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OPERATOR-VALUED FREE ENTROPY AND MODULAR FRAMES∗
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Abstract. We introduce the operator-valued relative free entropy χ∗
B
(X1, X2, · · · , Xn : B) of

a family of self-adjoint random variables X1, X2, · · · , Xn in a B-valued noncommutative probability
space (A, EB,B). This notion extends D. Voiculescu’s relative free entropy Φ∗ which defined in
a tracial W*-noncommutative probability space to a more general context. The free entropy of a
semicircular variable with conditional expectation covariance can be computed by using the modular
frames and then we point out the relation between the free entropy of a semicircular variable and
the index of a conditional expectation. At last, we obtain an estimate of the free entropy dimension
δ∗
B,τ

.
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1. Introduction. About twenty years ago, Dan Voiculescu introduced a non-
commutative probability (or “free probability”) theory in the framework of operator
algebras. The theory soon became a powerful tool in the study of operator algebras.
Especially, its connection with random matrices and the notion of free entropy are
very important in the study of von Neumann algebras. Dan Voiculescu provided two
versions of free entropy: one is defined by matricial microstates approach and the
other is defined by infinitesimal microstates approach. Using the first version of free
entropy, Voiculescu proved the absence of Cartan subalgebras in free group factors
(see [15]) and Ge found the primeness of free group factors (see [6]). However, for
a number of questions, matricial microstates pose many technical difficulties and the
proofs of some important desired properties of the free entropy have remained out of
reach, so Voiculescu provided another route to free entropy– infinitesimal microstates
approach, which avoids matricial microstates. In this new approach the free fisher
information measure Φ∗ comes first and the free entropy is derived from it ([16],[17]).

In this paper we introduce the relative free entropy in the operator-valued frame-
work following D. Voiculescu’s idea. Originally, Voiculescu defined the relative free
entropy χ∗ in a tracial W* algebras A (that is, there is a faithful normal tracial state
τ on A). Now it is defined in an operator-valued noncommutative probability space
and τ is replaced by a conditional expectation EB of A onto a subalgebra B. It is
defined in a way that is almost identical to the definition of χ∗. So in order to define
relative free entropy in an operator-valued noncommutative probability space we must
define the operator-valued free Fisher information first. In fact We have introduced
the notion and investigated some properties of operator-valued free Fisher information
Φ∗

B in [7]. These properties are very similar to those of Φ∗ but we can not follow D.
Voiculescu’s method to prove them since EB is not tracial in general. The main tools
we used was R. Speicher’s cumulant function theory for noncommutative variables.
In this paper we review some of them and since the free entropy χ∗

B is defined by
free Fisher information, χ∗

B has the corresponding properties. A main result in this
paper is that the free entropy of a E−semicircular variable is very closely related to
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the index of E. In fact we obtain an explicit formula of χ∗
B(X : B) where X is a

E−semicircular variable. At last, we obtain an estimate of the relative free entropy
dimension δ∗B,τ . The estimate of free entropy dimension is very important since it is
essential in D. Voiculescu’s and Ge’s famous works in [15],[6].

2. Operator-valued free Fisher information. Let A be a von Neumann alge-
bra and let B be a von Neumann subalgebra of A. EB is a normal conditional expecta-
tion of A onto B. Then (A, EB,B) is called an operator-valued W ∗−noncommutative
probability space and an element in A will be called a random variable. In this paper
we always suppose the conditional expectations are faithful normal. We refer the
readers to [18] for more details on the operator-valued noncommutative probability
and we only restate the definition of amalgamated freeness here.

Definition 2.1. [18] Let (A, EB ,B) be a noncommutative probability space, and
let B ⊂ Ai ⊂ A, (i ∈ I) be subalgebras. The family (Ai)i∈I will be called B-free (or
free with amalgamation over B) if

EB(a1a2 · · · an) = 0

whenever aj ∈ Aij
with i1 6= i2 6= · · · 6= in and EB(aj) = 0, 1 ≤ j ≤ n. A family

of random variables ai ∈ A, (i ∈ I) will be called B-free if the family of subalgebras
generated by (B⋃{ai})i∈I is B-free.

Remark 2.2. Sometimes we can choose EB in a nature way. For instance, let
τ be a faithful normal state on A and satisfy στ

t (B) ⊆ B, ∀t ∈ R, where στ
t is the

modular operator. Then from [13], there exists a τ-compatible conditional expectation
EB of A onto B. Obviously, EB is faithful normal.

Obviously, we can define the B-valued inner product on A by 〈x, y〉B = EB(x∗y)
and its Hilbert C*-module completion will be denoted by L2

B(A).
The classical Fisher information is derived from the statistial estimation theory

which introduced by R. A. Fisher . If f is a bounded real random variable and the
distribution of f is Lebesgue absolutely continuous with density p then the Fisher
information Φ(f) is defined by

Φ(f) =

∫
(p′(t))2

p(t)
dt.

Another way to get the formular for Φ is to consider the derivation
d

dt
on L2(R, pdx).

If 1 is in the domain of

(
d

dt

)∗
then

Φ(f) =

∥∥∥∥
(

d

dt

)∗
1

∥∥∥∥
2

.

We refer the readers to [3] for more details on Fisher information.
By analogy with the classical case D. Voiculescu introduced the free Fisher infor-

mation of a family of self-adjoint random variables in a tracial W* noncommutative
probability space [16, 17]. In [7, 8] we considered the free Fisher information in an
operator-valued probability spaces and followed D. Voiculescu’s idea we introduced
the conjugate variable of a self-adjoint random variable first. Now we review some
definitions and propositions on the operator-valued free Fisher information.
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Definition 2.3. [8] Let (A, EB,B) be a B-valued noncommutative probability
space. Suppose B ⊆ C ⊆ A is a von Neumann subalgebra and X = X∗ ∈ A is
algebraically free from C modulo B. If there exists ξ ∈ L2

B(C[X ]) satisfying

EB(ξc0X · · ·Xcn) =

n∑

j=1

EB(c0X · · ·Xcj−1)EB(cjX · · ·Xcn), (1)

then ξ will be called the conjugate variable of X w.r.t. C and denoted by JB(X : C),
where L2

B(C[X ]) is the Hilbert B-module generated by C[X ] whose inner product induced
by EB. The free Fisher information Φ∗

B(X : C) is defined by

Φ∗
B(X : C) = EB(JB(X : C)JB(X : C)∗)

and the free Fisher information of a sequence of self-adjoint variables X1, · · · , Xn ∈ A
is defined by

Φ∗
B(X1, · · · , Xn : C) =

n∑

i=1

Φ∗
B(Xi : C[X1, · · · , X̂i, · · · , Xn]),

where C[X1, · · · , X̂i, · · · , Xn] := C[X1, · · · , Xi−1, Xi+1, · · · , Xn].

From the definition of conjugate variable, it is easy to see JB(X : C) = (∂∗(1⊗1))∗,
where ∂ is the derivative operator:

∂ : L2
B(C[X ]) −→ L2

B(C[X ]) ⊗ L2
B(C[X ])

∂(c0X · · ·Xcn) =

n∑

j=1

(c0X · · ·Xcj−1) ⊗ (cjX · · ·Xcn)

and ∂∗ is its conjugate operator. Thus this definition is an analogue of the classical
Fisher information.

Note that if JB(X : C) exists then it is unique since EB is faithful.
We have investigated some properties of operator-valued free Fisher information

in our paper [7], which are similar to those of D. Voiculescu’s free Fisher information.
We proved them mainly by R. Speicher’s cummulant function (see [9, 12]). Here we
only list some of them as follows:

Proposition 2.4. [7] Let X ∈ A be self-adjoint. We have:
(1) JB(X : C) is unique;
(2)EB(J (X : C)e) = EB(eJ (X : C)∗), ∀e ∈ L2

B(C[X ]).

Lemma 2.5. [7] Let (A, EB,B) be a B-valued noncommutative probability space
and let EC be a conditional expectation of A onto C such that EB = EBEC . ξ ∈ A is
the conjugate variable of X with respect to C if and only if ξ ∈ L2

B(C[X ]) and satisfies
the following equations:






k
(1)
C (ξb) = 0, ∀b ∈ C;

k
(2)
C (ξ ⊗ ba) = δaXED(b), ∀b ∈ C, a ∈ {X}⋃C;

k
(m+1)
C (ξ ⊗ b1a1 ⊗ · · · ⊗ bmam) = 0, ∀b1, · · · , bm ∈ C; m ≥ 2,

where a1, · · · , am ∈ {X}⋃C, and kC is the cumulant function induced by EC .
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Proposition 2.6. [7] Let B, C be von Neumann subalgebras of A satisfying B ⊆ C
and let X = X∗ ∈ A be self-adjoint. Assuming B[X ] and C are B-free in (A, EB,B),
then JB(X : B) = JB(X : C). More generally, JB(X : D ∨ C) = JB(X : C), if D ⊇ B
are free from B[X ] with amalgamation over B.

Corollary 2.7. [7]Let X, Y ∈ A be self-adjoint. Assume B[X ] and B[Y ] are
B-free in (A, EB,B). Then

Φ∗
B(X, Y : B) = Φ∗

B(X : B) + Φ∗
B(Y : B).

Proposition 2.8. [7]Let B, C be von Neumann subalgebras of A satisfying B ⊆
C and EB, EC be the conditional expectation of A onto B, C respectively. Suppose
X = X∗ ∈ A satisfying EB[X]EB = EB, where EB[X] : A → B[X ] is a conditional
expectation. Then Φ∗

B(X : B) = Φ∗
B(X : C) ⇐⇒ X and C are B-free.

The following two propositions are the generalizations of D. Voiculescu’s corre-
sponding results ([16]) in the operator-valued case.

Proposition 2.9. [7] (Analogue of Cramer-Rao inequality) X1, X2, · · · , Xn ∈ A
are self-adjoint, then the following equality holds:

Φ∗
B(X1, · · · , Xn : C)

n∑

i=1

‖EB(X∗
i Xi)‖ ≥ n2I.

Proposition 2.10. Let 1 ∈ B ⊆ A be a ∗-subalgebra. Xj = X∗
j ∈ A, X

(k)
j =

X
(k)∗
j ∈ A, 1 ≤ j ≤ n, k ∈ N such that

(1) X
(k)
j −→ Xj (k → ∞) and the limit is in the sense of B-distribution, i.e.

‖EB(P (X
(k)
j )) − EB(P (Xj))‖ −→ 0 (k → ∞), ∀P is a polynomial over B;

(2)‖JB(X(k) : B)‖2 ≤ C, where C is a constant and ‖x‖2
2 := ‖EB(xx∗)‖ . Then

lim inf
k→∞

‖Φ∗
B(X(k) : B)‖ ≥ ‖Φ∗

B(X : B)‖.

Proof. From the definition of conjugate variable, we have:

EB(JB(X : B)b0Xb1X · · ·Xbn)

=
∑

i

EB(b0X · · ·Xbj−1)EB(bjX · · ·Xbn)

= lim
k→∞

n∑

j=1

EB((b0X
(k) · · · bj−1))(EB(bjX

(k) · · · bn))

= lim
k→∞

(JB(X(k) : B)b0X
(k)b1X

(k) · · · bn)

= lim
k→∞

EB(JB(X(k) : B)b0Xb1X · · · bn)

= lim
k→∞

EB(EB[X]JB(X(k) : B)b0X · · ·Xbn).

So we infer that

lim inf
k→∞

‖Φ∗
B(X(k) : B)‖ ≥ ‖Φ∗

B(X : B)‖.
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Recall that a self-adjoint variable X ∈ (A, EB ,B) is called η-semicircular if it
satisfies:






k
(1)
B (X) = 0;

k
(2)
B (X ⊗ bX) = η(b), ∀ b ∈ B;

k
(n+1)
B (X ⊗ b1X ⊗ · · · ⊗ bnX) = 0, ∀ b1, · · · , bb ∈ B, n ≥ 2,

where η : B → B is linear and (k
(n)
B ) is the cumulant function induced by EB (see

[13]). For a semicircular variable with conditional expectation covariance (that is to
say η is a conditional expectation) its conjugate variable can be expressed by modular
frames (see [8]). Frame is a notion that appears frequently in wavelets theory and it
is a generalization of orthonormal basis in Hilbert space. D. Larson and some other
people studied it from the view of operator theory. In [4, 5], M. Frank and D. Larson
extended this notion to the Hilbert C∗-module framework and they have proved that
most results of the Hilbert space frame can be generalized to the Hilbert C∗-module
case. In this paper we mainly use some relations between the frames and the dual
frames.

Definition 2.11. [4] Suppose {fi}i∈I ⊆ L2
D(A) and satisfies: ∃C, D > 0 such

that

C〈x, x〉D ≤
∑

i

〈x, fi〉D〈fi, x〉D ≤ D〈x, x〉D . (2)

Then {fi}i∈I will be called a modular frame in L2
D(A). In particular, if C = D = 1

then it will be called normalized tight. When the series in (2) converges in norm it
will be called standard.

Note that in this paper we assume all of frames are standard.

Noting that a frame is a D-linear dense set in the Hilbert C∗-module, in fact, we
have:

Lemma 2.12. [4] (1) If L2
D(A) is finitely or countably generated Hilbert D module,

then it possesses a normalized tight frame.
(2) If {xi} is a frame in L2

D(A), then there is a adjointable D-linear operator S :
L2
D(A) −→ L2

D(A) (we call it frame operator and it is positive and invertible) such
that x =

∑
j

S−1(xj)〈xj , x〉, ∀x ∈ L2
D(A). In particular, when {xj} is normalized tight

we have x =
∑
j

xj < xj , x >.

If {yi} is a frame such that x =
∑
i

yi < xi, x >D then it will be called a dual

frame of {xi}.
In [8], we have computed out the free Fisher information of a semicircular variable

with conditional expectation covariance by modular frames. Here we review some
results.

Proposition 2.13. [8] Let D ⊆ B ⊆ A be a von Neumann subalgebras in-
clusion. E : B → D, EB : A → B are conditional expectations and suppose
ED = EEB, L2

D(B) = B. Let {fi} ∈ L2
D(B) be a frame and suppose S is the frame



336 M. GUO, B. MENG AND X. CAO

operator of {fi}. Let X = X∗ ∈ (A, EB,B) be a E-semicircular variable. Then

JD(X : B) =
∑

i

giXE(f∗
i );

JD(X : D) = X ;

JB(X : B) =
∑

i

giXf∗
i ,

where gi = S−1(fi), ∀i ∈ I.

Corollary 2.14. [8] With the above notations and conditions. We have

Φ∗
D(X : B) =

∑

j

E(fj)E(g∗j ) = 1;

Φ∗
D(X : D) = 1;

Φ∗
B(X : B) =

∑

i

fig
∗
i .

Obviously, Φ∗
B(X : B) =

∑
i

fig
∗
i = Ind(E) (see [8]).

3. Operator-valued relative free entropy. By the notion of relative free
Fisher information and its properties, we can define the relative free entropy cor-
respondly, prove some basic properties and show it is very closely related to the index
of conditional expectations.

In [2], A. Connes and E. Størmer extended the notion of entropy to the non-
abelian framework of operator algebras. The first step was to define the entropy of
a finite dimensional subalgebra and more generally the relative entropy between two
finite dimensional subalgebras B1, B2 ⊆ M , as a substitute of the entropy and relative
entropy for partitions: Let M be a finite algebra with trace τ and let S be the set
of all finite families (x1, x2, · · · , xn) of positive elements in M with

∑
xi = 1. If

η : [0,∞) → (−∞,∞) is defined by η(t) = −tlnt, then

H(B1|B2) = sup
(xi)∈S

∑

i

(τηEB2
(xi) − τηEB1

(xi))

is the entropy of B1 relative to B2. If B2 = C, then H(B1|C) is simply the entropy
of B1.

In the particular case when M is commutative and B1, B2 are generated by some
partitions of the unity P1, P2, H(B1|B2) coincides with the classical relative entropy
h(P1|P2). Quite surprisingly the above entropy is closely related to the index of
subfactor. In fact, S. Popa proved if N ′ ⋂ M = C, then H(M |N) = ln[M : N ], where
N ⊆ M is a subfactors inclusion(see [10]).

Now we follow D. Voiculescu’s idea of defining the relative free entropy to define
the operator-valued free entropy and study the relation between index and entropy.
We do not restrict ourself to the II1 subfactors case. In fact we can consider general
von Neumann algebras and the index of conditional expectations.

The index of conditional expectations was investigated by Y. Watatani, S. Popa
etc[11, 14]. A conditional expectation E : M → N is said to be of finite index if
there exists a positive scalar k > 0 such that the mapping kE − idM is positive.
Denote by Indw(E) (called the probabilistic index in [11]) the infimum of all such k.
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If there is no such k, put Indw(E) = ∞. The condition Indw(E) < ∞ is equivalent
to the existence of a N -orthonormal basis {mi}i∈I of the N -right Hilbert module M
such that

∑
i

mim
∗
i is weakly convergent. Moreover this limit is the same for every

N -orthonormal basis and is denoted by Ind(E) ([1, 11]).
Before introducing the notion of operator-valued relative free entropy we introduce

the integral in noncommutative von Neumann algebras first.
Let B be a von Neumann algebra on the Hilbert space H and let A(t) ∈ B, t ∈ R.

we say:
∫ ∞

0

A(t)dt = A,

that means:
∫ ∞

0

〈A(t)(x), y〉dt = 〈Ax, y〉,

for all x, y ∈ H . Obviously, A ∈ B.
We mention some calculational properties of the above integral which we will use

in this paper.

Lemma 3.1. (1)
∫ b

a
A · A(t)dt = A ·

∫ b

a
A(t)dt;

(2)
∫ b

a
(A(t) − A)dt =

∫ b

a
A(t)dt − A(b − a);

(3)if A is a positive and invertible operator, then
∫ ∞
0

1
1+t

I − A(I + tA)−1dt =
− lnA.

Proof. (1), (2) can be obtained directly by the definition and we only prove (3).
Since A is positive and invertible, σ(A) ∈ (0,∞). Denote the spectral projections

of A by E(z). we have:
∫ ∞

0

< (
1

1 + t
I − A(1 + tA)−1)(x), y > dt

=

∫ ∞

0

∫ ∞

0

( 1

1 + t
− z(1 + tz)−1

)
d〈E(z)(x), y〉dt

=

∫ ∞

0

∫ ∞

0

( 1

1 + t
− z(1 + tz)−1

)
dtd〈E(z)(x), y〉

=

∫ ∞

0

(ln(1 + t) − ln(1 + tz)) |∞0 d〈E(z)(x), y〉

=

∫ ∞

0

ln
1

z
d〈E(z)(x), y〉 = 〈− lnA(x), y〉.

Thus we obtain the result.

We introduce the notion of operator-valued relative free entropy as follows:

Definition 3.2. (A, EB,B) is a B-valued noncommutative probability space, and
B ⊆ C ⊆ A is a subalgebra of A. We define the B-valued relative free entropy of
self-adjoint variables X1, X2, · · · , Xn with respect to C by

χ∗
B(X1, X2, · · · , Xn : C)

=
1

2

∫ ∞

0

(
n

1 + t
I − Φ∗

B(X1 + t
1

2 S1, · · · , Xn + t
1

2 Sn : C)

)
dt +

n

2
log 2πe,
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where the S′
js are I-semicircular and C[X1, · · · , Xn], {S1}, · · · , {Sn} are B-free.

Proposition 3.3.

(1)

χ∗
B(X1, · · · , Xn, Y1, · · · , Ym : C)

≤ χ∗
B(X1, · · · , Xn : C) + χ∗

B(Y1, ·, Ym : C);

(2) If B[X1, · · · , Xn] and C[Y1, · · · , Ym] are B−free, then

χ∗
B(X1, · · · , Xn, Y1, · · · , Ym : C)

= χ∗
B(X1, · · · , Xn : B) + χ∗

B(Y1, · · · , Ym : C);

(3) If B[X1, · · · , Xn] and C are B−free, then

χ∗
B(X1, · · · , Xn : B) = χ∗

B(X1, · · · , Xn : C).

Proof. All these are consequences of corresponding properties of Φ∗
B.

Proposition 3.4.

χ∗
B(X1, · · · , Xn : C) ≤ −n

2
lnn +

n

2
ln(

∑
‖EB(X∗

i Xi)‖) +
n

2
log 2πe.

Proof. By Proposition 2.9, we have:

Φ∗
B(X1 + t

1

2 S1, · · · , Xn + t
1

2 Sn : C)

n∑

i=1

‖EB(Xi + t
1

2 Si)
∗(Xi + t

1

2 Si)‖

= Φ∗
B(X1 + t

1

2 S1, · · · , Xn + t
1

2 Sn : C)

n∑

i=1

‖EB(X∗
i Xi) + t‖

≥ n2I.

It follows that

χ∗
B(X1, · · · , Xn : C)

=
1

2

∫ ∞

0

(
n

1 + t
I − Φ∗

B(X1 + t
1

2 S1, · · · , Xn + t
1

2 Sn : C)

)
dt +

n

2
log 2πe

≤ 1

2

∫ ∞

0

(
n

1 + t
I − n2I∑ ‖EB(X∗

i Xi)‖ + nt

)
dt +

n

2
log 2πe

=
1

2
(n ln(1 + t)|∞0 − n ln(

∑
‖EB(X∗

i Xi)‖ + nt)|∞0 ) +
n

2
log 2πe

= −1

2
lnn +

1

2
n ln(

∑
‖EB(X∗

i Xi)‖) +
n

2
log 2πe.

The following theorem is one of our main results in this paper.

Theorem 3.5. Let E : B −→ D be a conditional expectation of B onto D of
finite index and let X = X∗ ∈ A is a E−semicircular variable. Then

χ∗
B(X : B) = −1

2
ln(Ind(E)) +

1

2
log 2πe. (3)
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To prove the above theorem we need several lemmas.

Lemma 3.6. [18] Let X1 be η1-semicircular, X2 be η2-semicircular and suppose
X1, X2 are B-free. Then X1 + X2 is η1 + η2-semicircular.

From the proof of Proposition 2.13 (see [8]), we have

Lemma 3.7. Let (A, EB,B) be a noncommutative probability space and let D ⊆ B
be a subalgebra. If η : B −→ B be a linear map satisfying η(d1bd2) = d1η(b)d2,
∀d1, d2 ∈ D, b ∈ B and there exist {fi}, {hi} ∈ B such that x =

∑
i

hiη(f∗
i x) =

∑
i

fiη(h∗
i x), ∀x ∈ B, then for any selfadjoint η-semicircular variable X ∈ A, we have

JB(X : B) =
∑
i

fiXh∗
i .

Lemma 3.8. Let X = X∗ be E-semicircular. Then for all t ∈ R,

JB(X + t
1

2 S : B) =
∑

i

(I + tInd(E))−1fi(X + t
1

2 S)f∗
i ,

where {fi} is a normalized tight modular frame in the inner product module (B, 〈 , 〉D),
where 〈 , 〉D is the inner product induced by E.

Proof. It is easy to see E + tI : B −→ B satisfying (E + tI)(d1bd2) = d1(E +
tI)(b)d2, ∀b ∈ B, d1, d2 ∈ D and for all x ∈ B,

∑

i

(I + tInd(E))−1fi(E + tI)(f∗
i x)

= (I + Ind(E))−1(x +
∑

i

tfif
∗
i x)

= (I + tInd(E))−1(x + tInd(E)x)

= (I + tInd(E))−1(1 + tInd(E))x

= x.

Hence from lemma 3.7 we obtain the desired result.

Proof of Theorem 3.5.

Φ∗
B(X + t

1

2 S : B)

=
∑

i,j

EB(I + tIndE)−1fi(X + t
1

2 S)f∗
i

fj(X + t
1

2 S)(((I + tIndE)−1fj)
∗)

=
∑

i,j

(I + tIndE)−1fi(E + tI)(f∗
i fj)f

∗
j (I + tIndE)−1

=
∑

j

fjf
∗
j (I + tIndE)−1.
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Hence

χ∗
B(X : B) =

1

2

∫ ∞

0

(
1

1 + t
I − Φ∗

B(X + t
1

2 S : B))dt +
1

2
log 2πe

=
1

2

∫ ∞

0

(
1

1 + t
I −

∑

j

fjf
∗
j (I + tIndE)−1)dt +

1

2
log 2πe

=
1

2

∫ ∞

0

(
1

1 + t
I − IndE(I + tIndE)−1)dt +

1

2
log 2πe

=
1

2
ln(1 + t)(1 + tIndE)−1|∞0 +

1

2
log 2πe

=
1

2
ln Ind−1E +

1

2
log 2πe

= −1

2
ln(IndE) +

1

2
log 2πe.

Note that ln(IndE) is in the sense of functional calculus.

Corollary 3.9. If D ⊆ B ⊆ A are II1 factors inclusion and D′ ⋂B = C.
E : B → D is the trace-preserving conditional expectation and let X = X∗ be a
E-semicircular variable then

χ∗
B(X : B) = −1

2
H(B|D)I +

1

2
log 2πe.

4. An estimate for free entropy dimension. According to D. Voiculescu’s
work, we can define the free (relative) entropy dimension for random variables. The
estimate of entropy dimension is very important since it has been applied to solve
many classical problems in operator algebras such as D. Voiculescu’s and Ge’s famous
work (See [15],[6]). Now our definition of free (relative) entropy dimension is different
from the notion in [16] since we defined it in terms of the operator-valued free relative
entropy.

Definition 4.1. Let X1, X2, · · · , Xn ∈ (A, EB,B), and let τ be a state on A .
Define the free entropy dimension δ∗B,τ of X1, · · · , Xn w.r.t. B, τ by

δ∗B,τ (X1, · · · , Xn) = n + lim sup
ε→0

τ(
χ∗
B(X1 +

√
εS1, · · · , Xn +

√
εSn)

| ln√
ε| ) (4)

where S′
is are I-semicircular and {S1}, · · · , {Sn}, {X1, · · · , Xn} are B-free.

Before estimate δ∗B,τ , we need do some preparations.

Lemma 4.2. Let X, Y ∈ (A, EB,B) be B-free and let B ⊆ C ⊆ A. Let JB(X : C)
exist and let ECEC[X+Y ] = EC . Then JB(X + Y : C) exists and JB(X + Y : C) =
EC[X+Y ]JB(X : C).

Proof. We use Lemma 2.5 to prove this lemma and the notations be as the same
as in Lemma 2.5. By the definition of conjugate variables and Theorem 2.5 in [9] we
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have

k
(1)
C (EC[X+Y ]JB(X : C)) = EC(JB(X : C)) = 0;

k
(2)
C (EC[X+Y ]JB(X : C) ⊗ c(X + Y ))

= k
(2)
C (EC[X+Y ]JC(X : C) ⊗ cX) + k

(2)
C (EC[X+Y ]JC(X : C) ⊗ cY )

= k
(2)
C (EC[X+Y ]JC(X : C) ⊗ cX)

= EB(c);

km+1
C (EC[X+Y ]JB(X : C) ⊗ c1(X + Y ) ⊗ · · · ⊗ cm(X + Y )) = 0

where m ≥ 1 and c, c1, · · · , cm ∈ C.

Lemma 4.3. Let X1, X2, · · · , Xn ∈ A. {S1}, · · · , {Sn} are E-semicircular and
B-free from {X1, · · · , Xn}. Then

Φ∗
B(X1 +

√
εS1, · · · , Xn +

√
εSn : B) ≤ Φ∗

B(X1, · · · , Xn : B).

Proof. From the definition

Φ∗
B(X1 +

√
εS1, · · · , Xn +

√
εSn : B)

=

n∑

i=1

EB(JB(Xi +
√

εSi : B[X1 +
√

εS1, · · · , ̂Xi +
√

εSi, · · · , Xn +
√

εSn]);

(JB(Xi +
√

εSi : B[X1 +
√

ε, · · · , ̂Xi +
√

εSi, · · · , Xn +
√

εSn])∗

≤
n∑

i=1

EB(EB[X1+
√

εS1,··· ,Xn+
√

εSn]JB(Xi : B[X1, · · · , X̂i, · · · , Xn]);

EB[X1+
√

εS1,··· ,Xn+
√

εSn]JB(Xi : B[X1, · · · , X̂i, · · · , Xn])∗)

≤
n∑

i=1

EB(JB(Xi : B[X1, · · · , X̂i, · · · , Xn])JB(Xi : B[X1, · · · , X̂i, · · · , Xn])∗)

= Φ∗
B(X1, · · · , Xn : B),

where EB[X1+
√

εS1,··· ,Xn+
√

εSn] is the conditional expectation of A onto B[X1 +√
εS1, · · · , Xn +

√
εSn] such that EBEB[X1+

√
εS1,··· ,Xn+

√
εSn] = EB. The first in-

equality follows from Proposition 2.6 and Lemma 4.2 and the second follows from the
conditional expectation’s Cauchy-Schwartz inequality.

Lemma 4.4. With the above notations, we have

Φ∗
B(X1 +

√
εS1, · · · , Xn +

√
εSn : B) ≤ n

ε
IndE.
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Proof.

Φ∗
B(X1 +

√
εS1, · · · , Xn +

√
εSn : B)

=
n∑

i=1

EB(JB(Xi +
√

εSi : B[X1 +
√

εS1, · · · , ̂Xi +
√

εSi, · · · , Xn +
√

εSn])

·(JB(Xi +
√

εSi : B[X1 +
√

ε, · · · , ̂Xi +
√

εSi, · · · , Xn +
√

εSn])∗

≤
n∑

i=1

EB((EB[X1+
√

εS1,··· ,Xn+
√

εSn](JB(
√

εSi : B(
√

εS1, · · · ,
√̂

εSi, · · · ,
√

εSn))

·(EB[X1+
√

εS1,··· ,Xn+
√

εSn](JB(
√

εSi : B(
√

εS1, · · · ,
√̂

εSi, · · · ,
√

εSn))))∗)

≤
n∑

i=1

EB(EB[X1+
√

εS1,··· ,Xn+
√

εSn]JB(
√

εSi : B) · EB[X1+
√

εS1,··· ,Xn+
√

εSn]JB(
√

εSi : B)∗)

≤
n∑

i=1

EB(JB(
√

εSi : B) · JB(
√

εSi : B)∗)

=
n

ε
Φ∗

B(Si : B)

=
n

ε
Ind(E).

The last equality follows from Corollary 2.14.

Theorem 4.5. With the above notations, we have

δ∗B,τ (X1, · · · , Xn : B) ≥ n.

In addition if X1, · · · , Xn is a B-free family of I-semicircular variables in A then

δ∗B,τ (X1, · · · , Xn : B) = n.

Proof. Let {S′
1}, · · · , {S′

n} be I-semicircular and B-free from
{X1, · · · , Xn; S1, · · · , Sn} and let 0 ≤ ε ≤ 1, M = Φ∗

B(X1, · · · , Xn : B).

χ∗
B(X1 +

√
εS1, · · · , Xn +

√
εSn : B)

=
1

2

∫ ∞

0

(
n

1 + t
− Φ∗

B(X1 +
√

εS1 +
√

tS′
1, · · · , Xn +

√
εSn +

√
tS′

n : B)

)
dt

+
n

2
log 2πe

=
1

2

∫ ∞

0

n

1 + t
− Φ∗

B(X1 +
√

ε + tS1, · · · , Xn +
√

ε + tSn : B)dt +
n

2
log 2πe

=
1

2

∫ ∞

ε

n

1 + t − ε
− Φ∗

B(X1 +
√

tS1, · · · , Xn +
√

tS2)dt +
n

2
log 2πe

≥ 1

2

∫ 1

ε

n

1 + t − ε
− Φ∗

B(X1, · · · , Xn : B)dt +
1

2

∫ ∞

1

(
n

1 + t − ε
− n

t
)dt +

n

2
log 2πe

=
1

2
(n ln(1 + t − ε)|1ε − M(1 − ε) + n ln(2 − ε))I +

n

2
log 2πe

=
1

2
(n ln(2 − ε) − M(1 − ε) + n ln(2 − ε))I +

n

2
log 2πe
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The second equality holds because the distribution of
√

εSn +
√

tS′
n is the same as

that of
√

ε + tSn by Lemma 3.6.
So from the definition of δ∗B,τ ,

δ∗B,τ (X1, · · · , Xn : B) ≥ n.

When X1, · · · , Xn is a B-free family of I-semicircular variables, we have:

χ∗
B(X1 +

√
εS1, · · · , Xn +

√
εSn : B)

=
1

2

∫ ∞

0

(
n

1 + t
I − Φ∗

B(X1 +
√

εS1 +
√

tS′
1, · · · , Xn +

√
εSn +

√
tS′

n : B)

)
dt

+
n

2
log 2πeI

=
1

2

∫ ∞

0

(
n

1 + t
I − Φ∗

B(X1 +
√

ε + tS1, · · · , Xn +
√

ε + tSn : B)

)
dt +

n

2
log 2πeI

=
1

2

∫ ∞

ε

(
n

1 + t − ε
I − Φ∗

B(X1 +
√

tS1, · · · , Xn +
√

tS2)

)
dt +

n

2
log 2πeI

where X1, · · · , Xn; S1, · · · , Sn; S′
1, · · · , S′

n is a free family with amalgamation over B
and S1, · · · , Sn; S′

1, · · · , S′
n are all I-semicircular variables.

And since Xi +
√

tS1 are (1 + t)I-semicircular variables,

Φ∗
B(X1 +

√
tS1, · · · , Xn +

√
tSn) =

n

1 + t
I.

Thus δ∗B,τ (X1, · · · , Xn) = n + lim sup
ε→0

τ(
χ∗
B(X1 +

√
εS1, · · · , Xn +

√
εSn)

| ln√
ε| ) = n.

REFERENCES

[1] M. Baillet, Y. Denizeau and J.-F. Havet, Indice d’une esperance conditionelle, Compositio
Math., 66 (1998), pp. 199–236.

[2] A. Connes et E. Störmer, Entropy for automorphisms of II1 von Neumann algebras, Acta
Math, 134 (1975), pp. 288–306.

[3] T. M. Cover and J. A. Thomas, Elements of information theory, John Wiley & Sons, Inc.
Chichester(1976).

[4] M. Frank, D. R. Larson, A module frame concept for Hilbert C*-modules, in: Functional and
Harmonic Analysis of Wavelets (San Antonio, TX, Jan. 1999), A.M.S., Providence, R.I.,
Contemp. Math., 247 (2000), pp. 207–233.

[5] M. Frank, D. Larson, Frames in Hilbert C*-modules and C*-algebras, J. Operator Theory,
48 (2002), pp. 273–314.

[6] L. Ge, Applications of free entropy to finite von neumann algebrasII, Annals of Mathematics,
147 (1998), pp. 143-157.

[7] B. Meng, M. Guo, X. Cao, Free Fisehr information and amalgamated freeness, Appl. Math.
Mech., 25:10 (2004), pp. 1007–1013.

[8] B. Meng, M. Guo, X. Cao, Free Fisher information and modular frames, to appear in Proc.
Amer. Math. Soc.

[9] A. Nica, D. Shlyakhtenko, R. Speicher, Operator-valued distributions. 1. Characterizations
of freeness, IMRN 2002:29 (2002), pp. 1509–1538.

[10] M. Pimsner, S. Popa, Entropy and index for subfactors, Ann scient. Ec. Norm. Sup., 4:19
(1986), pp. 57–106.

[11] S. Popa, Clsssification of subfactors and their endomorphisms, CMBS 86, AMS (1995).
[12] R. Speicher, Combinatorial theory of the free product with amalgamation and operator-valued

free probability theory, Memoirs of AMS No. 627 (1998), pp. 1–88.
[13] V. Sunder, An invitation to von Neumann algebras, Springer-Verlag (1987).
[14] Y. Watatani, Index for C∗−subalgebras, Memoirs AMS 83:424 (1990).



344 M. GUO, B. MENG AND X. CAO

[15] Dan Voiculescu, The analogues of entropy and of fisher’s information measure in free prob-
ability theory III: The absence of cartan subalgebras, Geometric and Functional Analysis,
6:1 (1996), pp. 172–199.

[16] Dan Voiculescu, The analogues of entropy and of Fisher’s information measure in free
probability theory V: Noncommutative Hibert Transforms, Inventiones mathematicae, 132
(1998), pp. 189–227.

[17] Dan Voiculescu, The analogues of entropy and of fisher’s information measure in free prob-
ability theory VI: Liberation and mutual free information, Advances in Mathematics, 146
(1999), pp. 101–166.

[18] Dan Voiculescu, Operations on certain Non-commutative operator-valued random variables,
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