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DIFFERENCE EQUATIONS FOR HYPERGEOMETRIC
POLYNOMIALS FROM THE ASKEY SCHEME.
SOME RESULTANTS. DISCRIMINANTS. *

INNA NIKOLOVAT

Abstract. It is proven that every sequence from the Askey scheme of hypergeomeric polynomi-
als satisfies differential or difference equations of first order of the form Tpn,(z) = An(2)pn—1(z) —
By (z)pn(z), where T is a linear degree reducing operator, which leeds to the fact that these poly-
nomial sets satisfy relation of the form p,(z) = An(z)pn—1(z) — Bn(z)pn(z).

1. Introduction. It is shown that the set of polynomials from the Askey scheme
of hypergeometric polynomials satisfy a differential or a difference equation of first
order, which is generally nonhomogenious. Y. Chen and M. Ismail show in [2], that
any sequence of polynomials, orthogonal w. r. t. a continuous measure of the type
w(z) = e~ ) where v(z) is twice continuously differentiable and convex on a closed
interval satisfy first order differential equation. Earlier versions of equation of the
same form are in [1]. From the Askey scheme the result in [2] applies for Hermite
polynomials, more generaly it applies in other cases not included in this scheme. In
[6] it is shown that the convexity condition can be replaced with the condition that
v'(x) is positive on the open interval of integration. So the results can be applied for
the classical Laguerre and Jacobi polynomials. In this paper we consider all the cases
from the Askey scheme of the hypergeometric polynomials in which the above results
do not apply and prove that they satisfy a difference equation of the form:

Tpn(A(x)) = An(2)pn—1(A(@)) = Bn(2)pn(Mz)) (1)

where T is linear degree reducing operator and A4, (z) and B,,(x) are rational functions
of x. The above result leads to the equation of the form:

Pu(AM@)) = An(2)pn—1(A(@)) — Bn(2)pn(A(2)), (2)

which is useful for the determination of the discriminants of the corresponding poly-
nomial sets, since these polynomial sets satisfy three term recurrence relation and the
theorem proven in [1] applies. However the practical usage of this theorem is very
difficult.One can sertainly compute the discriminants of the above polynomial set till
n =4.

The discriminants of the classical orthogonal polynomials of Jacobi, Hermite and
Laguerre were computed by Stieltjes and Hilbert [10]. Closed forms of the discrim-
inants of the rest of the polynomial sets in Askey scheme are not known. Similarly
Ismail [5] showed that the computational procedure used for the classical orthogonal
polynomials can be applied for any set of polynomials,generated by

Pn(@)(ane + bn)pn—1(2) = cnpn—2(), (3)

which satisfies a relation of the form:
p%(m) = An(2)pn-1(z) — Bp(x)pn(x). (4)
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in terms of the functions A, (z) and the coefficients of the three term recurrence
relation. In this paper we prove that the discriminant of a sequence of polynomials
generated by

Pr(A(®)) = (an (@) + bn)pn—1(A(2)) = cnpn—2(A(z)), (5)
where
Mz)=z(z+v+0+1) (6)

can be explicitly obtained in terms of the recurrence coefficients and the functions
Ap(z) in (2). Therefore equations of the forms (4) and (2) are of some interest. We
would like to emphasize to the fact that the results in [2] and [6] are not applicable
to the polynomial sets form the Askey scheme except for the classical polynomials.
Here we show that using the difference equations one can compute some resultants
between the polynomial itself and the polynomials w.r.t.x obtained by applying the
operator T' to the polynomial of the variable A(x).

2. Difference equations.

THEOREM 2.1. Let p,(A(z)) is a sequence of polynomials from the Askey scheme,
where Mz) = xz(x+~v+ 0+ 1)or AM(x) =z, then

T (pn(A())) = An(@)pn—1(Mx)) = Bn(2)pn(A(2)), (7)

and
T (pn(A())) = =Cn(2)pn(A(@)) + Dn(z)pn+1(A(@)) - (8)

Proof. The fact that the classical orthogonal polynomials of Hermite, Laguerre
and Jacobi satisfy differential equation of first order is well known [10]. These facts
can be obtained also from [2] and [6]. The cases for Meixner Crawtchouck , Meixner
and Hahn polynomials are considered in earlier paper by Ismail, Simeonov and me
cite[Is:Ni:Si] .

e Difference equation for dual Hahn polynomials. By the definition given in

[9]:

:z": k@ +y+0+ 1)

— k'7+1)( N

Consider the following operator

Ry(A(z +1)) — Ra(Mz))
Az +1) — A=) '

AR, (Mz)) =

Since

(—r = Dp(@x+v+04+2)r — (—2)p(z+v+06+ 1) (10)

—kQr+v+5+2)(—x)p—1(@+v+0+2)k-1,
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it follows that

_ 1 () ()@ + 7+ 8+ Vi
ARV M) =~ 5T D) ];) 0T Do e

1
- (x+7+5+1)

( k+1 ($+’Y+5+1)k+1[(—$+k) - (—N-l—k)]
. Z L Dt (—N)er1 (2 + V)

— 1 Z N+ (21 (@ +y+ 0+ Dgp
(+y+0+1)(z—N k'7+1)k+1( N)k+1

1
a (x+7+5+1)(x—N)

(e (—o)k(@+y + 6+ D (—r+k—y—k—1)
- Z k'(7+ D1 (=N)p(—2z =7 —1) '

Let us denote by

(—n)(=2)k(z +v+ 5+ 1Dy

Gk = B+ De(—N)

Then

AR, (A(x))

B (x+’y+5+1 Zkg”’“

N 1 Z (—n)ksr (k1@ +7 +6 + Dipr
(F+y+6+ 1@ -N)z+y+1) = ENy 4+ 1)py1 (=N

_ 1 zn: (—n)pt1(=2)p(z + 7+ + Vgt
(@+y+o+1)(@—N)z+y+1) & KUy + 1)k(—N)i

1

T @A+ )@ —N)@+y+1) Zgn,kk(:c+7+1)

1 n

L R N e kZOank

1 n
) m, k)( S+k+1

N—1+Fk)

1

= n Gk7 ,n, o, P, 76’
($+’Y+5+1)(3¢—N)(x+7+1)kZOC,k ( x,m,a, B,y )

where

Gk,2,n,7,8) =k(z+7+ 1)+ k(-N —14+k) + (n—k)(z+~v+05+k+1)
=nx+v+0+1)—k(N+1-—n+9).
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Using

(=n)ik =n(=n)y —n(=n+ 1), (11)

we see that

n(N+146—n)

AR, (A = Ry_1(A
n(A(@)) (z+~v+o+D)(@—N)z+~v+1) n-1(A@))
n(x+v—N+n)
R, (A .
+(x+7+5+1ﬂx—Nﬂx+7+1)"(@»
REMARK. Similar equation holds for the operator VVI?ZES) = R"(Agﬁ ))__Ii’(”;)_‘(l(f =),

e Difference equation for Racah polynomials. By definition the Racah polyno-
mials are given by[9]:

(—n)r(a+B+n+1)p(—x)s(z+v+ 5+ 1)k
Ela+1)k(B+0+1k(y+ 1)k

Consider the operator (9) and using (10) we obtain that

AR, (M)
1
(x+v+d5+1)
(i a+ B+ Vi (—2)s@+ 746+ Dpsr(—z+k—B—56—1—k)
Ko+ 1)k41(B+6 + Vg1 (v + Digr (-2 = -0 —1)
1
(x+y+6+1)(z+LB+6+1)

n—1

XE:cﬂmﬁﬂn+a+5+Uwﬂ—mmﬂx+v+6+nﬂl
ko + g1 (v + Dig1 (840 + Dt
1
r+y+d+D)(z+B8+5+1)
= (et at B+ Dia(2)el@+y+0+ Dep(-z+k—y—k-1)
Ela+ 1)k (B+ 0+ Dr(y + Dy (-2 —v—1)

X
k=0

k=0

=
Il
=]

Let us use the following notation:

(—n)e(n+a+ B+ 1)p(—z)k(z+v+ 5+ 1k
Ela+ 1)x(B+ 0+ Di(y + i

Cn,k =
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Then

ARy (A())
1 n
B (x+7+5+1)(m+ﬂ+5+1)}§€n’kk
1
r+y+o+1)(z+0+0+1)(x+y+1)
= ()1 (n+ a+ B4 Dppr(—2)pp1 (z 47+ 6 + Diy
Ko+ 1)g41(8+ 0 4+ 1)y + D
1
z+y+o+1)(@+B+6+1)(x+y+1)
(=it a4 B+ D ()@ + v+ 64+ Dpsr(—z+k—a—1—k)
k!(a+1)k+1(5+5+1)k(’y+1)k(—x—a—1)

n

1
- (m+7+5+1)(m+6+5+1)]§)<n’kk

+

b

=0

=
Il
=]

1 "
+ ($+'Y+5+1)(x—|—ﬁ—|—5+1)(x+,y+1)kZ:OCn,k(ﬂ-i-(s—l—k)k
1

c+y+o+1)(e+p+5+D)(z+v+1)(a+z+1)
= ()1 (n+ a+ B+ Dppr(—2)ppr (z 47+ 6 + Diy
Rl o+ 1)1 (8 + 6 + 1)r(y + D

1
(e+y+o+1)(e++0+D(z+v+1)(a+z+1)

« zn: (=)kr1(n+a+ B+ D1 (—2)p(@ + 7+ 6+ iy
— Ella+1Dr(B+0+ Dr(y+ 1)k ‘

i
o

k

[}

Under the notation

flz) = !

(z+v+0+1D)(z+0+0+D)(x+y+1)(a+z+1)’

it follows that:

%(/\x()m)) = f(x)kZZOCn,kG(k,x,n,a,ﬂ,%(S), (12)
where
Gk, z,n, 0, 8,7,0) = (z+~v+1)(a+z+ 1)k
+(a+z+1)(B+0+E)k+k(B++k)(y+k)
—(~n+k)n+ta+B+1+k)(c+y+o+k+1).

After some computational work we compute that:

Gk, z,n, 0, 8,7,0) = —k* + k[z(x + v+ 0+ 1) + M] + N(z).
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where we used the notation:

M=af-p5+v+n(n+a+p5+1)

N(@)=nn+a+pB+1)(z+y+5+1).

Let us denote by

(—n+ De(a+B8+n+ (-2 )p(z+vy+0+ i .

Coo1h = a4+ 1)k(B+ 8+ Dp(y + 1)

Using again (11)we see that

AR, (A(@)) = = f(2) Y Cask® +nf (@)[z(x + 7 + 5+ 1) + M]R,(A(z)) (13)
k=0

—nf(@)le(+y+5+1)+ MY Gy + f@)N@)Ra(Ax)).
k=0

But
(—n)ik? = n?(—n)g — n*(—n+ 1)g — n(—n+ 1)k

and

n n n—1
= D Gk = —n’Ry(N@) + 07 Gryp ) kG (14)
k=0 k=0 k=0

Substituting (14) into (13) we get

AR,(A(z)) = nf(x)(n+a+B+1)(z+v+d+1)R, (15)
+nf(x)z(z+y+d+1)+af — G5+~ +nla+ 5 +n)R,

—nf@)z@+y+0+1) +aB—B5+ 5 +nla+B+n)] > Gk
k=0

n—1
+ nf(x) Z Gk
k=0

Let us denote by

F(z)= [zl@+y+6+1)+aB—B5+y5+n(a+B8+n)]> G 1x
k=0

n—1
- Z Cr1 ik (16)
k=0

Claim that there are coefficients C,, and D,,, not depending on x, such that F(x)
can be expressed as

F(z) = CnRn1(A(2)) + Dn Ry (A(z)) (17)
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This statement can be proven easily. Indeed:

zlx+y+o+ 1) (—2)p(@+v+d+ 1)

= —(=2)pr1 (THY+ 0+ D)1 HR (Y0 +1) (=) (@ +y+0+ 1)k (=) (2 4+ +0+ 1)),
(18)
The substituting of (18) into (16) implies that

F(z)

_ _’f (=n + Delo+B+n+ D(—2)kp1 (@ +7 40+ Dip
Ella+1Dr(B+0+ Dir(y+ 1)k

k

Il
o

i
L

(—n+Dr(a+0+n+ Dp(—2)p(zr+~v+ 0+ k(v +0+1)

+ Ela+1)r(B+06+ r(y+ 1k

(]

S
|l
- O

(—n+ Dr(a+ B+ n+ Dp(—2)k(@ + 7+ 6 + 1)k
— a4+ 1D)rp(B+0+ Dr(y+ 1)k

+ [afB — 86 + 70 + n(a+ 5+ n)]

+

o
[}

y ”i (=n+ Dla+ B+ n+ De(—z)s(@+7+6 + 1)
P Rl o+ 1)k(B 40 + 1)y + 1)k

(—n+ Dp(a+B4+n+Dp(=2)p(z+v+ 0 + 1k
Ella+1Dr(B+0+ Dr(y+ 1)k

(—n+1p—1(a+B84+n+1)k_1(—2)
< ka4 1De(B+0+ Dr(y + 1)k
+ 406+ )pk(a+E)(B+0+k)(y+k)

(—n+ 1 a(-n+k)(a+B8+n+1)r 1(a+B+n+k)
Ella+1)p(B+ 0+ 1)k(y+ 1)k

Jel@+v+0+D)k(y+0+1)

(—n+1)pa(—n+k)a+B+n+ 1D a(a+B+n+k)(—x)e(z+7v40+1),k?
- Ella+ DB+ 6 + D)i(y + 1)k

aff — 36 +~v6 +n(a+ B +n))

(—n+1Dpa(-n+k)la+B+n+1pa(a+B8+n+k)(—z)p(r+7+5+ 1
ko +1)e(B 40+ Dg(y + 1)x

(]

k=0
n

(]

X
—
3 8

+
(]

b
(e}

X
8

+ o+
1M

i
L

T
|
- O

(—n+ 1 a(-n+k)a+B+n+ i s(a+B8+n+k)(—z)p(r+v+d+ 1)k
El(a+1)k(8+6 + 1)p(y+ 1), '

=
Il
=]

Finally we see that
F(z) =Y kniP(k)
k=0

where

(—n+ D a(a+B+n+ D a(—x)p(r+y+d+ 1
Ella+1Dr(B+0+ Dr(y+ 1)k

Rn,k =
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and
P(k) = —k(a+k)(B+0+k)(v+k)— (n—k)(a+ B+n+k)k(y+0)
— (n—k)(a+p+n+Ek)k?
—(n—k)a+B+n+k)af— B0+~ +n(a+ 8+n)
P(k) = k[B(a—=0)(a+B—7)+n(a+B+n)(a+ -7 —0)
— n(a+ B +n)af — B +~0 +n(a+ 8 +n).
So we see that:

F(z)= [-n*(a+B+n)? —n(a+B+n)(af — B6+70)] Z K.k
k=0

— [(a+B+n)(y+6—a—B)+Ba-8)(y—a=B)Y_ rnik
k=0

In order (17) to be true there must be coefficients C,, and D,, such that
P(k)= Cp(-n+Ek)(a+B+n)+ Dp(—n)(a+B+n+k)
=-nCpla+B+n)+kCp(a+B+n)—nD,(a+ S +n)—nkD,
= = k[nDn = Cpla+ B+ n)] —n(a+ f +n)[Cp + Dn]

for every k. Equating the coefficients in front of the degrees of k we form the following
system:

Cn+ Dy, = n(a+pB+n)+af— B0+~
Cn(a+ B +n)—nD, nla+0+n)a+B8—-vy—-0)+0a=08)(a+8—7),

whose solution is:

(n+a+B-—7)n+a-0)(n+p3)
(a+ B+ 2n)

(a+n)(y+n)(n+6+9)
(a5 0+20)

And finally substituting in (15) the expression for F(x) we obtain that

C, =

Dy,

nn+B8)(n+a+p—-0)(n—y+a+p)

An(a?):—(a+ﬂ+2n)(x+7+5+1)(x+5+6+1)(x+’y+1)(x+a+1)

B, (x) =
nfla+p+2n)(a+pB+n+az+1)(z+v+0+1)+ (B+n)(n+a—-98)(n+a+8—7)]
(a+B+2n)(z+y+0+)(z+B+0+)(x+y+1)(z+a+1)

(20)

d

Since the first derivative of any polynomial is can be expressed as a linear com-
bination of differences from the abobe theorem one can conclude that the above
polynomial sets satisfy a relation of the form

Pu(A(@)) = An(2)pn-1(A(x)) = Bn(A(@))pn (M) - (21)
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3. Discriminants. The discriminant of a polynomial p,(z) with zeros
Tn,1,Tn,2, .- Tn,n and a leading coefficient +,, is given by
n(n—1) “
D(pa(@) == %" [ (ng—wan)® = 077 2 [ paleas)-
1<j<k<n j=1

In this section we prove that if a sequence of orthogonal polynomials satisfy an equa-
tion of the form (2) then the absolute value of its discriminant can be evaluated in
terms of the functions A,,(x) and its recurrence coefficients. Let us first state a lemma
due to Schur [10]

LEMMA 3.1. Let {pn(z)} be a sequence of polynomials, generated by the initial
conditions

po(z) =1, p1(x) = a1z + by, (22)
and the three term recurrence relation
Pu#) = (@ + bu)pn_1(2) — Cupn_(2). (23)
Let {xn 1 }}_, be the zeros of pn(x), then
ﬁpnﬂ(mm) = (- lﬁ “T‘H] x lﬁ (2>i_1] .
i=1 ’ il i—p \i
Let us prove a lemma analog to the stated above Schur’s lemma.
LEMMA 3.2. Let R,(A(x)) be a sequence of polynomials generated by
Ro(z) =1 Ri(z) = a1 M(x) + by
and the three term recurrence relation
Rn (M) = (anA(@) + bn) Rn1 (M) — cnBn1 (M), (24)
where
ANz)=z(x+y+0+1).
Let Ryy(An,i(x)) =0 for i=1,...,n and
Ayi = Tie(Tnik +7 + 0+ 1) k=1,2,

then
H Ry 1(Mn,i1))Ru—1(AM(@n,i2)) = H Roo1(Mni)?, (25)

or in other words

n n . n . 2(i—1)
[T s Man i) Ruoa (A i2)) = [H a?(”‘”] <11 (—) - (20)

i=1
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Proof. Since R, (A(z)) is a polynomial of degree 2n of x it can be expressed as:

n n
= H)\ )\nj Hx—$n31)($+$n31+7+5+1) (27)
j=1 j=1
Therefore

n

H Rnfl (xn,i,l)Rnfl (xn,i,Q)

i=1
n n—1
:’Yiﬁl H (Tni1 — Tn— 17]’1)@”%1 + Tno1,j1 +y+6+1)
i=1 j=1
n n—1
x H (@nyi2 — Tn-1,41)(@n,i2 +Tno1j1+7+0+1)
i=1 j=1
n n-1
- 7” 1H H (Tn,i1 — Tn— 17];1)2(:[:71,1',1 +Tp_141+y+0+ 1)2
i=1 j=1

:ilf[an_l(/\m)Q _ [ﬁ ] lj (az>2<z 3

i=1
Here we used
Tni2=—Tp;1—7—0—1. (28)
and Schur’s lemma.
THEOREM 3.1. Let R, (A(z)) be a sequence of polynomials satisfying

Ry, (A(@)) = An(2) Rn1(A(@)) = Bn(2) Rn(A(2)), (29)

- n 2i-2
Ap(ni 1) An(—Tn i1 — v — 6 — 1)ain—2i4 H ¢ .
}:[1 (@n.61)An(=@ni1 =7 )ai 1 " Lz <ai
(30)

Proof. From the definition, and the fact that R, (A(zn,;)) =0, it follows that

DQ(RnO‘(x)) = 737174 H Ap(@n,in)An(—Tni1 —v—0— 1)Rn 1(Ansi)

ﬁAn(a:n,i,l)An(—xml — == 1)aln ] x [ﬁ (2) H] ,

i=1 =2
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4. Some resultants. Let p,(A(x)) = gon(x) is of precise degree n w.r.t. the
variable A(z) that is go,(x) is of exact degree 2n w.t.r. z. Let T'qa,(z) is of precise
degree 2n — 2 w.r.t. the variable z and both ¢, (z) and Tg,(z) have the same sign.
Consider the following resultant:

D*(pn(M2)), T) = 7, > R{gan (), T(q2n (2))} = 72" * T T(g2n (2n.i1)T (G2n (2n.i.2))
i=1
(31)
where z,, ;1 and z, ;2 are the zeros of ga,,(x) which satisfy :

Tn,i,2 = —Tnil — Y — 6—1. (32)

by Vietta’s formula.
Let us state some theorems that show the way we can compute resultants of the
above type.

THEOREM 4.1. Let R, (\(z)) be a sequence of polynomials satisfying

_ 0Ry(A(z))

AR(Na)) = ZEE e = Ane) R (M) ~ Bu(@)RaMw)), (3
where
SRy (A@) = RalAz + 1)) = Ra(A(@)).
and
SA(z) = Az + 1) — A(z).
then

H An(xn,i,l)An(_xn,i,l - — 6 — 1)af"_2i_4 (34)

Proof. The proof of this theorem resembles the proof in the Ismail’s papers,
however we apply here the analogue of the Shur’s lemma.

REMARK. These quantities of the above resultants are the same if we use the
divided difference operator with the backwards differences.

5. Some resultants. Let us mention that from the above results and the fact
that every sequence of polynomials from the Askey scheme satisfy three term recur-
rence relation the following resultants can be computed.

5.1. Meixner-Pollaczek polynomials.

D(PM (), Ai) = (2sin )" TG + 22X — 1)/ 1722

j=1
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5.2. Continuous dual Hahn polynomials.

D(Sn(2?),A,i) = [ 5% (a+b+5—1)20"D(atc+j—1)207D (b4c+5—1)20 71 . (35)

J=1

5.3. Dual Hahn polynomials. For the Dual Hahn polynomials formula (34)
applies.

D (R (A(

ﬁ (N +146—i)*0-D
SN+ 1 =9)(y +))2@n—imh)

5.4. Continuous Hahn polynomials.
D(pa(a), A i) = [H B (at Byt i) -5+ >+]
i=1

% lﬁ(5+§+i)i+12”(’Y+Z’)i+12n(a+5+n+i)ni‘| ) (37)

i=1
5. Wilson polynomials.

D* (W, (2?), A7)

Po+e+i-1)0U" V(b +d+j 1)

|
:]:

<.
Il
—_

(c+d+j—12"Da+b+j—-1)%"D (38)

~
Il
_

="

(a+c+j—120"Ya+d+j-1)20"Da+b+c+d+n+j—2)>*"D

="

~
Il
—

5.6. Racah polynomials. Here formula (34) applies.

= [ﬁ 221(5 + Z')Q(ifl)(a + 6 -7+ Z‘)2(i71)(a — 5+ Z.)Q(il)‘| (39)

i=1

n
% [H(Oz—|—i)2<i+1_2n)(ﬁ+5+i)Q(i+1_2n)(’y+i)2(i+1_2n)(06+6+n+i)2(n_i)] )

i=1
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