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ON THE SPECTRUM OF THE SCHUR COMPLEMENT OF THE
STOKES OPERATOR VIA CONFORMAL MAPPING ∗

SÁNDOR ZSUPPÁN†

Abstract. We investigate the eigenvalues and eigenfunctions of the Schur complement operator
of the first kind Stokes problem posed on a plane domain and give results on the number, multiplicity
and stability of these eigenvalues in dependence on the problem domain.

1. Introduction. The Schur complement operator of the Stokes problem on a
plane domain Ω,

−∆u + grad p = f, div u = 0 on Ω, (1)
u = 0 on ∂Ω, (2)

is defined by S = div∆−1
0 grad, where ∆0 denotes the vector Laplace operator cor-

responding to homogeneous Dirichlet boundary values. The eigenvalues of the Schur
complement operator, i.e.

∆u = grad p; divu = λp in Ω ; and u = 0 on ∂Ω,

are important for stability and error estimates connected with the Stokes problem
since here the so-called inf-sup constant

inf
0�=p∈L2,0

sup
0�=u∈(H1

0 )2

(div u, p)20
(u, u)1(p, p)0

= β2
0 > 0 (3)

is involved, and also for the iterative solution of discretized Stokes and Navier-Stokes
problems. Here is L2,0 the subspace of L2(Ω) of square integrable functions with zero
integral over Ω, where (p, q)0 =

∫
Ω

pqdx is the scalar product. (H1
0 )2 is the Sobolev

space of vector functions with componentwise generalized derivatives in L2(Ω) and
with zero boundary values in the sense of traces on the boundary of Ω, where the scalar
product is defined by (u, v)1 =

∫
Ω

∑2
i,j=1

∂ui

∂xj

∂vi

∂xj
dx. Preliminary work on different

properties of related eigenvalue problems has been done by [1]-[5], [7], [8], [10], [18]-
[20]. However, explicit values of the inf-sup constant for special domains are known
only in a few cases: for the circle, the annulus [3], and the ellipse, see [10], and for an
infinite strip - assuming periodicity along the strip [13], and, in the three-dimensional
case, for the sphere [18]. Some lower and upper bounds for inf-sup constants of several
domains are derived in [16], the use of this knowledge for the acceleration of iterative
methods is shown in [17]. [6] contains related work.

We start in Section 2 from results of [20] (see Lemma 1 and Theorem 2 below) and
examine in detail the resulting eigenvalue problem which turns out to be connected
to an eigenvalue problem for a matrix MS . This gives Corollary 9 below for the
eigenvalues of the Schur complement operator on plane domains arising as conformal
maps of the unit disc by a univalent polynomial function. So we have the opportunity
to describe the eigenfunctions and eigenvalues and to calculate the inf-sup constant
of such domains. In Section 4 we generalize Theorem 2. We give examples how this
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134 S. ZSUPPÁN

theorem can be used to calculate the eigenvalues of the Schur complement of the
Stokes operator (and hence the inf-sup constant) on a plane domain if we have the
conformal map of the unit disc onto that domain. In Theorem 19 we investigate
the relationship between the multiplicity of the eigenvalues of the Schur complement
operator and the symmetry of the domain. We show in Section 5 the continuous
dependence of the matrix MS on the mapping function. We also investigate some
examples concerning criteria of continuity for the inf-sup constant with respect to the
domain.

2. Domains obtainable by polynomial mappings. The following result
gives the representation for the solutions of (1) – physically the momentum equa-
tion – in the homogeneous case and for simply connected plane domains Ω which are
conformal maps of the unit disc D.

Lemma 1. (Lemma 3.7 in [20]) Let g be the conformal map of the unit disc D
onto Ω, p = 2 Re f , f holomorphic on D. The functions u : D → C, for which the
transformed function u ◦ g−1 fulfils the homogeneous momentum equation

∆(u ◦ g−1) = grad(p ◦ g−1) (4)

on Ω can be represented by the formula

u =
1
2
gf̄ + v1 + v̄2 (5)

with holomorphic functions v1 and v2. Further u has the divergence

div(u ◦ g−1) ◦ g = Re f + 2 Re
v′1
g′

. (6)

Using the representation (5) and (6), Theorem 3.1 in [20] offers a possibility to
describe the eigenvalues and eigenfunctions of the Schur complement operator S of
the Stokes equation on plane domains which are polynomial conformal maps of the
unit disc D.

Theorem 2. (Theorem 3.1 in [20]) Let g be a bijective conformal mapping
D → Ω of the form

g(z) =
M∑

m=0

amzm (7)

with g′ �= 0 on D̄,

1
g′(z)

=
∞∑

�=0

b�z
�. (8)

Then we have for the Schur complement operator S, defined by Sp = div u, of the
Stokes equation

• for f(z) = zn with n ≥ M , the functions pR := 2 Re f and pI := 2 Im f are
eigenfunctions of S to the eigenvalue 1

2 ;
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• for f(z) =
∑M−1

n=0 pnzn

g′(z) , the function pR := 2 Re f leads to

SpR =
1
2
pR + 2 Re

∑M−1
n=0 qnzn

g′(z)
, (9)

and pI := 2 Im f leads to

SpI =
1
2
pI − 2 Im

∑M−1
n=0 qnzn

g′(z)
, (10)

where the conjugate linear mapping (p�)�=0...M−1 �→ (qk)k=0...M−1

qk =
M−1∑
l=0

sk,�p̄� (11)

is defined by the coefficients

sk,� =
{−k+1

2

∑M
m=k+1+� amb̄m−k−1−� for 0 ≤ k + � ≤ M − 1

0 otherwise.
(12)

Observe that the conjugate linear mapping (11) is described by a matrix of special
triangular form

MS = −1
2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

s0 s1 s2 . . . . . . sM−1

2s1 2s2 . . . . . . 2sM−1 0
3s2 . . . . . . 3sM−1 0 0
...

...
...

...
...

...
...

...
MsM−1 0 0 . . . . . . 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(13)

The entries of this matrix,

sk = ak+1b̄0 + ak+2b̄1 + · · · + aM b̄M−k−1 (14)

for k = 0, 1, . . . , M − 1 correspond to (12).
Introduce the conjugacy operator C : x + iy �→ x − iy and the vectors q :=

(q0, . . . , qM−1)T and p := (p0, . . . , pM−1)T using the coefficients of (11). Solving the
eigenvalue problem

MSCp = µp, (µ ∈ C, p �= 0) (15)

we have q = µp and ∑M−1
n=0 qnzn

g′(z)
= µ

∑M−1
n=0 pnzn

g′(z)
= µf(z).

Now using (9) and (10), there follows

SpR =
1
2
pR + 2 Re(µf(z)), (16)

SpI =
1
2
pI − 2 Im(µf(z)). (17)
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In the following section we investigate the validity of |µ| ≤ 1
2 in (15) and the case of

complex eigenvalues. If µ is real and |µ| ≤ 1
2 then we have

SpR =
(

1
2

+ µ

)
pR, with pR = 2 Re

∑M−1
n=0 pnzn

g′(z)
, (18)

SpI =
(

1
2
− µ

)
pI , with pI = 2 Im

∑M−1
n=0 pnzn

g′(z)
, (19)

where p = (p0, p1, . . . , pM−1)T is an eigenvector to the eigenvalue µ.
Therefore the second part of Theorem 2 implies that λ = 1

2 +µ and λ = 1
2 −µ are

eigenvalues of the Schur complement operator S of the Stokes problem on Ω with the
complex conjugate eigenfunctions pR and pI above. (If pR = 0 or pI = 0 then they
are not eigenfunctions.) The first part of Theorem 2 states that 1

2 is an eigenvalue
of the Schur complement operator with infinite multiplicity, the eigenfunctions are
pR = 2 Re(zn) and pI = 2 Im(zn) for n ≥ M .

3. The eigenvalue problem of MS ◦C. In this section the conformal mapping
g of the unit disc D onto the simply connected domain Ω is assumed to satisfy the
conditions of Theorem 2.

Lemma 3. Γ := (a1, 2a2, . . . , MaM )T is an eigenvector of MS to the eigenvalue
− 1

2 .

Proof. The matrix MS can be decomposed as MS = − 1
2DÂCA−1 where

Â =

⎛
⎜⎜⎜⎜⎜⎝

a1 a2 a3 . . . . . . aM

a2 a3 . . . . . . aM 0
a3 . . . . . . aM 0 0
...

...
...

...
aM 0 0 . . . . . . 0

⎞
⎟⎟⎟⎟⎟⎠ , A =

⎛
⎜⎜⎜⎜⎜⎝

a1 0 0 . . . 0
2a2 a1 0 . . . 0
3a3 2a2 a1 . . . 0
...

. . . . . .
...

MaM . . . . . . 2a2 a1

⎞
⎟⎟⎟⎟⎟⎠

and D = diag (1, 2, ..., M). So MSCΓ = µΓ is equivalent to

DÂC(A−1Γ) = (−2µ)A (A−1Γ
)

DÂ and A have the same first column Γ = (a1, 2a2, . . . , MaM )T . Therefore A−1Γ =
�e1 = (1, 0, . . . , 0)T is an eigenvector with eigenvalue −2µ = 1.

Remark 4. Observe that the eigenvector Γ = (a1, 2a2, . . . , MaM )T corresponds
to g′(z), see (7).

Theorem 5. For all eigenvalues of the matrix MS we have |µ| ≤ 1
2 . The

eigenvalue − 1
2 is simple; all other eigenvalues satisfy 0 < |µ| < 1

2 . So MS is non-
singular.

Proof. The eigenproblem (15) for p = (p0, p1, . . . , pM−1)
T can be reformulated as

follows. Instead of the vector p we introduce the polynomial p(z) = p0 + p1z + · · · +
pM−1z

M−1. We use ∫
|z|<1

znz̄mdxdy =
{

π
n+1 , if n = m

0, if n �= m
(20)
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for n, m = 0, 1, . . . (see [15]). There follows

sk =
1
π

∫
|z|<1

z̄k g′(z)
g′(z)

dxdy (21)

for the quantities sk (k = 0, 1, . . .M − 1) introduced in (14). We also have for the
coefficients of the polynomial p(z) the integral representation

pk =
1
π

∫
|z|<1

(k + 1)z̄kp(z)dxdy.

With this notation, [MSCp]k = µpk is equivalent to∫
|z|<1

(k + 1)z̄k g′(z)
g′(z)

p(z)dxdy = −2µ

∫
|z|<1

(k + 1)z̄kp(z)dz.

Multiplying this equation by q̄k

k+1 ∈ C and summing up over k = 0, 1, . . .M − 1, we
get ∫

|z|<1

q(z)
g′(z)
g′(z)

p(z)dxdy = −2µ

∫
|z|<1

q(z)p(z)dz,

where q(z) = q0 + q1z + · · · + qM−1z
M−1.

So the equivalent formulation of the eigenvalue problem (15) is: find the complex
polynomial p(z) of order M − 1 and the corresponding complex number µ so that for
all complex polynomials q(z) of order M − 1 there holds∫

D

p(z)q(z)
g′(z)
g′(z)

dxdy = −2µ

∫
D

p(z)q(z)dxdy. (22)

Substituting now q(z) = p(z) into (22) we have

−2µ =

∫
D p2(z)g′(z)

g′(z)
dxdy∫

D
|p(z)|2dxdy

.

Estimating the integral by taking the absolute value, there follows

2|µ| ≤
∫

D
|p(z)|2

∣∣∣ g′(z)

g′(z)

∣∣∣ dxdy∫
D |p(z)|2dxdy

=

∫
D
|p(z)|2dxdy∫

D |p(z)|2dxdy
= 1.

Another formulation of (22) can be achieved using the inverse of the (bijective) con-
formal map w = g(z) and putting dudv = |g′(z)|2 dxdy for the area elements:

∫
D

p(z)
g′(z)

q(z)
g′(z)

|g′(z)|2 dxdy = −2µ

∫
D

p(z)
g′(z)

q(z)
g′(z)

|g′(z)|2 dxdy.

Now set

P (w) =
p(g−1 (w))
g′ (g−1 (w))

, (23)

Q(w) =
q(g−1 (w))
g′ (g−1 (w))

. (24)
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We have then, instead of (22),∫
Ω

P (w)Q(w)dudv = −2µ

∫
Ω

P (w)Q(w)dudv. (25)

Substituting p(z) = g′(z) we find that P (w) = 1 is an eigenfunction to the eigenvalue
µ = − 1

2 . The other eigenfunctions P (w) are orthogonal to this one:∫
Ω

P (w)dudv = 0. (26)

So we have the eigenvalue problem of finding P (w) of the form (23) and µ such that
for all Q(w) of the form (24) there holds (25) and (26).

Substituting Q(w) = P (w) into (25) and taking the absolute value, there follows∣∣∣∣
∫

Ω

P (w)2dudv

∣∣∣∣ = 2|µ|
∫

Ω

|P (w)|2 dudv and
∫

Ω

P (w)dudv = 0.

Now Theorem 2 in Section 6 of [9] – that inequality due to Friedrichs the connection
of which to the inf-sup stability of the Stokes problem has been considered in [10],
[18], [19] – gives |µ| < 1

2 . This means that − 1
2 is a simple eigenvalue of the matrix

MS .

Remark 6. Let us clarify the meaning of the orthogonality (26). Using (20) and
the diagonal matrix D = diag(1, 2, . . . , M) again, we have

(D−1p, q) =
1
π

∫
|z|<1

p(z)q(z)dxdy

for the Euclidean scalar product (p, q) =
∑M−1

k=0 pkq̄k of the vectors p =
(p0, . . . , pM−1)T and q = (q0, . . . , qM−1)T . Because of∫

Ω

P (w)dudv =
∫
|z|<1

p(z)g′(z)dxdy,

the orthogonality (26) is equivalent to (D−1p, Γ) = 0 where Γ is the vector already
used in Lemma 3.

Remark 7. From (22) follows that µ = − 1
2 is an eigenvalue of (15) with the

eigenfunction p(z) = g′(z). We have f(z) = 1 in Theorem 2. So pR = 1 is an
eigenfunction of the Schur complement operator to the eigenvalue 1. But then pI = 0
and therefore this is not an eigenfunction, hence 1 is a simple eigenvalue.

Remark 8. The eigenvalue problem (25), (26) is connected with the eigenvalue
problem considered in Section 8 in [9]. The only difference is that we now have∫
Ω P (w)Q(w)dudv instead of Re

∫
Ω P (w)Q(w)dudv. Therefore complex eigenvalues

are also allowed (but we have a finite number of eigenvalues because of p(z) and
q(z) are polynomials in (22)). The underlying operator of this eigenvalue problem is
I − 2MS ◦ C acting on a finite dimensional subspace of the complex Hilbert space F
on Ω considered in Section 7 of [9].

Now consider the case of complex eigenvalues of (15): µ = µR + iµI ∈ C. We
have

µf(z) = (µR Re f(z) − µI Im f(z)) + i (µR Im f(z) + µI Re f(z)) .
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Using again (16) and (17) and the notations pR = 2 Re f and pI = 2 Im f , we obtain

SpR =
1
2
pR + µRpR − µIpI ,

SpI =
1
2
pI − µRpI − µIpR.

The equations, in block matrix form, are(S 0
0 S

)(
pR

pI

)
=
(

1
2 + µR −µI

−µI
1
2 − µR

)(
pR

pI

)
. (27)

We have two real eigenvalues of the right-hand side matrix of (27):

µ̃1,2 =
1
2
±
√

µ2
R + µ2

I =
1
2
± |µ|.

Because MS is a non-singular matrix, we have µ �= 0, and we can transform the
right-hand side matrix in (27) to diagonal form using

T :=
1
2

(
− µI

|µ| 1 − µR

|µ|
µI

|µ| 1 + µR

|µ|

)
.

So (27) can be reformulated:(S 0
0 S

)(
T

(
pR

pI

))
=
(

1
2 + |µ| 0

0 1
2 − |µ|

)(
T

(
pR

pI

))
.

Therefore, the following equations hold:

Sp̃R =
(

1
2

+ |µ|
)

p̃R, (28)

Sp̃I =
(

1
2
− |µ|

)
p̃I (29)

where
(

p̃R

p̃I

)
= T

(
pR

pI

)
. These eigenfunctions are

p̃R = −µI

|µ| Re
p(z)
g′(z)

+
(

1 − µR

|µ|
)

Im
p(z)
g′(z)

, (30)

p̃I =
µI

|µ| Re
p(z)
g′(z)

+
(

1 +
µR

|µ|
)

Im
p(z)
g′(z)

. (31)

Let us summarize the results of this section:

Corollary 9. Every eigenvalue µ �= − 1
2 of the matrix MS gives rise to two

additional eigenvalues of the Schur complement operator S. These eigenvalues are
• 1

2 ± µ ∈ (0, 1), if µ is real (with the eigenfunctions (18), (19));
• 1

2 ± |µ| ∈ (0, 1) if µ is not real (with the eigenfunctions (30), (31)).
(The case of the eigenvalue µ = − 1

2 has already been considered in Remark 7.)

Let us clarify the meaning of ”additional eigenvalues of S” in Corollary 9. In case
Ω is a disc, the only eigenvalue of S in (0, 1) is 1

2 which is of infinite multiplicity. By
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the first part of Theorem 2 the eigenvalue λ = 1
2 remains an eigenvalue of infinite

multiplicity in case Ω is a polynomial conformal map of D. But for such domains Ω
the Schur complement operator S has further a finite number of eigenvalues in (0, 1)
as explained in Corollary 9. These additional eigenvalues – and eigenfunctions – can
be computed with the help of the matrix MS .

Remark 10. An important consequence of Corollary 9 is that the Crouzeix-Velte
subspace investigated in [16] is not reduced to zero for domains arising as conformal
maps of the unit disc by a polynomial mapping function.

Remark 11. If g(z) has real coefficients then the domain Ω is symmetrical to
the real axis and MS ∈ RM×M . In this case (15) is equivalent to

D− 1
2MSD 1

2 w = −2µw

where w = D− 1
2 p with the real symmetric matrix D− 1

2MSD 1
2 . So all eigenvalues of

MS are real. (If we calculate these eigenvalues numerically it is worth to transform
MS to this form.)

Remark 12. Denote µ2 := max
{|µ| : µ ∈ σ(MS) \ {− 1

2}
}
. As a consequence of

Corollary 9 we have µ2 < 1
2 and we can compute the inf-sup stability constant (3) of

the domain Ω:

β2
0(Ω) =

1
2
− µ2.

Now let us give some examples with special mapping functions g(z), compute the
entries (14) of the matrix (13) and the eigenvalues.

1. In case M = 2 and g (z) = a1z +a2z
2, a1 �= 0 we have b0 = 1

a1
and b1 = − 2a2

a2
1

and

MS = −1
2

( |a1|2−2|a2|2
ā2
1

a2
ā1

2a2
ā1

0

)
.

The eigenvalues of (15) are µ1 = − 1
2 with the eigenvector (a1, 2a2)

T , and

µ2 =
(

a2
2

ā2
1

)
with the eigenvector (ā2,−ā1)

T .

Using g′
(
− a1

2a2

)
= 0 and g′ (z) �= 0 in |z| ≤ 1 there follows

∣∣∣ a1
2a2

∣∣∣ > 1. This

gives |µ2| < 1
4 . Moreover for a1 = 1 and |a2| → 1

2 we have µ2 → 1
4 . This

means that for M = 2 the assumption g′(z) �= 0 on D̄ of Theorem 2 can be
weakened. g′(z) �= 0 in D, but g′(z0) = 0 with g′′(z0) �= 0 can happen for
a z0 ∈ ∂D. (In this case we have an inner angle of 2π – an internal cusp –
at the point g(z0) ∈ ∂Ω.) We have now β2

0(Ω) = 1
2 − |a2

a1
|2 for the inf-sup

stability constant from Remark 12.
2. In case g (z) = z − c

M zM (c ∈ R, M > 1 and integer, as earlier), which is
univalent in D for |c| ≤ 1, we have

MS = −1
2

⎛
⎜⎜⎜⎜⎜⎝

1 − c2

M 0 . . . 0 − c
M

0 0 . . . − 2c
M 0

...
...

...
...

...
0 − (M−1)c

M . . . 0 0
−Mc

M 0 . . . 0 0

⎞
⎟⎟⎟⎟⎟⎠
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The eigenvalues are − 1
2 , − c

2M

√
k (M − k + 1) for k = 2, . . . , M − 1 and c2

2M .
We have here the inf-sup constant value from Remark 12:

β2
0(Ω) =

{
1
2 − |c|

4 (1 + 1
M ) for M odd,

1
2 − |c|

4

√
1 + 2

M for M even.
(32)

Example 1 implies that the assumptions on the first derivative of the mapping
polynomial g in Theorem 2 can be weakened. We first cite the following result from
[11]:

Lemma 13. (Lemma 6 in [11]) Let g(z) be holomorphic and univalent in D and
holomorphic in z0 ∈ ∂D, and g′(z0) = 0. Then g′′(z0) �= 0 follows.

Using this result we can formulate the following

Lemma 14. Let g be a polynomial conformal mapping D → Ω of the form (7),
let g be univalent in D̄; g′(z) �= 0 in D. Then |µ| ≤ 1

2 holds for the eigenvalues of
(15). Theorem 2 and Corollary 9 remain valid.

Proof. Because the polynomial g is holomorphic on D̄, Lemma 13 holds, and so
we have g′′(z0) �= 0 if g′(z0) = 0 in z0 ∈ ∂D. The proof is similar to that of Theorem

2. Set p(z) :=
∑M−1

n=0 pnzn and u0(z) := 1
2g(z) p(z)

g′(z) which is by Lemma 1 a solution
of the momentum equation (1). u0 has boundary values in the points z ∈ ∂D where
g′(z) �= 0. If g′(z0) = 0 but g′′(z0) �= 0 for z0 ∈ ∂D then we have in a neighbourhood
of z0

g(z) = ã0 + ã2(z − z0)2 + · · · + ãM (z − z0)M ,

with ã0 = g(z0) and ã2 = 1
2g′′(z0) �= 0. We further have

g(z)
g′(z)

=
ã0

(z̄ − z̄0)2ã2 + 3ã3(z − z0) + · · · + MãM (z − z0)M−2
+

(z − z0) · e2i arg(z−z0)
ã2 + ã3(z − z0) + · · · + ãM (z − z0)M−2

2ã2 + 3ã3(z − z0) + · · · + MãM (z − z0)M−2

Thus in case ã0 = g(z0) = 0 there follows u(z0) = limz→z0 u(z) = 0, but u0 does not
have a boundary value in z0 for

g(z0) �= 0, g′(z0) = 0 and g′′(z0) �= 0. (33)

We add a holomorphic and a conjugate holomorphic function so that u0(z) + v1(z) +
v2(z) fulfills the homogenous boundary condition – except for points with the prop-
erties (33):

v1(z) := −1
2

M∑
k=1

[ ∑
m−n=k

am

(
n∑

�=0

bn−�p�

)]
zk;

v2(z) := −1
2

∞∑
k=0

[ ∑
n−m=k

am

(
n∑

�=0

bn−�p�

)]
z̄k.

v1(z) is a polynomial, and v2(z) = −u0(z) − v1(z) on ∂D. Hence the series form
of v2(z) converges in D and has an extension onto ∂D which is continuous on ∂D
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except in a finite number of points. We have (11) and (12) for the coefficients in the
expansion v′1 =

∑M−1
k=0 qkzk.

Now we follow the proof of Theorem 5 above. For 0 < r < 1,

1
π

∫
|z|<r

z̄k g′(z)
g′(z)

dxdy =
M−(k+1)∑

n=0

an+k+1b̄nr2(n+k)

because of the assumptions on g. Taking the limit for r → 1 from below, there follows
for k = 0, 1, . . .M − 1

lim
r→1−

M−(k+1)∑
n=0

an+k+1b̄nr2(n+k) = sk,

and then

sk = lim
r→1−

1
π

∫
|z|<r

z̄k g′(z)
g′(z)

dxdy.

Because of sup|z|<r

∣∣∣z̄k g′(z)

g′(z)

∣∣∣ < rk < 1, we finally obtain (21). From here we get the

eigenvalue problem (22) and the proof ends as that of Theorem 5. Therefore Corollary
9 remains valid in this case, too.

Remark 15. The boundary ∂Ω has an inner angle of 2π (an internal cusp) in
g(z0), for points z0 ∈ ∂D involved in Lemma 13 and Lemma 14.

4. The case of non-polynomial mappings. Now we turn to a generalization
of Theorem 2 to power series instead of polynomials:

Theorem 16. Let Ω be a simply connected plane domain. Let the bijective
conformal map D → Ω be of the form

g(z) =
∞∑

m=0

amzm, (34)

where this series converges on an open neighbourhood of D̄. Suppose further g′(z) �= 0
in D̄; 1

g′(z) =
∑∞

�=0 b�z
�. Let be f(z) =

∑∞
n=0 pnzn

g′(z) . Then we have for the Schur
complement operator S of the Stokes-equation:

• pR = 2 Re f leads to the divergence SpR = 1
2pR + 2 Re

∑∞
n=0 qnzn

g′(z) ,

• pI = 2 Im f leads to the divergence SpI = 1
2pI − 2 Im

∑∞
n=0 qnzn

g′(z) .
The coefficients sk,� of the conjugate linear operator (p�)�=0,1,... �→ (qk)k=0,1,... are
defined by

sk,� = −k + 1
2

∞∑
m=�+k+1

amb̄m−(�+k+1) (35)

for k, � = 0, 1, . . . .
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Proof. The proof is very similar to that of Theorem 2. First we construct a special
solution of the homogeneous momentum equation (1) as described by Lemma 1:

u0(z) =
1
2
g(z)f(z) =

1
2

∞∑
k=0

{ ∞∑
m=0

am

(
m+k∑
�=0

b̄m+k−�p̄�

)
zmz̄m+k

}
+

1
2

∞∑
k=1

{ ∞∑
m=k

am

(
m−k∑
�=0

b̄m−k−�p̄�

)
zmz̄m−k

}

We add a holomorphic and a conjugate holomorphic function to fulfill the homogenous
boundary condition. The boundary ∂D of the unit disc is given by zz̄|∂D = 1. The
conjugate holomorphic function

v2(z) = −1
2

∞∑
k=0

{ ∞∑
m=0

am

(
m+k∑
�=0

b̄m+k−�p̄�

)}
z̄k

has divergence 0. The derivative of the holomorphic function

v1(z) = −1
2

∞∑
k=1

{ ∞∑
m=k

am

(
m+k∑
�=0

b̄m+k−�p̄�

)}
zk (36)

has the expansion v′1(z) =
∑∞

k=0 qkzk where

qk = −k + 1
2

∞∑
�=0

( ∞∑
m=�+k+1

amb̄m−(�+k+1)

)
p̄�.

Now the proof is completed as that of Theorem 2 by using Lemma 1.
The convergence of the power series in this proof is a consequence of a result in

[15]: if the power series A(z) =
∑∞

n=0 anzn and B(z) =
∑∞

n=0 bnzn both converge for
|z| < R, then the series C(z) =

∑∞
n=0 cnzn, where cn =

∑n
�=0 a�bn−�, also converges

for |z| < R and C(z) = A(z)B(z).

Remark 17. The convergence property of the series (34) in Theorem 16 is not
fulfilled for every mapping function (see for example the mapping onto a half plane).
However the statement of the theorem remains valid for mappings with convergent
series form in D and with the additional property:

1
g′(z)

=
N∑

�=0

b�z
�.

This means that the reciprocial of the derivative is in fact a polynomial. In this case
we have instead of (35) the formula

sk,� = −k + 1
2

N+�+k+1∑
m=�+k+1

amb̄m−(�+k+1).

Remark 18. Let us define the space �(2,−1/2) of all complex sequences (pk)∞k=0

for which
∑∞

k=0
|pk|2
k+1 < ∞. The inner product of two sequences from this space is
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defined by

(p, q)2 :=
∞∑

k=0

pk q̄k

k + 1
, (37)

and the norm of a sequence is ‖p‖2 =
√

(p, p)2. This �(2,−1/2) space is a Hilbert space
(see e.g. [15]). Moreover, using (20), there follows

(p, q)2 =
1
π

(p, q)0, (38)

where p(z) =
∑∞

k=0 pkzk ∈ L2(D) and q(z) =
∑∞

k=0 qkzk ∈ L2(D) and (p, q)0 =∫
D

p(z)q(z)dxdy is the usual inner product of the space L2(D). In the following we
also use the notation ‖p‖0 =

√
(p, p)0 for the L2 norm of a function p.

The mapping (p�)�=0,1,... �→ (qk)k=0,1,... in Theorem 16 between the coeffitients of
the Taylor series of p(z) and the derivative v′1(z) of (36) is conjugate linear.

In order to prove that this mapping is also bounded, let us define the transfor-
mation

MS : p(z) �→ q(z) := −1
2

∫
D

p(ζ)
g′(ζ)
g′(ζ)

K(z, ζ)dξdη, (39)

for p(z) =
∑∞

k=0 pkzk ∈ L2(D), where we have used the notation ζ = ξ + iη, and
K(z, ζ) = 1

π
1

(1−ζ̄z)2
is the Bergman kernel function of the unit disc (see [15]). Because

p, K ∈ L2(D) and the modulus of g′(ζ)

g′(ζ)
is 1, there follows q ∈ L2(D). Let us compute

the L2 norm of q. We multiply (39) by q(z) and integrate over D:∫
D

|q(z)|2dxdy = −1
2

∫
D

q(z)
∫

D

p(ζ)
g′(ζ)
g′(ζ)

K(z, ζ)dξdηdxdy.

Changing the order of the integration gives∫
D

|q(z)|2dxdy = −1
2

∫
D

p(ζ)
g′(ζ)
g′(ζ)

(∫
D

K(z, ζ)q(z)dxdy

)
dξdη.

Using the reproducing property q(ζ) =
∫

D K(z, ζ)q(z)dxdy of the Bergman kernel
there follows ∫

D

|q(z)|2dxdy = −1
2

∫
D

p(ζ)q(ζ)
g′(ζ)
g′(ζ)

dξdη.

We estimate this by taking the absolute value and using the Cauchy-Schwarz inequal-
ity:

‖q‖2
0 ≤ 1

2

∫
D

|p(z)| · |q(z)|dxdy ≤ 1
2
‖p‖0‖q‖0.

Therefore we have ‖q‖0 ≤ 1
2‖p‖0, i.e. the continuity of the integral transformation

MS .
Let the function q have the series expansion q(z) =

∑∞
k=0 qkzk. Investigating the

series forms of p and q, which are convergent in D we find

qk = [MSCp]k ,
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where p also denotes the infinite vector composed of the coefficients of the Taylor
series expansion of p(z), C is the usual conjugacy and MS is an infinite dimensional
matrix acting on the space �(2,−1/2). The elements of this matrix are sk,� = −k+1

2 sk+�

for k, � = 0, 1, . . . , where

sk :=
∞∑

m=0

am+k+1b̄m. (40)

Using that the integral transformation MS is bounded and (38), we see that the
conjugate linear operator MS ◦ C is also bounded. Moreover, by the correspondence
between the integral transformation MS and MS ◦ C, there follows for the quantities
(40) the integral representation

sk =
1
π

∫
D

z̄k g′(z)
g′(z)

dxdy,

which is in fact (21). We obtain by estimation

|sk| ≤ 1
π

∫ 2π

0

∫ 1

0

ρkρdρdθ =
2

k + 2
,

and therefore |sk,�| ≤ k+1
k+�+2 .

The infinite matrix MS has the special form

MS = −1
2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

s0 s1 s2 . . . sk . . .
2s1 2s2 . . . 2sk . . . . . .
3s2 . . . 3sk . . . . . . . . .
...

...
...

...
...

...
(k + 1)sk . . . . . . . . . . . . . . .

...
...

...
...

...
...

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(41)

similar to the case investigated in Section 3. The additional eigenvalues of the Schur
complement operator are as in Corollary 9.

We can give an integral form of the eigenvalue problem MSCp = µp similar to
(22): find µ and the convergent power series p(z) =

∑∞
m=0 pmzm such that (22) is

valid for all convergent q(z) =
∑∞

m=0 qmzm. The integral formulation (25) carries
over to this case, too. (But now the eigenvalue problem is not finite dimensional,
although again equivalent to the eigenvalue problem considered in [9].) If the infinite
vector composed of the coefficients of g′(z) is an element of �(2,−1/2), then it is an
eigenvector to the eigenvalue − 1

2 . The absolute value of other eigenvalues is less than
1
2 , and the eigenfunctions are orthogonal to g′(z) in the sense of Remark 6. (Observe
further that (D−1p, Γ) = (p, Γ)2, where D = diag(1, 2, . . . ).)

We again discuss some examples.
1. We take first g(z) = az+b

cz+d where c, d �= 0 and ad − bc �= 0. We have

g(z) =
a

c
− ad − bc

cd
+

ad − bc

cd

∞∑
k=1

(−1)k+1 ck

dk
zk.
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This series is convergent for |z| <
∣∣d

c

∣∣ in which the open unit disc is contained
for |c| ≤ |d|. We also have (see Remark 17)

1
g′(z)

=
d2

ad − bc
+

2cd

ad − bc
z +

c2

ad − bc
z2.

There follows a1 = ad−bc
cd · c

d , and ak =
(− c

d

)k−1
a1 for k ≥ 2. Further

b0 = d2

ad−bc , b1 = 2cd
ad−bc , b2 = c2

ad−bc and bk = 0 for k ≥ 3. Computing from
here sk figuring in the matrix MS , we get

s0 =
(ad − bc)(|c|2 − |d|2)2

d4ad − bc
,

and

sk = (−1)k
( c

d

)k

s0 for k = 1, 2, . . . .

In case |c| = |d| there follows that MS is the (infinite) zero matrix; we have
no additional eigenvalues of the Schur complement operator S.
In case |c| < |d| we have

MS = −s0

2

⎛
⎜⎜⎜⎜⎜⎜⎝

1 q q2 . . . qk−1 . . .
2q 2q2 2q3 . . . 2qk . . .
...

...
...

...
...

...
kqk−1 kqk kqk+1 . . . kq2k−2 . . .

...
...

...
...

...
...

⎞
⎟⎟⎟⎟⎟⎟⎠

,

where q = − c
d . Let be u = (u0, u1, . . . )T ∈ �(2,−1/2). We have

MSCu = −s0

2

( ∞∑
k=0

ūkqk

)
(1, 2q, . . . , kqk−1, . . . )T ,

and here MSCu ∈ �(2,−1/2) because of |q| < 1. We see that the operator MS

is rank one and its range contains only
(
1, 2q, . . . , kqk−1, . . .

)T . Therefore
MS has only this eigenvector with the eigenvalue

µ = −s0

2
1

(1 − |q|2)2 = −1
2
· ad − bc

ad − bc
· |d|

4

d4
.

We have |µ| = 1
2 , and there is no additional eigenvalue of the Schur comple-

ment operator. We have therefore β2
0 = 1

2 .
Especially we can choose the Blaschke-function g (z) = z−γ

1−γ̄z , |γ| < 1 mapping
the unit disc onto itself. We have here q = γ̄, |q| < 1. A similar function
g(z) = γ−zγ̄

1−z , Im γ > 0 maps the unit disc onto the upper half plane Imw > 0.
We have here q = 1 and the series form of g(z) does not converge on the whole
unit circle but only inside the unit disc. But g(z) = γ + 2i Imγ

∑∞
n=1 zn and

1
g′(z) = 1−2z+z2

2i Im γ , and sk = 0 follows for all k = 0, 1, . . . . This means that
MS is the zero infinite matrix and we have only the eigenvalues 0, 1

2 , 1 of the
Schur complement operator.
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2. The transformation g(z) = 4a
(1+z)2 , a > 0 maps the unit disc |z| < 1 onto

the exterior of the parabola v2 = 4a(a − u) (i.e. that region which does not
contain the focus of the parabola). Now we have the power series form of the
mapping

g(z) =
∞∑

k=1

4a(−1)k−1kzk−1,

and 1
g′(z) = − 1

8a (1 + 3z + 3z2 + z3) which is again a polynomial (see Remark
17). Therefore we have

ak = 4a(−1)k(k + 1) for k ≥ 0

and b0 = b3 = − 1
8a , b1 = b2 = − 3

8a , b� = 0 for � ≥ 4. A simple calculation
shows sk = 0 for k ≥ 0, so (41) is an infinite zero matrix; we do not have
any additional eigenvalues of the Schur complement operator. This example
shows that there are domains different from the circle and the halfplane with
the Schur complement eigenvalues 0, 1

2 , 1. Further we have β2
0 = 1

2 for the
inf-sup constant.

3. The next example is g(z) =
∫ z

0
1√

1−t4
dt mapping the unit disc onto a square.

We have the power series forms which converge for |z| ≤ 1:

g(z) =
∞∑

m=0

cm

4m + 1
z4m+1,

1
g′(z)

=
√

1 − z4 = 1 − 1
2

∞∑
n=1

cn−1

n
z4n,

where c0 = 1, cn = 2n−1
2n cn−1. We can give explicit formulae for cn (n =

0, 1, . . . ):

cn =
1 · 3 · . . . (2n − 1)

2nn!
=

Γ(n + 1
2 )√

πn!
.

We compute the elements of the infinite matrix MS :

s4k =
1

4k + 1
ck − 1

2

∞∑
n=1

cn+kcn−1

n(4(n + k) + 1)
,

s4k+1 = s4k+2 = s4k+3 = 0 for k = 0, 1, . . .

Using Barnes’s extended hypergeometric function, the formula

s4k = a4k+1 − 1
2
a4(k+1)+1Fk

holds, where a4k+1 = ck

4k+1 and

Fk = F

([
5
4

+ k,
3
2

+ k,
1
2
, 1
]

,

[
9
4

+ k, 2 + k, 2
]

, 1
)

.
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This matrix acts on three orthogonal subspaces of �(2,−1/2). These subspaces
contain vectors of the form

(v0, 0, 0, 0; v4, 0, 0, 0; v8, 0, 0, 0; . . . )T ∈ �(2,−1/2)

(0, 0, v2, 0; 0, 0, v6, 0; 0, 0, v10, 0; . . . )T ∈ �(2,−1/2)

(0, v1, 0, v3; 0, v5, 0, v7; 0, v9, 0, v11; . . . )T ∈ �(2,−1/2)

The �(2,−1/2)-vector corresponding to the derivative g′(z) of the mapping
function is contained in the first subspace:

(c0, 0, 0, 0; c1, 0, 0, 0; c2, 0, 0, 0; . . . )T .

The second subspace contains �(2,−1/2)-vectors which correspond to eigen-
functions of the form v(z) = z2(v2 + v6z

4 + . . . ).
If an eigenvector (0, v1, 0, v3; 0, v5, 0, v7; 0, v9, 0, v11; . . . )T ∈ �(2,−1/2) con-
tained in the third subspace is related to the eigenvalue µ then the eigen-
vector (0, v1, 0,−v3; 0, v5, 0,−v7; 0, v9, 0,−v11; . . . )T ∈ �(2,−1/2) is related to
the eigenvalue −µ. Using that these eigenvectors are orthogonal we have∑∞

k=0 v2
4k+1 =

∑∞
k=0 v2

4k+3. Theorem 16 implies that
• 1

2 + µ is an eigenvalue of the Schur complement operator with twice the
multiplicity of µ in (15). The eigenfunctions are
2 Re( 1

g′(z)

∑∞
n=0 v2n+1z

2n+1) and 2 Im( 1
g′(z)

∑∞
n=0(−1)nv2n+1z

2n+1),
• 1

2 − µ is an eigenvalue of the Schur complement operator with twice the
multiplicity of µ in (15). The eigenfunctions are
2 Im( 1

g′(z)

∑∞
n=0 v2n+1z

2n+1) and 2 Re( 1
g′(z)

∑∞
n=0(−1)nv2n+1z

2n+1).
4. The mapping function of the unit disc onto a regular polygon of order M is

g(z) =
∫ z

0

1

(1 − tM )
2

M

dt =
∞∑

n=0

Γ(n + 2
M )

Γ( 2
M )

znM+1

(nM + 1)n!
.

The nonzero elements of the infinite matrix MS are snM where n = 0, 1, 2, . . . .
Therefore, similar to the case of the square, we will have eigenvalues of the
Schur complement operator with multiplicity more than 1.

Motivated by the Examples 3 and 4 we can generally formulate the following

Theorem 19. Let the bijective conformal mapping of the unit disc be of the form

g(z) =
∞∑

n=0

anM+1z
nM+1, (42)

where a1 �= 0 and M ≥ 2 is an arbitrary integer, then we have eigenvalues of the
Schur complement operator with multiplicity more than 1.

Proof. If g is of the form (42) then we have, by multiplying the derivative of (42)
and (8),

1 = g′(z) · 1
g′(z)

=
∞∑

n=0

{
M−1∑
k=0

[
n∑

�=0

(�M + 1)a�M+1b(n−�)M+k

]
znM+k

}
.
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This can be written in the infinite block matrix form⎛
⎜⎜⎜⎜⎜⎜⎝

a1I 0 . . .
(M + 1)aM+1I a1I 0 . . .

. . . . . . . . . . . .
(nM + 1)anM+1I . . . . . . a1I 0 . . .

. . .
. . .

. . .

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

b̃0

b̃1

...
b̃n

...

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

�e1

0
...
0
...

⎞
⎟⎟⎟⎟⎟⎟⎠

,

where I ∈ RM×M is the unit matrix, �e1 = (1, 0, . . . , 0)T ∈ RM and

b̃n := (bnM , bnM+1, . . . , bnM+M−1)T

for n = 0, 1, . . . . There follows b̃0 = 1
a1

�e1 and further by induction b̃n = C�e1 where
C ∈ C is a constant composed of the coefficients of (42). This implies that, in (8),
b� �= 0 only for � = nM where n = 0, 1, . . . . From the series form of g(z) we see that
ak �= 0 only for k = nM + 1. This means – using the formula in Remark 18 – that
s� �= 0 only for � = nM where n = 0, 1, . . . .

For k = 0, 1, . . . , [M
2 ] , let us introduce the pairwise orthogonal subspaces Lk of

�(2,−1/2) as follows. We shall say that v := (v0, v1, . . . )T ∈ Lk, if v ∈ �(2,−1/2) and if

v� = 0 for all � �= nM + k, (n + 1)M − k,

where n = 0, 1, . . . and k is a fixed integer between 0 and [M
2 ]. If v ∈ Lk for k �= 0, M

2

(M
2 only in case M is even) is an eigenvector of MS ◦ C to the eigenvalue µ then ṽ is

an eigenvector to the eigenvalue −µ where the elements of ṽ are defined by

ṽnM+k = vnM+k,

ṽ(n+1)M−k = −v(n+1)M−k

for n = 0, 1, . . . , otherwise ṽ� = v� = 0. Therefore 1
2 + µ and 1

2 − µ are eigenvalues of
the Schur complement with twice the multiplicity of µ in (15).

Remark 20. If the mapping function is of the form as in Theorem 19 then

g
(
eik 2π

M z
)

= eik 2π
M g(z), where k = 0, 1, . . . , M − 1.

The left-hand side of this equality means that we first rotate the unit disc by k 2π
M and

then we map it onto the domain Ω. The right-hand side means that we first map the
unit disc onto Ω and then we rotate Ω by k 2π

M . Therefore Ω is invariant under any
rotation by the angle k 2π

M , consequently Ω has M symmetry axes. Theorem 19 says
that in the case of symmetrical domains the Schur complement operator has multiple
eigenvalues depending on the number of the symmetry axes. Moreover each subspace
Lk of �(2,−1/2) seems to be connected with one or two symmetry axes.

5. Continuous dependence of MS on the domain. We investigate the de-
pendence of MS on the domain Ω onto which the unit disc D is mapped. Let be
g̃(z) = η(g(z)) where the function η is the univalent conformal mapping of the do-
main Ω onto the domain Ω̃. So the univalent conformal mapping g̃ = η ◦ g maps the
unit disc D onto Ω̃. Using the notation w = g(z), there follows

g̃′(z) = η′(w) · g′(z). (43)
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We have from (21) for the entries of the matrix MS and M̃S :

sk =
1
π

∫
D

z̄k g′(z)
g′(z)

dxdy, (44)

s̃k =
1
π

∫
D

z̄k g̃′(z)
g̃′(z)

dxdy. (45)

Subtract (44) and (45):

s̃k − sk =
1
π

∫
|z|<1

z̄k

(
g̃′(z)
g̃′(z)

− g′(z)
g′(z)

)
dxdy. (46)

Using (43), we obtain

g̃′(z)
g̃′(z)

− g′(z)
g′(z)

=

(
η′(w)
η′(w)

− 1

)
g′(z)
g′(z)

=
(
e2i arg η′(w) − 1

) g′(z)
g′(z)

.

The identity

e2i arg η′(w) − 1 = 2iei arg η′(w) sin(arg η′(w)), (47)

gives ∣∣∣∣∣ g̃
′(z)

g̃′(z)
− g′(z)

g′(z)

∣∣∣∣∣ ≤ 2| sin(arg η′(w))| = 2| sin(arg g̃′(z) − arg g′(z))|.

Estimating the integral (46), we finally have

|s̃k − sk| ≤ 4 max
|z|≤1

| sin(arg g̃′(z) − arg g′(z))|. (48)

We further examine the following eigenvalue problem: find µ ∈ C and the con-
vergent series p(z) =

∑∞
m=0 pmzm such that∫

D

p(z)q(z)
g′(z)
g′(z)

dxdy = −2µ

∫
D

p(z)q(z)dxdy (49)

holds for all convergent series q(z) =
∑∞

m=0 qmzm. This problem is in fact (22) for
convergent power series. There is a similar eigenvalue problem for g̃ = η ◦ g:∫

D

p̃(z)q(z)
g̃′(z)
g̃′(z)

dxdy = −2µ̃

∫
D

p̃(z)q(z)dxdy. (50)

Substitute q = p̃ into (49) and q = p into (50), and subtract the equations:

∫
D

p̃(z)p(z)

(
g̃′(z)
g̃′(z)

− g′(z)
g′(z)

)
dxdy =

∫
D

(
2µp̃(z)p(z) − 2µ̃p̃(z)p(z)

)
dxdy.

Using |b| ||ã| − |a|| ≤ |b|
∣∣∣ã b̄

b − a
∣∣∣ = |ãb̄ − ab| for ã, a, b ∈ C, b �= 0, we estimate the

right-hand side:

2 ||µ̃| − |µ|| ·
∣∣∣∣
∫

D

p̃(z)p(z)dxdy

∣∣∣∣ ≤
∣∣∣∣
∫

D

(
2µp̃(z)p(z) − 2µ̃p̃(z)p(z)

)
dxdy

∣∣∣∣ .
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We estimate the left-hand side∣∣∣∣∣
∫

D

p̃(z)p(z)

(
g̃′(z)
g̃′(z)

− g′(z)
g′(z)

)
dxdy

∣∣∣∣∣ ≤ max
z∈D

∣∣∣∣∣ g̃
′(z)

g̃′(z)
− g′(z)

g′(z)

∣∣∣∣∣
∫

D

|p̃(z)p(z)|dxdy.

Using (43) and the identity (47), there follows

||µ̃| − |µ||

∣∣∣∫D p̃(z)p(z)dxdy
∣∣∣∫

D |p̃(z)p(z)| dxdy
≤ max

z∈D
|sin (arg g̃′(z) − arg g′(z))| . (51)

Hence, we have proved the following result.

Corollary 21. Let g be a bijective conformal mapping of the unit disc D onto
the simply-connected plane domain Ω. Let g̃ be defined by g̃(z) = η(g(z)), where
the function η is the univalent conformal mapping of the domain Ω onto the domain
Ω̃. We have the stability estimates (48) for the entries of MS, and (51) for the
eigenvalues of (15).

Remark 22. We suppose that Ω is an open, bounded, simply connected domain.
Let the boundary ∂Ω be twice continuously differentiable so that it admits a C2

parametrization w(t), 0 ≤ t ≤ T . Denote the unit tangent to ∂Ω at w by γ̇(w) = ẇ(t)
|ẇ(t)| .

Let R(w) denote the conformal mapping Ω̄ onto the closed unit disc. We have for
w ∈ ∂Ω (see [12])

R(w) = −iγ̇(w)
R′(w)
|R′(w)| . (52)

Because R(w) is the inverse of g(z), there follows R′(w) = 1
g′(z) , and using (52), we

have

ei arg g′(z) =
−i

z
γ̇(w)

for z ∈ ∂D and for the corresponding w = g(z) ∈ ∂Ω. From this we obtain

ei arg g̃′(z) − ei arg g′(z) =
−i

z

( ˙̃γ(w̃) − γ̇(w)
)

for z ∈ ∂D, w ∈ ∂Ω, w̃ ∈ ∂Ω̃, where w̃ = g̃(z) = η(g(z)). Using the identity

ei arg g̃′(z) − ei arg g′(z) = 2i sin
arg g̃′(z) − arg g′(z)

2
e

1
2 (arg g̃′(z)+i arg g′(z))

and taking the absolute value, there follows for z ∈ ∂D, w ∈ ∂Ω, w̃ ∈ ∂Ω̃:

| ˙̃γ(w̃) − γ̇(w)| = 2
∣∣∣∣sin arg g̃′(z) − arg g′(z)

2

∣∣∣∣ ≤ |arg g̃′(z) − arg g′(z)| .

We finally have the estimate

| ˙̃γ(w̃) − γ̇(w)| ≤ max
|z|≤1

|arg g̃′(z) − arg g′(z)| (53)
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for all w ∈ ∂Ω and w̃ ∈ ∂Ω̃ corresponding to each other by w̃ = η(w). This shows
together with Corollary 21 that for domains with C2-boundary the value

max
|z|≤1

|arg g̃′(z) − arg g′(z)|

is a common upper bound in (53) and in (48), (51), however with other constants.

In the following let be g̃(z) = g(z) + ε(z) with ε(z) =
∑∞

m=0 εmzm. Using the
identity a

b − c
d = a−c

d − a
b

b−d
d we have∣∣∣∣∣ g̃

′(z)
g̃′(z)

− g′(z)
g′(z)

∣∣∣∣∣ =
∣∣∣∣∣ g̃

′(z) − g′(z)
g′(z)

− g̃′(z)
g̃′(z)

· g̃′(z) − g′(z)
g′(z)

∣∣∣∣∣ ≤ 2
∣∣∣∣ε′(z)
g′(z)

∣∣∣∣ .
We can estimate the difference of (44) and (45):

|s̃k − sk| ≤ 4 max
|z|≤1

∣∣∣∣ε′(z)
g′(z)

∣∣∣∣ . (54)

This shows the continuous dependence of the matrix MS on ε′(z) and means also the
continuous dependence of the eigenvalues of (15) in case g and ε are polynomials. If
they are not polynomials then we can estimate as before. After substituting q = p̃
into (49) and q = p into (50), we subtract the resulting equations. There follows

||µ̃| − |µ||

∣∣∣∫D p̃(z)p(z)dxdy
∣∣∣∫

D
|p̃(z)p(z)|dxdy

≤ max
z∈D

∣∣∣∣ε′(z)
g′(z)

∣∣∣∣ (55)

Remark 23. g̃(z) = g(z) + ε(z) will not be necessarily univalent. However the
above estimates can be useful if we intend to approximate g(z) by a polynomial g̃(z)
cutting off the remainder term ε(z). So we have the possibility to calculate numerically
some approximate eigenvalues.

Remark 24. Let gM (z) = z− c
M zM for M = 1, 2, . . . be the mapping of the unit

disc D onto a domain ΩM , investigated in the Example 2 in Section 3. Let further be
g(z) = z the mapping of the unit disc onto itself. We compute

‖gM − g‖2
0 =

|c|2
M2

∫
D

zM z̄Mdxdy =
π|c|2

M2(M + 1)
,

max
z∈D

|gM (z) − g(z)| =
|c|
M

max
z∈D

|zM | =
|c|
M

,

‖g′M − g′‖2
0 =

π|c|2
M

,

max
z∈D

|g′M (z) − g′(z)| = |c|max
z∈D

|z|M−1 = |c|.

These equalities show limM→∞ gM = g in the L2 and maximum norm on D, further
limM→∞ g′M = g′ is valid in the L2 norm (but not in the maximum norm). In this
sense we have a sequence of domains ΩM , M = 1, 2, . . . converging to the unit disc
D. The limit of the inf-sup constants (32) of the domains is however

lim
M→∞

β2
0(ΩM ) =

1
2
− |c|

4
<

1
2

= β2
0(D).
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If we slightly change the mapping polynomial of Example 2 in Section 3, i.e. we
investigate ĝM : D → Ω̂M ,

ĝ(z) = z − c

M2
zM ,

which is also univalent for c ∈ R, |c| ≤ 1, then we get

β2
0(Ω̂M ) =

{
1
2 − |c|

4M (1 + 1
M ) for M odd,

1
2 − |c|

4M

√
1 + 2

M for M even.

We obtain in this modified case ĝM → g and ĝ′M → g′ for M → ∞ in both (L2 and
maximum) norms. We also have limM→∞ β2

0(Ω̂M ) = β2
0(D).

As one sees, our polynomial examples may seem far from practical relevance. But
they clearify important questions: the above examples show the fact that neither the
convergence of the mapping function nor the convergence of its derivative in the L2

norm are sufficient to the convergence of the inf-sup constants of the domains to that
of the limit domain.
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