock, was
identified. This work generalizes [2] of Bruining et. al. It is a step towards obtaining
a general method for solving Riemann problems for a wide class of balance equations
with phase changes (see [8]).
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Appendix A. Physical quantities; symbols and values.

A.1. Temperature dependent properties of steam and water. We use
reference [1] to obtain all the temperature dependent properties below. The water
and steam densities used to obtain the enthalpies are defined at the bottom.

The steam enthalpy hg [J/kg] as a function of temperature is approximated by

hg = −2.20269× 107 + 3.65317× 105T − 2.25837× 103T 2 + 7.3742T 3

−1.33437× 10−2T 4 + 1.26913× 10−5T 5 − 4.9688× 10−9T 6. (A.1)

We also use the temperature dependent steam viscosity

µg = −5.46807× 10−4 + 6.89490× 10−6T − 3.39999× 10−8T 2 + 8.29842× 10−11T 3

−9.97060× 10−14T 4 + 4.71914× 10−17T 5. (A.2)

The temperature dependent water viscosity µw is approximated by

µw = −0.0123274 +
27.1038

T
−

23527.5

T 2
+

1.01425 × 107

T 3
−

2.17342 × 109

T 4
+

1.86935 × 1011

T 5
.

(A.3)

We assume that the steam is a ideal gas, so the steam density is a function of tem-
perature:

ρg(T ) = p
MH2O

R

1

T
, (A.4)

where MH2O is the water molecular mass [Kg/m3], p is the pressure atmospheric [Pa]
and R=8.31 [J/mol K]. The quantity pMH2O/R is a constant.

The liquid water density is constant, and the value is 998.2Kg/m3.

We define Ĥr and the water enthalpy per mass unit hw respectively as:

Ĥr(T ) = (1 − ϕ)/ϕCrT and hw = CwT/ρw. (A.5)



348 W. LAMBERT, D. MARCHESIN AND J. BRUINING

A.2. Constitutive relations. The relative permeability functions krg and krw

are considered to be power functions of their respective saturations i.e.

krg =

(

sg

1 − swc

)ng

and krw =







(

sw−swc

1−swc

)nw

for sw ≥ swc ,

0 for 0 ≤ sw ≤ swc,

. (A.6)

For the computations we take nw = 4, = ng = 2. The connate water saturation swc

is given in Table 2 below.

Table 2, Summary of physical input parameters and variables

Physical quantity Symbol Value Unit
Water, steam fractional functions fw, fg Eq. (2.5) . [m3/m3]
Porous rock permeability k 1.0 × 10−12. [m3]
Water, steam relative permeabilities krw, krg Eq. (A.6) . [m3/m3]
Pressure p 1.0135 × 105. [Pa]
Mass condensation rate q Eqs (2.1)-(2.2). [kg /(m3s)]
Water, steam phase velocity uw, ug Eq. (2.4) . [m3/(m2s)]
Total Darcy velocity u uw + ug, Eq (2.6). [m3/(m2s)]
Water and rock heat capacity Cw , Cr 4.22 × 106, 2.029 × 106. [J/(m3K)]
Steam and water enthalpies hg, hw Eqs. (A.1), (A.5.b). [J/m3]
Rock enthalpy Hr (1 − ϕ)CrT. [J/m3]
Water, steam saturations sw, sg Dependent variables. [m3/m3]
Connate water saturation swc 0.15. [m3/m3]
Temperature T Dependent variable. [K]
Boiling point of water–steam T b ≃ 373.15 . [K]
Water, steam thermal conductivity κw, κg 0.652, 0.0208. [W/(mK)]
Rock, composite thermal conductivity κr , κ 1.83 . [W/(mK)]
Water, steam viscosity µw , µg Eqs. (A.3) , (A.2). [Pa s]
Water, steam densities ρw, ρg 998.2, Eq. (A.4) . [kg/m3]
Rock porosity (constant) ϕ 0.38. [m3/m3]


