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A MATHEMATICAL FRAMEWORK FOR QUANTIFYING
PREDICTABILITY THROUGH RELATIVE ENTROPY *

ANDREW MAJDAT, RICHARD KLEEMAN?!, AND DAVID CAI®

Abstract. Kleeman has recently demonstrated that the relative entropy provides a signifi-
cant measure of the information content of a prediction ensemble compared with the climate record
in several simplified climate models. Here several additional aspects of utilizing the relative en-
tropy for predictability theory are developed with full mathematical rigor in a systematic fashion
which the authors believe will be very useful in practical problems with many degrees of freedom in
atmosphere/ocean and biological science. The results developed here include a generalized signal-
dispersion decomposition, rigorous explicit lower bound estimators for information content, and rig-
orous lower bound estimates on relative entropy for many variables, N, through N, one-dimensional
relative entropies and N, two-dimensional mutual information functions. These last results provide
a practical context for rapid evaluation of the predictive information content in a large number of
variables.

1. Introduction. Donsker and Varadhan (see the research-expository article by
Varadhan 1984, 1985 for many additional references) have made profound use of the
entropy and relative entropy in their studies of large deviations in probability the-
ory. Following the pioneering work by H.T. Yau (1991), Olla, Varadhan, and Yau
(1993) have utilized relative entropy methods to prove interesting theorems on hydro-
dynamic limits of various particle systems. In this paper, we develop a mathematical
framework for predictability utilizing the relative entropy. While no difficult rigorous
mathematical results are presented here, the authors believe the systematic framework
developed below will be very useful in quantifying the predictability and information
content in ensemble predictions for highly inhomogeneous dynamical systems arising
in diverse practical applications such as climate or weather prediction and biological
molecular dynamics. In the remainder of the introduction, we present a brief discus-
sion to these topics as well as the role of relative entropy in quantifying predictability
and also briefly outline the remainder of the paper.

1.1. Ensemble Prediction and Relative Entropy as a Measure of Pre-
dictability. For chaotic dynamical systems as usually occur in modeling geophysical
flows or other complex applications, one typically is not only interested in the be-
havior of an individual solution but the statistical behavior of an entire ensemble of
solutions starting from nearly the same initial data. We illustrate this behavior next
in an idealized setting. To make matters concrete consider a large system of stochastic
ODE'’s for a vector X € RN, N > 1, given by

dX = F(X(t),t)dt + (X (t), t)dW (1.1)

where F is a vector-field of dimension N , W is a standard K-dimensional Wiener
process, and g is an IV X K matrix valued function. Examples with the structural form
in (1.1) are abundant both for geophysical flows (Majda and Wang, 2002; Kleeman,
2000) and for biomolecular dynamics (Schutte, Fisher, Huisinga, Deuflhard, 1999).
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Consider a deterministic initial data for (1.1), Xo, and an associated probability
density consisting of small random perturbations of this initial data. This probability
density measures the uncertainty in the measurement of the initial data. For example,
the random initial data might be sampled from a Gaussian probability distribution
centered about )_('0,

|X—Xg|2

po(X) = (2m) N2 N2 =5t cx 1 (1.2)

where € < 1 measures the variance in each component. In other words, the ensemble
of initial data satisfies

[ Em(®)ax = %,
(1.3)
/(Xi — Xo0,i)(X; — Xj,0)po(X)dX = €dy;

where §;; are the Kronecker symbols and take the value 1 if ¢ = j and zero otherwise.

In general, here we assume an initial probability measure pg (X ), reflecting an ensemble
of initial conditions. The initial probability density evolves to a new probability

density pt()? ) for t > 0 which satisfies the Fokker—Planck equation

O ((Q/2)ijpe)
9X,0X; (1.4)

0 > . =
apt(X) = —divg(Fps) + ZZJ:

pt(X)‘t:O = pO(X)

where Q(X,t) is the N x N matrix, Q = g()?,t)gT(X:,t). Of course, in practice, it
is impractical to solve the Fokker—Planck equation in (1.4) for N > 1 and instead a
large ensemble of solutions is generated by sampling the initial distribution, pg (X' ),
and generating individual solutions by solving (1.1) for each initial data and then
buildirlg an approximation to the ensemble mean and typically the first few moments

of p(X), ie.

/Xipt(X)dX = Xt,iv
(1.5)
/(Xz' — X)X — X1j) po(X)dX = M2 (1)

for |a| + |B] < 2L. Such an approach is feasible with the current generation of su-
percomputers provided that the time of integration is not unrealistically long. For
example, in current weather prediction models for mid-latitudes, on the order of 50
different realizations are utilized while intermediate models for predicting El Nino in-
volve ensemble prediction with as many as 500 different realizations (Kleeman (2000)).
In practice, only the low order moments for a suitable collection of variables can be
measured with statistical significance from such an ensemble, i.e.,

X, is measured for 1 <17 < M,

1.6
M;"JB is measured for 1 <i,5 < M and |a| + |3| < 2L with L =2 or L = 4. (1.6)

1.1.1. Relative Entropy as a Measure of Predictive Information Con-
tent. How much information does an ensemble prediction have beyond the historical
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climate record? How can this be quantified? Consider a subset X;, 1 < ¢ < M of
the variable X defining the full dynamics in (1.1). For this collection of variables X;,
the historical climate record is a probability measure, II(X7, ..., X,s), which can be
regarded as known. When will a short term ensemble prediction be useful and con-
tain more information beyond the climate record? In an important paper, Kleeman
(2000) has suggested that given a probability measure p(Xi, ..., Xs) for an ensemble
prediction at a given time, the relative entropy quantifies this additional information.
In other words, the number P(p,II) where

P@JUz—anH%:H@szz#pm(ﬁ) (1.7)

precisely measures the information content (Cover and Thomas, 1991) in the pre-
diction ensemble p, beyond that in the historical climate record determined by II.
Important mathematical support for the practical significance of relative entropy is
given by the property,

P(p,II) > 0 unless p = II. (1.8)

Furthermore, for prediction ensembles which satisfy the stochastic equations in (1.1),
under suitable additional hypotheses it is known (Cover and Thomas (1991), Lasota
and Mackey (1994)) that

P(p;,II) decreases in time, and

1.9

P(p:, 1) — 0, as t — . (1.9)

For a general probability density, p(Xi,..., X ), the mean and covariance ma-
trix, Covp, are defined by

(1.10)

mmmz/waM&—Em

Note that Covp is a symmetric positive definite matrix since for any vector £ € RM,

Z(Covp)ij&&:/<Z§¢(Xi—7¢)> p>0 (1.11)

provided that £ # 0 and p is not a delta function.

1.1.2. Practical and Mathematical Issues for Predictability. Some im-
portant issues regarding predictability are the following:

(1.12)

A) How much do the respective information in the mean and/or the covariance
of both the prediction, p, and climate distribution, II, influence the informa-
tion content in a prediction, P(p,II), for a given set of variables in a given
dynamical system? How can this be quantified?

B) In a given dynamical system, which subset of variables, X1, ..., X/ are more
predictable than others? How can this be quantified?
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C) How can one practically compute or approximate the relative entropy, P(p, II)
for a complex many degree of freedom system and a subset of variables with
M > 17
D) Are there mathematical strategies to rigorously estimate, P(p,IT) > P(p.,II),
in a given context where P(p.,II) can be evaluated either analytically or by
a rapid numerical procedure?
All of these important practical issues will be addressed below through elementary
mathematical ideas.

1.1.3. Gaussian Climates. In many practical applications (Toth, 1991; Schnei-
der and Griffies 1999, Kleeman, 2000), the overall dynamics associated with (1.1) is
extremely complex and chaotic but nevertheless the climate distribution is essentially
Gaussian on a suitable subset of variables and thus is completely determined by its
mean and covariance. For such a Gaussian distribution,

o(X1,..., X)) = (2m) " M/2(det €)™/ 2 exp (_%(()Z' — Xo),c7 (X — )Z'o))>

(1.13)
where )?0 € RM is the mean,

/Xjno =Xo;, 1<j<M (1.14)
and C = (Cj;) is the positive definite, C > 0, symmetric, M x M covariance matrix,
[ = X0) (X = X000 = Cs;. (1.15)

The practical and mathematical issues for predictability listed in (1.12) are most read-
ily developed for the special situation where II(X7, ..., Xs) is defined by a Gaussian
climate. The theory for this important special case is developed in Section 2 below.
The more general theory for the practical and theoretical issues in (1.12) is developed
in Sections 3 and 4 with the case of a Gaussian climate as a pedagogical guideline.
The important practical issue in (1.12) C) is addressed in Section 4. Furthermore,
many systems of interest as important models for geophysical flows have explicit
Gaussian climate distributions, (Majda, Timofeyev, Vanden Eijinden, 2001; Majda
and Timofeyev, 2000; Majda and Wang, 20002).

1.1.4. Invariance of the Predictability Measure Under a General
Change of Coordinates. Clearly, a good predictability measure for features of
a given dynamical system should not depend on the coordinate system used to de-
scribe the underlying dynamics. While this seems obvious intuitively, many ad-hoc
predictability measures utilized in practice fail to have this property and often de-
pend on the choice of metric (energy, geopotential height etc.); Schneider and Griffies
(1999) have emphasized this point in their work. Here we show that the predictability
measure, P(p,II), defined in (1.7) by the relative entropy is invariant under a general
nonlinear change of coordinates.

Consider a smooth invertible transformation from R™ to R defined by

Y - oY) =X.

Any smooth probability density, p()z ), determines a smooth probability density pé(?)

via ”le Ol]llula
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where %{; denotes shorthand for the M x M Jacobian matrix of the mapping, (‘% =

(?)3;}) and det is the determinant.

—

The standard change of variable formula shows that if p(X) is a probability density

then pg (}7) is also a probability density: the factor det (%) is needed to guarantee

this. The invariance of the relative entropy predictability measure under change of
coordinates is the statement that

/pln (%) = P(p,11) = P(po,Ils) = /pq’ In (1%) (1.17)

for any smooth invertible transformation ®(Y).

However, it follows immediately from (1.16) and the change of variables formula that
(1.17) is true.

2. Quantifying Predictability for Gaussian Climate
Variables. First as a simple application of the principle in (1.17) we show how
measuring predictability for a Gaussian climate can be simplified through the special
use of a linear change of coordinates. For the Gaussian climate defined in (1.13),
consider the change of variables

X =X, +CY%Y. (2.1)

In (2.1), C'/2, is the square root of the positive definite matrix C; the matrix C'/? is
also symmetric and positive definite, commutes with C, and satisfies C*/2C~1C'/2 = I.
Since C is positive definite symmetric, there is an orthonormal basis, {¢2,}, called
empirical orthogonal functions (EOF’s) in the atmosphere/ocean community and cor-
responding positive eigenvalues, A\; > Ao > --- > Ajpy > 0 so that the covariance
matrix C is diagonalized, i.e.

cf =Y Néi(f.é). (2:2)

The eigenvectors, €, is called the first EOF, etc. With (2.2), the matrix C'/2 is
defined by

CU2F=3"N"%e(f @) (2.3)

From (1.16) and (1.13) it follows that in the coordinate system defined by (2.1), the
Gaussian climate distribution has the simplified form

(V) = (21) M/2e- 3171, (2.4)
With (1.16) and (2.1), given p(X), one gets
pa(Y) = p(Xo + CY2Y) det(C/?). (2.5)

Given the probability density p(X: ) with mean Xo and covariance matrix, Covp, de-
fined in (1.10), it follows easily from (2.1), (2.3) that the mean and covariance of the
transformed probability density, pe, are given by

=

mean pp =Y = C_1/2(§ - E0)7

(2.6)
Covps = c1/2 Covp c1/2,
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Next we address the practical and mathematical issues elucidated in 1.1.2 re-
garding predictive information content for the special case of a Gaussian climate
distribution. Here as shown above in (2.1)—(2.5) without loss of generality we assume

—

X =(Xy,...,Xn) and
Ty (X) = (2m)~M/2e 21X, (2.7)

First we calculate the relative entropy of p(X) which measures the additional infor-
mation in p beyond IIy. For simplicity in notation, here we suppress the preliminary
transformation ® that leads to the canonical form in (2.7). Recall that the entropy
of a probability density, p, is given by

S(p) =—/RMplnp (2.8)

which measures the average lack of information in p (Cover and Thomas, 1991; Majda
and Wang, 2002).
With (2.7), we calculate

P(p, 1) =/p1np—/plnﬂo

=-S(p) + % In(2m) —I—/ ﬁp (2.9)

r 2

while for the Gaussian distribution in (2.7) we have the explicit formula

S(IIp) = % In(27) + % (2.10)

Thus, we obtain the Relative entropy identity for a normalized Gaussian climate in
RM,

v |2
P(p,Ip) = S(Ip) — S(p) + /RM %p— % (2.11)

The elementary identity in (2.11) states that except for an interesting correction
involving second moments, the measure of predictability through relative entropy for
a Gaussian climate is directly related to the entropy difference. In fact, an immediate
corollary of (2.11) is the following:

Assume the ensemble prediction probability density p satisfies

219 219 (2.12)
| X|°p =M = [ |X|*IIy, then P(p,Iy) = S(Iy) — S(p).
Thus, if the trace of the second moments of the probability density p coincides with
that of the climate, the relative entropy is exactly the entropy difference.

2.1. The Signal and Dispersion Decomposition for a Gaussian Climate.
For the Gaussian climate in (2.7), here we develop a simple decomposition of the pre-
dictability measure P(p,Il) into signal and dispersion components. This provides a
theoretical framework for addressing the issues in (1.12) A). Roughly speaking, the
signal measures the contribution of the mean to the information content of the predic-
tion beyond the climate while the dispersion measures the information content of the
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variance and other high moments for the prediction. Given the fact that the climate
is normalized to have zero mean, the knowledge that the prediction ensemble has a
non-zero mean has potentially significant information content beyond the normalized
variance of the prediction. Measures of predictability involving only the variance alone
were the usual concept in atmosphere/ocean science (Schneider and Griffies (1999))
until the important paper of Kleeman (2000) who introduced the signal-dispersion
decomposition for the special case when both p(X) and IIy(X) are Gaussian distri-
butions. In that paper, Kleeman (2000) also demonstrated the practical utility of the
signal component in predictions for a series of stochastic and deterministic models for
El Nino while Kleeman, Majda and Timofeyev (2002) demonstrated the surprising im-
portance of the signal component in determining predictive utility for the truncated
Burgers—Hopf models which are one-dimensional models with Gaussian climates and
statistical features resembling those for the atmosphere (Majda and Timofeyev, 2000;
Majda and Wang, 2002).

For a Gaussian climate, the signal-dispersion decomposition is an immediate con-
sequence of the formula in (2.11) and the elementary identity

JECE ﬁ ( [+ [ox- Wp) — |mean p> + tr(Covp)  (213)

where given an M x M matrix A = (4;;), the trace of A,tr(4) = >, A;. With
1<i<M
(2.11) and (2.13), we have the following

PROPOSITION 2.1. (The Signal Dispersion Decomposition for Gaussian Climate
Variables) Under these circumstances P(p,Ily) admits the signal-dispersion decompo-
sition,

P(p,Ilp) =S+ D (2.14)

where the signal S is given by
1
S = §|mean p|? (2.15)
and the dispersion, D, is given by

D(p,IIy) = SIp) — S(p) + %(tr(Covp) — tr(Covlly)). (2.16)

The formulas in (2.14), (2.19) and (2.16) are an immediate consequence of (2.11),
(2.13) and the identity, tr(cov IIy) = M. Clearly, only a non-zero mean value of p
contributes to the information content of the prediction as measured by the signal. On
the other hand, only higher moments of p contribute to the information content in the
dispersion, D, as defined in (2.16). Note that both S(p) and ¢r(Covp) have identical

values for p and any translated distribution with an arbitrary mean, pz = p(X — 7)
for a constant vector 7; thus, for the dispersion, D

D(pz, 1) = D(p,1y) for any 7 (2.17)

and the dispersion in (2.16) measures the information content in p beyond Iy which is
independent of the value of the mean of p. These facts provide the intuition behind the
signal-dispersion decomposition in Proposition 2.1. This decomposition is generalized
to suitable non-Gaussian climate distributions in Sections 3 and 4 below.
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2.2. Rigorous Lower Bounds on Predictive Information Content with
a Gaussian Climate. As noted in (1.5), (1.6), in practical ensemble prediction the
mean and a few moments up to order typically at most four of the predictive proba-
bility density, p()? ), are known with significant accuracy. Here we provide a rigorous
mathematical framework for estimating the predictive information content by quan-
tities which can be readily computed. Thus, we address the issues in C) and D) from
(1.12) for the special case of a Gaussian climate as in (2.7). A significant straightfor-
ward generalization for a non-Gaussian climate is presented below in Section 3.

Motivated by (1.5), (1.6), we assume that we know the mean and a finite number

of the higher moments for p(X), i.e.

. _ _ 2.18
My = /(Xz‘ - X)) (X; - X,)p, (218)

0<a+p<2L,1<i,j<M, with L > 1 fixed.

The issues we address here are how can we estimate and rigorously bound P(p,Ilj)
in a systematic and practically significant fashion?

As background information, recall that the Gaussian distribution maximizes the
entropy among all probability measures with specified first and second moments.
Recall from (2.14)—(2.16) that

P(p,1y) = —=S(p) + R(p,1lp) (2.19)

where R depends solely on the first and second moments of p, i.e.
1 1 9
R(p, 1) = S(Ip) + §(tr(Covp) —tr(Covlly)) + i(mean p)°. (2.20)

From (2.19) it follows that if we pick a probability density, p*, which maximizes
the entropy, S(p), subject to some of the constraints with L > 1 so that R(p,IIy)
remains constant, then automatically P(p*,Ily) provides a rigorous and potentially
practical lower bound on the information content in the ensemble prediction beyond
the climate. Next, we formalize the statements above in a precise fashion.

For any fixed L with 1 < L < L, define a set, C;, of linear constraints on
probability measures through all the moment constraints in (2.18) for o + 8 < 2L.
By definition, the prediction ensemble, p, belongs to C; so this set is non-empty and
convex while the entropy is a concave function on this set. Thus, we can always find

p;E which satisfies the mazimum entropy principle

Pyp €Cr S(poz) = max S(p). (2.21)
Clearly, we have
S(par,) > S(p2r,) > S(p) forany 1< L; <Ly <L. (2.22)

Furthermore, because L > 1, and R(p,IIy) only involves moments up to order two,

R(p;i,ﬂo) = R(p,IIy) for any i, with 1< L<L (2.23)
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and p] = p{; is a Gaussian distribution with the same mean and variance matrix as
p: thus pf is given by explicit formulas as in (1.13)—(1.15).

(2.24)

With (2.19)-(2.24), we have the following

PROPOSITION 2.2. (Estimating the Information Content in an Ensemble Predic-
tion for Gaussian Climate Variables) For any fixred number of prediction moments,
2L, with L > 1 with a Gaussian climate, we have the rigorous lower bounds

In fact, the same chain of estimates in (2.25) also applies to the dispersion D(p,Ily),
alone, i.e.

D(p,To) > D(p3;,.To) > D(p};,To) > D(pg, o), for L>L>1. (2.26)

The estimates in (2.25) are generalized to a non-Gaussian climate in Section 3
below. Kleeman (2000) introduced and applied the relative entropy, P(p,Ilj), for
measuring the information content where he assumed that both p and IIy were Gaus-
sian distributions. Here in Proposition 2.2, we have shown that the relative entropy
of the Gaussian distribution, P(p§;,Iy) is automatically a rigorous lower bound on
the information content of any prediction density p with the same first and second
moments. With the formula in (2.16) for the dispersion and (1.13), for the Gaussian
estimator P(p{;,1lp), we have

S(o) — S(p&) = In(det(Covp)~*/?) (2.27)
so that

1
D(p:Tlo) = In(det(Covp)™/2) + 2 (tr(Cov p) — M),

. (2.28)
P(pE,HO) = D(pE’HO) + §|mean p|2'

Of course D(p§,IIp) is just the relative entropy of the Gaussian measure with the
same variance as P but with zero mean.

Finally we mention that the practical advantage for utilizing the maximum en-
tropy principle in (2.21) with the explicit moment information in (2.18) is that stan-
dard constrained optimization numerical methods can be utilized to find p; 7 accu-
rately. Here an even number of moments are utilized to guarantee that the optimiza-
tion problem has a solution.

2.3. Choosing Reduced Variables to Order the Predictive Information
Content. Here we describe a nice construction for a Gaussian prediction distribution,
P, essentially due to Schneider and Griffies (1999) which organizes the variables X
into subspaces with a hierarchy of predictive information content. Recall that through
the change of variables in (2.1), a general Gaussian climate assumes the canonical
form in (2.4) while the relative entropy of a general prediction remains invariant; the
covariance matrix for a general prediction distribution in the new coordinates is given
by the formula in (2.6). For estimating predictive information content, it is very
natural to introduce a second change of coordinate which diagonalizes the covariance
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matrix of p. Since Covp is a symmetric positive definite M x M matrix, there exists
a rotation matrix, O, with O7 = 07!, so that

1 _ _ 0 Y2 0
O CovpO=D=]| . . . .1 >0 (2.29)

where D is the positive diagonal matrix with non-zero diagonal entries, v; > 0. Con-
sider the new variable

X=0Z. (2.30)

Since O is a rotation matrix, it follows that the Gaussian climate measure Iy(Z)
retains the same normalized form in (2.4).

In this coordinate system, as a consequence of (2.29), the Gaussian distribution
pE(Z ) with the same variance and mean as p, assumes the factored form

= Z—Z) def
pe(Z) =ML, (2my) 270 = I p} (Z) (2.31)

while the climate distribution ITy(Z) retains the factored form

_, z?
o(Z) =M, (2n) V2 e 2 =11 10 4(Z;). (2.32)

In (2.31), Z; is the mean of p(Z) in the i-th coordinate. In the Z variables, with
(2.31) and (2.32), the Gaussian estimator for the predictability splits into a sum of
one dimensional principal predictability factors

M

1,
P(p,Ty) > P(ply, o) ZP P 10o.) Zi Myt 4y =1+
=1 =1

Z7]. (2.33)

DN | =

Clearly, the first term in the summation in (2.33) is the relative entropy contribution
to the dispersion from the one dimensional Gaussian distribution p; in (2.31) while
the second term arises from the contribution of p} to the signal. Thus, these variables
obviously can be organized into groups with higher predictive information content in
the dispersion, the signal or the total combination depending on the nature of the
application. These variables are called the Principal Predictability Components. The
change of coordinates in (2.30) will be utilized in Section 4 to get improved estimators
beyond Proposition 2.2 for multi-variable distributions in terms of mutual information
of joint distributions.

2.4. The Relative Entropy and the Entropy Difference for Quantifying
Predictive Information Content. For a normalized Gaussian climate IIy and a
Gaussian prediction, pg, Schneider and Griffies (1999) advocate the entropy difference
n (2.26)

AS(pa; o) = S(I1y) — S(pg) = In(det(Covpg)~/?) (2.34)

as a measure of predictive information under the tacit assumption that distributions
pg of interest for prediction satisfies AS(pg,Ily) > 0. First, consider the special case
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of (2.34) for a one-dimensional probability distribution for a quantity with variance
for pg given by 2. Clearly, from (2.34) we have

AS(pg,Ty) <0 if and only if ¢% > 1. (2.35)

Thus, the entropy difference does not measure information content for distributions
with variance o2 > 1. On the other hand, the fact that the variance of a predicted
quantity at a short fixed time, such as the temperature at a fixed location, is predicted
to be higher than that of the historical climate record has obvious information con-
tent ignored in (2.34). With the mathematical property in (1.8), the relative entropy
predictive measure always assigns non-trivial information content to these events. Fur-
thermore, as mentioned earlier in Section 2.1, the entropy difference in (2.34) cannot
measure the information content expressed in the fact that the mean of the prediction
density, pg, can be non-zero and different from that of Iy while the signal contribu-
tion to the relative entropy measure of predictive information content developed in
Section 2.1 does this precisely. Finally, as developed in 2.1, the relative entropy is
invariant under a general change of coordinates while the entropy difference in (2.34)
is only unchanged by linear transformation. Quite often quantities such as humidity
can be complex nonlinear functions of other variables in the atmosphere/ocean system
so a measure of information content which is unchanged by nonlinear transformations
is clearly superior to one which is not. For all of these three reasons, we claim that
even for Gaussian predictions and climate, the relative entropy measure is superior
to the entropy difference in quantifying predictive information content. For general
Markov processes such as a finite Markov chain with a non-uniform invariant mea-
sure, there are additional compelling dynamic reasons to favor the relative entropy
over entropy difference related to the decrease of information as statistical equilibrium
is approached (Cover and Thomas (1991)).

3. Explicit Estimators and the Signal-Dispersion Decomposition for
Non-Gaussian Climate Variables. Here we generalize the results in Proposi-
tion 2.1 and Proposition 2.2 to non-Gaussian climate variables. Concrete applications
of the material developed in this section below to non-Gaussian climate variables in
illustrative models chaotic dynamical systems is presented elsewhere (Cai, Kleeman,
and Majda, 2002 A), B)). For simplicity in exposition, we assume scalar probability
distributions in this section and use the notation, p.(\) for the scalar climate distri-
bution. We do this only for simplicity in writing. All the results presented below
extend immediately to multi-variate distributions with more complex notation.

We assume a given climate distribution p.()), for a scalar variable which is cen-
tered so that it has zero mean,

/)\pc()\)d)\ ~0. (3.1)

We consider the pdf from an ensemble prediction, pg(\). As discussed in the introduc-
tion, it is a reasonable strategy in practice to measure some moments of the ensemble
prediction distribution, ps()\),

A) /_\d = M1 = /)\pd(A)dA (32)
B) M; = /(A —Xa)? pa(N)dA, 2 <j<2L.

For retaining statistical significance in an ensemble prediction, one usually measures
only the first two or four moments in practice so that L =1 or L = 2 in (3.2) B).
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3.1. Theory for Explicit Estimators for Predictability. Here we generalize
the discussion in Section 2.2 to non-Gaussian climates. With the moment information
from the ensemble prediction in (3.2), it is natural to define p}; as the probability
measure with the least bias which retains the information in (3.2). To do this, we
introduce the set of probability measures which satisfy the 2L constraints in (3.2),

PMosy,. Since —pln (1%) is a concave function of p, we define p}; via the maximum

entropy principle (Lasota and Mackey, 1994)

Spape) = max  S(pa,pe)- (3.3)

The usual Lagrange multiplier calculation yields the explicit formula for pJ,
N 2L ‘
A) —In <@> = a;(A=A) + a1 (3.4)

Pe )

j#1
where

B) «;,0 <j <2L are the Lagrange multipliers for the 2L constraints.

With (3.2) and (3.3), p}; provides a rigorous predictability estimator for the en-
semble prediction

P(pa;pe) < P(pa,pe)- (3.5)

Furthermore, with (3.2) and (3.4), there is an explicit formula for the Predictability
Estimate,

2L B ) B
P(pz,pc) = - Z /p;ozj()\ — )\d)j — (Ozo + )\dozl). (3.6)

Next, assume that we have ensemble predictability estimators, pj ;. pj 1, where pj ;|
involves 2L; constraints and p;) Lo involves 2Ly constraints with L; < L. By the
definition in (3.3), we have

S(PZ,LNPC) > S(p;ki,Lgapc) (37)

which yields the Predictability FEstimator Principle:

P(pi.r,>Pe) < P(Par, Pe) < P(pd,Ppe) (3.8)
Clearly this theory generalizes the one in Section 2.2 to non-Gaussian climate variables

REMARK. We can anticipate that the above predictability estimators will be
quite useful in problems where the ensemble prediction distribution is not highly
intermittent; if the tail of the ensemble prediction distribution matters a lot, then the
above predictors will probably perform quite poorly. See Cai, Kleeman, Majda (2002
A), B)) for discussion of this issue.
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3.2. The Generalized Signal and Dispersion Decomposition. Here we
define useful signal and dispersion contributions for a given ensemble prediction gen-
eralizing the case of a Gaussian climate in Section 2.1. To begin our discussion, we
examine the decomposition for the predictability estimate in (3.6) which we recall
here,

2L )
P(pz,pc) = - Z /pZOéj(A - j\d)] - (Oéo + 5\,1041). (3.9)

The first term in (3.9) contributes, Dy directly to the dispersion by construction since

2L
D, = /p;; > a;(A =Xy’ (3.10)
Jj=1

so that D; reflects the contributions from the variance, skewness, kurtosis, etc. of the
prediction ensemble centered about the ensemble mean. Similarly, the last term in
(3.9) makes a direct contribution, Sy, to the signal,

S1 =~y (3.11)

since the mean enters explicitly in ;. The subtle terms in the signal-dispersion
contribution involve a splitting of ag into signal and dispersion pieces.

To discuss the decomposition of agy, we make a natural simplifying assumption
on the climate distribution, p.. We assume that the climate distribution, p., also
arises from a maximum entropy principle expressing the measure with least bias given
information on moments, i.e. p. satisfies

S(p.) = max S(p) (3.12)

pePME

where
S(p) = —/plnp. (3.13)

Here PMsg; is the set of probability measures satisfying the imposed constraints on
climate moments so that

p € PM3; means
/)\p =0 (3.14)
/AJ‘p=M;, 2<j<2L

with M7, the prescribed measured values of the j-th moment in the climate. The
climate measure, p., determined from (3.12) has the least bias given the statistical
measurements in (3.14). Thus, (3.12) is the most natural way to do climate measure-
ments given the behavior of climate moments in (3.14). Also, clearly for L = 1 this
construction reduces to the case for Gaussian climate variables discussed in Section 2.
The standard Lagrange multiplier calculation for (3.12), (3.14) yields the formula
5 alx .
pe=e =17 e (3.15)
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where af are the Lagrange multipliers for the climate moments guaranteeing the
constraints in (3.14) and

2L

c - Z O‘;)‘j
et = /e =1 dA. (3.16)

For the special climate distributions defined in (3.15), it follows from (3.4) A) and
(3.15) that the constant —ayg in (3.9) is given by

2L _ . 2L .
—( > oo i(A=Ag)! Far A+ Y ajx\J—i-aS)
—ap=—1In /e i=2 i=t . (3.17)

Take the polynomial of degree 2L in the exponent of the integrand and trivially
explicitly recenter this polynomial about A\; as follows,

2L o 2L ] 2L -
daiA =X + A+ Y ash =D "al (A= Ag) — ap© (3.18)
Jj=2 Jj=1 Jj=1
_ d,c S\ o _d,c
o 000 = da) - g
With (3.18) and (3.17),
—ap = af +atc — ln/e*‘td’c(’\*j‘d)d)\. (3.19)

Which parts of (3.19) contribute to the signal and the dispersion? Clearly, the value
of

In / e=@" A=A gy = In / e O gy (3.20)

for any shift 7 so that this term contributes to the dispersion although ¢%¢ has
Lagrange multiplier coefficients itself that are functions of \; also, af defined in (3.16)
involves purely the climate alone and does not depend on Ay so this term cannot
contribute to the signal and instead normalizes the dispersion. On the other hand,
from (3.18), &g’c clearly is a function of Ay and should be grouped with the signal.
Thus, respective contributions to the signal and dispersion from —aq in (3.17) are
defined by

—ap =Sy + Dy (3.21A)
where
S, = alre (3.21B)
and
Dy =af —In / e=®" =2 g\ with ¢4 defined in (3.18). (3.21C)

By combining (3.9) to (3.21) we obtain the following
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PROPOSITION 3.1 (Generalized Signal-Dispersion Decomposition). Assume that
the climate distribution, p has the special form in (3.15). Then the predictability
estimate P(pl, pc) admits the explicit decomposition into signal and dispersion,

P(pg:pc) =S +D (3.22)
where the signal S is given by
S =alc - Xay (3.23)
with dg’c defined in (3.18) and the dispersion is given by
D =D + D, (3.24)
where Dy is given in (3.10) and Dy is given in (3.21C).

It is a simple exercise for the reader to show that the decomposition in Proposi-
tion 2.1 is recovered for a Gaussian climate.

4. Practical Predictability Bounds for Many Degrees of Freedom. Here
we address the practical issue in (1.12) C). How can one practically compute or
approximate the relative entropy, P(p,II), for a complex dynamical system with many
degrees of freedom and a subset of variables of dimension N with NV > 17 Below, we
show how to obtain a rigorous lower bound on the information content of an ensemble
prediction through a sum of

A) N one-dimensional relative entropies

B) N two-dimensional mutual informations of suitable marginal distributions.
The practical significance is that the sum of N one and two dimensional relative and
mutual entropies can be evaluated rapidly and efficiently for N > 1 while the direct
evaluation of the relative entropy in (1.7) as an N-dimensional integral is prohibitively
expensive or practically impossible. Yet, we establish below with full mathematical
rigor that a sum of such quantities provides a lower bound on the predictive informa-
tion content.

As discussed in the introduction, the natural predictability measure is the relative
entropy,

P(p,10) :/RNpln(%)df. (4.1)

Here we make the additional assumption that the variables & are chosen conveniently
so that the probability distribution, II(#), with respect to these variables has the
Factored Form:

N
I1(Z) = Hﬂj(xj)- (4.2)

This occurs in many applications and in particular for the Gaussian case.

Next for a factored climate measure, II(Z), we show that P(p,II) splits into a
sum of two interesting relative entropy measures. First, we introduce the marginal
probability distributions, p;(Z;) for the |j| variables &; where j = (j1,... 7jm) and
without loss of generality, j; < jo < -+ < jlﬂ' The p; are defined by

p;(T5) = /Rme p(x1,...,ZN) H dzr. (4.3)

L#ji_
1<i<l5]
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Below we omit the parentheses in denoting pj(f]a). Next, we expand the relative
entropy measure via

’P(pI[):/ plnp—/ pln Il (4.4)
RN RN

N
:/RNplnp—;/Rlpj(mj)lnﬂj(xj)dxj
N N
:/ D lnp—Zhlpj df—l—Z/ pj(lnp; — InTl,(x;))dz;
RN j=1 =171

N N
=P p[@p | +D P,
j=1 j=1

We record the identity in (4.4) as the following Predictability Measure Decomposition:

PROPOSITION 4.1. For a factored climate satisfying (4.2), the relative entropy
predictability measure exactly splits into the decomposition,

N N
Pip. ) =P p, [[op; | +D_ P, 10). (4.5)
j=1 j=1

The importance of (4.5) is that the term
N
Z P(p;,11;) is a sum of one-dimensional predictability contributions (4.6B)
j=1
relative to the climate while
N
P | p, H ®p; | involves only the prediction probability density alone and (4.6B)
Jj=1
the extent to which it factors into a product.

N
Since P p, I ®pj> > 0 always we have the Predictability Bound for Factored
j=1
Climate

N
P(p,10) > ZP(PmHj) (4.7)

i.e. the sum of the 1 — D marginals always bound the predictive information content.
While practically this is less useful, we also note that by the same reasoning

N
Pp, ) =P |p,[[@p; |- (4.8)

j=1

Of course, the bound in (4.8) completely ignores the information in the climate record.
However, at very short times in a prediction, this other term could be very important.
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For the extreme special case with N = 2,
P(p,p1 ® p2) is the mutual information (4.9)

i.e. a measure of the information content in a probability distribution beyond its
factors with P(p,p1 ® p2) = 0 only for x1,xs independent random variables (Cover
and Thomas, 1991). Clearly we have the expansion in terms of the entropy in (4.4),

P(p,p1 ®@p2) = —[S(p) — (S(p1) + S(p2))]- (4.10)

Proposition 4.1 shows that for factored climates, one needs to obtain useful lower
bounds on the relative entropy distribution

N
P p, H Qp;
j=1

in addition to estimating the one-dimensional entropies in order to obtain practical
estimates for the information content. Next, we show how to obtain lower bounds
on this quantity in general in terms of N-two dimensional mutual informations. Our
discussion relies on two well-known mathematical facts (see Cover and Thomas, 1991):

Taking Marginals Always Reduces Relative Information
for any marginal distributions defined by ;

SubAdditive Information Bound

Consider an arbitrary marginal, p;(fj) and split } = 31 U fg u ;3 as a disjoint
union of three sets. Define

p12 is marginal defined w.r.t. vector fl Ufg

P23 is marginal defined w.r.t. vector fg U fg

po is marginal defined by J,

p123 is marginal, p;(fj), defined by j = 71 U ja U js.

We have the SubAdditive Information Bound
S(p123) + S(p2) < S(p12) + S(p23)

These two principles are utilized in obtaining lower bounds as follows; Subadditivity
yields

N N
P (p, ®p¢> =-S(p)+ ZS(pi)
N
> S(ps,..Nn) —S1,3,...8) —S(p2,3,...N) + ZS(Pi)
=[=S(p13,...n) +S(ps3,...n) +S(p1)] + [-S(P2.3,..8) + S(p3,..n) + S(p2)]

=P(p13,...N,P1 @ P3,...N) (4.11)

N
+P(p2,3,. NP2 ®@p3,..N)+ P <p3,...,N, ®pi> .

=3
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Next the lower bound for marginals yields

A) P(pis,...N,p1®@ps,...N) > Ppi,3,p1 @p3)
o (4.12)

B) P(p2s3,..N:D2®ps3,.. N) (p2,3, P2 ® p3).
Combining (4.11) and (4.12) yields

LEMMA 4.1. For general N

N N
P <p7®pi> > P(p1,3,p1 @ p3) + P(p2,3,p2 @ p3) + P <p3,.4.,1v7®pz‘> - (4.13)

i=1 =3

REMARK. The advantage of (4.13) is that it can be iterated and applied succes-
N

sively to P { ps,.. N, @ pi) to yield bounds in terms of the mutual information i.e.
i=3

applying the lemma on p3 . yields

N N
P (m,...,m@m) > P(ps,5,p3@ps5) +P(pa5, pa®@ps) +P <p57...,N,®pi> - (4.14)

i=3 =5

Combining Proposition 4.1 and continuing these calculations we obtain a Lower Bound
for Predictability via 1-Variable Relative Entropy and 2-Variable Mutual Information
for a Factored Climate.

PRrOPOSITION 4.2. Consider a general predictability distribution for general
p(ZN) (for any permutation of x1...xN)
1) If N is odd

N—
2

w

P(p,1I) > Z [P(p2j+1,2j+3, P2j+1 ® P2j+3) + P(P2j+2,2+3, P2jt+2 ® P2j+3)]
=0

J (4.15)
+Y Pp;, 10 ).
i=1
2) If N is even
N—4
2
P(p, 1) > [P(p2j+1,2j+3 D2j+1 @ P2j+3) + P(P2j+2,2j+35 P2j+2 @ D2j+3)]
=0
4.16
i (4.16
+ P (pN-1,N:PN-1 ® DN) + Z P(p;,1L;).
i=1

Proposition 4.2 achieves the practical goal of estimating the information content
rigorously through NV one-dimensional relative entropies and N two-dimensional mu-
tual informations. Practical applications of these ideas will be presented elsewhere to
models of interest in the geosciences with many degrees of freedom.

We end this section with a simple remark for a Gaussian climate, ITy. If we utilize
the special variables ordering predictive information content from Section 2.3 above,
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then for the Gaussian predictability estimator, pg, it follows easily from (2.33) and
Proposition 2.1 that

N N
> P IL) = > P(pg i IL) = P(pg, o).

i=1 i=1

Thus, when the special basis ordering information content and depending on p is
utilized for a Gaussian climate, the one-dimensional relative entropies already have
higher information content than the simplest Gaussian estimator and any improved
estimates of these as well as any use of the mutual information automatically increases
our knowledge of the information content in the prediction.

4.1. The Signal-Dispersion Decomposition for Many Variables. Finally
we make a remark which allows us to generalize the Signal-Dispersion decomposition
developed in Section 2.1 and Section 3 for a multi-variable probability distribution
with a factored climate. First, observe from (4.4) that

N N
P p,H®pj = —S(p)+Y_Spy)

Jj=1

and also that the entropy is translation invariant, S(p) = S(p,) for any shift 7.
Thus, necessarily P (p, vazl ®pj) contributes only to the dispersion of the signal-

dispersion decomposition. Under the assumptions of Section 3 on II; Proposition 3.1
guarantees that the one-dimensional distributions P (p;, II;) have the signal-dispersion
decomposition

P(pj,Hj) :Dj +Sj .

Combining the above two remarks, we obtain the generalized Signal-Disperson De-
composition

PROPOSITION 4.3. For a factored climate with I1; determined as in Section 3,
P(p,I)=8S+D

where the signal is the sum of the univariate signals

while

N N
DZZDj#’IP p,]:[@pj
j=1 j=1

with D; the univariate dispersions where S;, D; are determined in Proposition 3.1.
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