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for an acceptable hypothesis. In my elementary statistics classes we can and sometimes do

get into extended discussions about sample size, and the arbitrariness of any cutoff value,

as well as the virtues of estimation rather than testing. However, statistics students—

like everyone else—need to have clear and concise guidelines they can remember. I tell

students to interpret p > .05 as "no evidence against i/o" and p < .05 as "some evidence

against Ho" but I frequently emphasize that a p near .05 would be pretty shaky. In doing

this I think I am offering a bit more conservative advice than is traditional, but it seems

to me to be good advice that is more or less consistent with its Gosset/Fisher origins

while being enlightened by subsequent analysis. So, my last question is this: How has

any of this reconsideration of the foundations affected their thinking, and what scale of

evidence do they tell their students to use?

Let me now, with great pleasure, thank the authors for a stimulating article.
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In this discussion, we will consider the important problem of selection between a

random effect model and a fixed effect model. Such a problem is encountered in many

applications including animal breeding and small-area estimation. For the simplicity of

exposition, let us consider the following one-way balanced random effects model:

yij = μ + di + eij, i = l,...,m; j = l,...,n0,

where αt 's and ey's are independent with α* la~ N(0,σ2) and ey ι~ ΛΓ(O, σ2). Let

us call this model M.

Note that this model belongs to the exponential family considered by the authors.

The model selection in question can be equivalently viewed as the following one-sided

testing hypothesis problem:

Ho :σ2

α=0 vs Hα:σ
2

α> 0.

Under this null hypothesis model M reduces to model Mo: yij ι~ N(μ,σ2). We

consider this model selection problem for two reasons. First, unlike the testing of μ

considered by the authors, our example distinguishes among different types of nonin-

formative priors available in the literature. Secondly, the parameter value specified by

the null hypothesis falls on the boundary of the parameter space, a case not covered by

the authors. Is the approximation formula given in Lemma (section 2.2) valid in this

situation? We try to investigate this question by numerical examples. Do the authors

have any comments here?

Define S = ΣΣ(y^ - &)2, SSB = noE(& - y)2 and SST = Σi ΣjiVij - ϋ)2 We also

define η = o\jσ\. To calculate the Bayes factor in favor of M against Mo, we need to

calculate the marginal densities /M (y) &nd /MO(2/)J where

/M(V) = J L(η,σl,μ)π{η,σl,μ)dμdηdσl, (1)

fMo(y) = J L{0,σ2

e,μ)π0(σlμ)dμdσ2

e, (2)

where the unrestricted likelihood L(η, σ2,μ) and the likelihood under the null hypothesis

L(0, σ2, μ) are given by

and

exp[-' + "° Σ f ^ '^]. (3)



Discussion 251

To consider authors' suggestion in calculating Bayes factor based on Jeffreys' priors

(under M and Mo), we use a general class of priors. Under the model M, we use

π(η,σlμ) = (σ2

e)^+a>+a*+2a*+Vηa*(l+ noηΓ[(no - 1)(1 + noηf + If*. (4)

Under Ho : σ\ = 0, the class of priors to be considered is

It can be shown (see Datta and Lahiri 2000) that the Bayes factor B in favor of M

against MQ is given by

β = 2
fM0(y)

mnp- 2αi - 2α2 - 2α3 - 4α4 - 5 U Γ / m n 0 -2α^ -
JiU 2

X U 2

ΓOO

x / ί?01 ( l+n 0 r7) 1 / 2 ί m (" 0 - 1 ) - 2 θ l - 2

Jo
(6)

In order that B in (6) remains free from the unit of measurement we must have

ax + α2 + α3 + 2α4 - a\ 4-1 = 0. (7)

Thus, we must be careful in choosing the noninformative priors for the model M and

MQ SO that the resulting Bayes factor is unit-free. We will consider the following pairs

of priors from the classes (4) and (5) described above in calculating the Bayes factor B.

(a) Jeffreys' priors: Here ά^ = a^ — -3/2.

Prior under M = π/M(μ, σ*, σ\) = {σl)-ι{σ2

e + n0σ£)-3/2,

Prior under Mo = l 3 / 2

(b) Matching prior for η vs. Jeffrey's recommended prior: Here a\ = a3 = — 1.

Prior under M = πηM(μ> σ\, σ\) = {σ^(σ2 + noσ^)}-1

Prior under Mo = τrM0(μ,σ^) = (σ^)"1.

(c) Matching prior for σ\ in the full model: Here a\ — α3 = —2.

Prior under M = π . ^ ^ σ ^ σ 2 ) = ^ ( ^ σ 2 ^ 2 ) = ^

Prior under MQ = π(/i, σ2) = (σ 2 )" 2 .
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Datta and Lahiri (2000) showed that for the prior-pair (a)-(c), B further simplifies

to
1 ft

1rί;2{m(no-1)}-1ίl -wύ^m~2αz~^'ιdw

where 6 = S/SST. Note that for b < w < 1 and for α$ < α^ it is easy to see that

(1 - w)-α3 > (1 - w)-fl3 (1 - δ)βs"αs. Using this it can be shown from (8) that B(α'3) >

B(α'l). Thus, B is increasing in 03. Hence, B for prior pair (b) > B for prior pair

(α) > B for prior pair (c). In other words, the matching prior for η is the least favorable

for Mo, the matching prior for σ\ is the most favorable for Mo, and Jeffreys' prior (the

recommended prior of the authors) falls in between.

The frequentist Bayes factor as given by the authors involves the log-likelihood ratio

statistic

Bt(y) = 2{ sup^log L(a%,σ%,μ)-suplog

= 2{ sup log L(σl, σ*t y) - sup log L(0, σξ, y)}. (9)

It can be shown that

Bι(y) = Mb) = rn{h(b) - h(b)}I(b < 6),

where b = (no — l)/no and h(x) = (no - 1) log x + log(l — x), 0 < x < 1.

Then the authors' approximation to frequentist Bayes factor Bjrreq(b) is given by

BFτeq{b) = exP{ij5ί(6)}/2.2687, (10)

where 2.2687 is based on the cut-off point at level 0.10 of Bι{b). Since asymptotically

(see Chernoff 1954) PMo[Bt(b) > x] π \P[χ\ > x], we get at level 0.10, x = (1.28)2

and exp{x/2} = 2.2687.

Consider the dyestuff data given in Box and Tiao (1973, Sec. 5.1.2). Five samples

(no=5) from each of the six (ra=6) randomly chosen batches of raw materials were taken

and yield of dyestuff of standard color for each sample was determined. Table 1 reports

the values of Bayes factors for three different choices of the noninformative priors and

the frequentist Bayes factor. It is interesting to note that the frequentist Bayes factor

and the Bayes factors under the noninformative priors (a) - (c) all provide "positive"

support for random batch effect.



Discussion 253

LogHBL

25

20

15

10

5

0.2 0.4

Figure 1: Logarithm of frequentist Bayes factor and various noninformative Bayes factors

for dyestuff data (six batches) of Box and Tiao.
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Figure 2: Logarithm of frequentist Bayes factor and various noninformative Bayes factors

for dyestuff data (20 batches, simulated) of Box and Tiao
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Table 1. Frequentist Bayes factor and the Bayes factors under priors (a)-(c)for

dyestuff data.

Frequentist

6.568

(a)

4.92424

(b)

8.67469
(c)

3.02869

Note that all the three Bayes factors constructed using noninformative priors (a)-(c)

and the frequentist Bayes factor is a function of b. Figures 1 and 2 plot logarithm of

Bayes factors against b for m = 6 and m = 20 (in each case no = 5). It is clear that there

is very good reconciliation of the Bayes factors under noninformative priors (a)-(c).
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REJOINDER

Bradley Efron and Alan Gous

This article was written under the following rule of thumb: no method that's been

heavily used in serious statistical practice can be entirely wrong. The rule certainly

applies to Fisherian hypothesis testing, but it also applies to Jeffreys and the BIC,

leaving us to worry about Figure 1. The two scales of evidence seem to be giving

radically different answers, even for sample sizes as small as n = 100.

Our paper localizes the disagreement to coherency, in this case sample size coherency,

the key distinguishing feature of modern Bayesian philosophy. The BIC, along with any

other methodology that acts coherently across different sample sizes, must share Figure

l's behavior, treating the smaller hypothesis Mo ever more favorably as n increases.

Fisher's theory, which is usually presented with the sample size fixed, eschews sample

size coherency in favor of a more aggressive demand for statistical power.




