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DISCUSSION

R.E. Kass

Carnegie-Mellon University

At this moment in the history of statistics, there seems to be less interest in the great
Bayesian/frequentist divide than there had been in the nineteen seventies and eighties,
when Efron (1986) asked, “Why isn’t everyone a Bayesian?’ We are all eager to get
on to solving the many challenges of contemporary data analysis. Yet, we have our
foundational conscience speaking to us; it continues to prod, with occasional welcome
reminders from papers such as this one by Efron and Gous. How can these two great
paradigms co-exist in peace? Where are the resolutions? What conflicts are irresolvable?
And where does this leave us?

To me, the issues raised in this paper continue to be interesting. I find the authors’
discussion clear and their new results informative. On the other hand, there are those in
the Bayesian camp who see little relevance of all this to things they care about. Nearly all
statisticians I have come across, regardless of philosophical persuastion, freely admit to
thinking Bayesianly. Among the converted, however, there is a kind of Cartesian credo:
“I think Bayesianly, therefore I am Bayesian.” The impatience of the true believers
comes in part from their taking the next step: “I think Bayesianly, therefore I must

place all of my statistical work within the Bayesian paradigm.”

A second, equally fundamental difficulty many Bayesians (and some frequentists)
have with the perspective articulated in this paper, is in the importance it places on
hypothesis testing and model selection. As the authors note, a recent version of this
dissenting point of view is in Gelman and Rubin’s discussion of Raftery (1995).

One might say that a major practical goal of this paper is to dissect Jeffreys’s re-
mark that his methods and Fisher’s would rarely lead to different conclusions (Jeffreys,
1961, p. 435): “In spite of the difference in principle between my tests and those based
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on the P integrals, ... it appears that there is not much difference in the practical
recommendations.” Qualitatively and roughly, Bayes factors may be brought to approx-
imate agreement with frequentist tests when the prior on the alternative shrinks at rate
O(n~1/2) toward the null value. This was made precise by Andrews (1994). Efron and
Gous show that, in fact, the prior may be chosen so as to obtain a very close agreement in
one dimension, but the agreement is not so close in higher dimensions. They rightly put
their finger on sample size coherency as the key restriction of the Bayesian approach to
testing and model selection, and their discussion and remarks on this point are helpful.
They present an example of hypothesis testing in which the conclusions to be drawn are
important, and they apparently like the way their B, measures the evidence. What
remains, however, is the deep and vexing problem of model selection.

I have recently come across a data set on prosopagnosia—a disorder in which patients
have difficulty recognizing faces—where the goal is to better understand the cognitive
deficiency. We developed a generalized ROC analysis in which probit regression is used
with 7 explanatory variables defined by the experimental design, the goal being to make
inferences about several contrasts. There are a total of just over 20,000 binary observa-
tions on roughly 40 subjects and to examine the contrasts of interest, something must be
done to take account of the remaining explanatory variables. Thus, we have a familiar
problem of “model selection,” in quotes because one may well decide not to literally
select a model.

My own preference would be to use BIC to sift through a wide variety of models
(perhaps using MCMC), drawing conclusions based on the potentially many models
that have substantial posterior probability according to BIC (i.e., prob = exp(BIC)/(1+
exp(BIC))). However, we run into a problem, which the authors allude to toward the
end of their Section 5: What value of the sample size n should be used in the penalty
term? The difficulty is most easily appreciated in the one-way ANOVA context with k
replications in I groups. At first glance, there are two possibilities: n could be the total
number of observations n = I - k or, if we view each replication as an observation on an
I-dimensional vector, we might instead take n = k. In many examples, the results are
strikingly different. The same problem arises in our probit experimental design. I think
the choices n = I - k and n = k are both intuitively reasonable. It may seem preferable
to take m = k, but keep in mind that in linear regression one would usually take n to be
the total number of observations. Thus, if we take n = k for replicated designs we create
a discontinuity: adding very small epsilons to the 1’s and 0’s in the design matrix for
the linear regression version of ANOVA creates a non-replicated linear regression that is
essentially identical to the ANOVA design, yet we would be using a very differenct value
of n than in the ANOVA design and would thus get very different results.
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One potential way out of this bind is to begin by regarding the sample size as being as
large as possible; in the one-way ANOVA setting we would take n = I-k. In the terminol-
ogy of Kass and Wasserman (1995), this would correspond to using a “unit-information
prior” with n units of information in the sample. We might then ask how many units of
information the prior should contain. That is, we might consider the possibility that the
prior might contain ¢/n units of information. In the one-way ANOVA setting, we could
choose ¢ = 1 to obtain a BIC-based analysis with penalty term depending on log(I - k),
or we could instead choose ¢ = I to obtain a penalty term involving log(k). Further-
more, there is now an additional possibility of estimating ¢ from the data—finding the
value of ¢ that provides the best fit. An interesting version of this approach to model
selection (albeit more involved than I am describing here) has been proposed by George
and Foster (2000).

This is a somewhat lengthy background to a simple question for the authors: Would
they extend their Bjf,¢, to more complicated contexts? Can, for instance, their formula
(2.30) be regarded as a general model-selection criterion, and would they apply it even

in non-nested situations (which is crucial for applications of the kind I have mentioned)?

I'd like to come back to Jeffreys’ remark (about the garden-variety small-sample
problems most commonly treated) that his methods and Fisher’s might not differ much
in practice, and to a point that continues to bother me, at least a little. There is a pretty
substantial body of work comparing Bayes factors to significance tests, following from
Jeffreys and Savage (especially Edwards, Lindman, and Savage, 1963), including work by
Berger and various colleagues. To me, the most important practical take-home message
is that .05 really doesn’t represent much evidence against the null. The authors provide
a nice quote from Fisher that seems to give his perspective pretty clearly on the use
of .05 as an appropriate conventional cutoff value, as well as setting the stage for their
use of ag = .9 as the breakeven point. Another relevant reference, however, is Fisher’s
famous description (in the introduction to his Ezperimental Design) of “A Lady Tasting
Tea.” There, he rejects the design involving 6 cups of tea, prefering one involving 8,
because the p-value from exact identification with 6 cups would be p = .05 and this he
considered insufficient evidence. In a similar vein, Gosset wrote (Pearson, 1938):

[A test] doesn’t in itself necessarily prove that the sample is not drawn ran-
domly from the population even if the chance is very small, say .00001: what
it does is to show that if there is any alternative hypothesis which will explain
the occurrence of the sample with a more reasonable probability, say .05 ...
you will be very much more inclined to consider that the original hypothsis
is not true.”

The point here is that Gosset picked the .05 level to correspond to a “reasonable” tail-area
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for an acceptable hypothesis. In my elementary statistics classes we can and sometimes do
get into extended discussions about sample size, and the arbitrariness of any cutoff value,
as well as the virtues of estimation rather than testing. However, statistics students—
like everyone else—need to have clear and concise guidelines they can remember. I tell
students to interpret p > .05 as “no evidence against Hp” and p < .05 as “some evidence
against Hyp” but I frequently emphasize that a p near .05 would be pretty shaky. In doing
this I think I am offering a bit more conservative advice than is traditional, but it seems
to me to be good advice that is more or less consistent with its Gosset/Fisher origins
while being enlightened by subsequent analysis. So, my last question is this: How has
any of this reconsideration of the foundations affected their thinking, and what scale of

evidence do they tell their students to use?

Let me now, with great pleasure, thank the authors for a stimulating article.

ADDITIONAL REFERENCES

Edwards, W., Lindman, H., and Savage, L.J. (1963). Bayesian statistical inference for
psychological research. Psychol. Rev. 70, 193-242.

Efron, B. (1986). Why isn’t everyone a Bayesian? Amer. Statist. 40, 1-11.
George, E.I. and Foster, D.P. (2000). Calibration and empirical Bayes variable selection.
Biometrika 87, 731-748.

Pearson, E.S. (1938) “Student” as statistician, in William Sealy Gosset, 1876-1937.
Biometrika 30, 210-250.

G. S. Datta and P.Lahiri

University of Georgia and University of Nebraska-Lincoln

Starting from a simple testing hypothesis problem, the authors have very success-
fully demonstrated how one can possibly reconcile two apparently different approaches
(Fisher's and Jeffreys’) to model selection. In the process, they have proposed a new

frequentist Bayes factor for model selection.
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