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sample size increases.

Beyond the above stardard oversimplistic example, such an analysis might be the

starting point to develop an objective quantitative measure of discriminatory power of

the FBF, as a function of b. This measure could be combined with measures of sensitivity

of the FBF to the prior, such the ones proposed in Conigliani and OΉagan (2000), in a

unifying tool to be used to choose b.

Two final comments are in order. First, in principle the above analysis can be also

performed in the presence of multiple fractions FBF. Secondly, and more importantly, as

noted above computation of the probabilities to be used to set the fraction(s) requires

the knowledge of the marginal distributions of the data under the two models, and this

is, in general, much more complicated than it is in this problem. The use of fractional

priors might be, at least in some cases, of help (De Santis, 2000).
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REJOINDER

J. O. Berger and L. R. Pericchi

We thank the discussants for their very interesting comments and viewpoints. We

respond to each in turn, using the numbering scheme of the discussants. If we do not

mention a section of a discussion, it is because we appreciate and agree with the points

mentioned therein.
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Reply to Professor De Santis:

2.1. De Santis rightly observes that it would be nice to have formal ways of evaluating

objective Bayes factors in small sample settings. To date, our efforts in this direction

have been limited to determining the intrinsic prior (based on asymptotics) and then

investigating, for small samples, the extent to which the objective Bayes factor is close

to the Bayes factor from the intrinsic prior. If the two Bayes factors are close, one can

rest easy. But if they differ, one is not sure what to conclude.

De Santis investigates this issue within the context of partial prior information,

as specified by a class Γ of prior distributions. He considers several possible ways of

measuring compatibility of objective Bayes factors with the information in Γ.

A variant of this idea that is in tune with our strategy for development of objective

Bayes factors is to directly utilize the partial prior information in the construction of the

Bayes factor. One natural approach is to first calculate the reference prior, subject to

the restriction of being in the class Γ (cf. Sun and Berger 1998). If the reference prior

is proper, it can be immediately used to calculate the BF. Otherwise, one could use the

constrained reference prior to compute a default Bayes factor (e.g., an IBF). Of course,

if the prior is unconstrained, this reduces to the ordinary definition of an objective Bayes

factor.

2 2. As argued in the chapter, our recommendation for evaluating an objective Bayes

factor method is simply: discover which prior is effectively being used when applying the

method, and informally judge whether or not this prior is reasonable. Our experience is

that, by looking at this intrinsic prior, one can gain a great deal of insight into possible

biases or inadequacies of the corresponding objective Bayes factor method.

In contrast, comparison of operating characteristics of objective Bayes factors rarely

seems to yield clear insights. The problem is that the results are, of necessity, highly

dependent on the particular operating characteristic that one considers. And even then,

one objective Bayes factor will rarely uniformly dominate another. After all, virtually

any Bayesian procedure in testing is formally admissible from a frequentist perspective,

meaning that uniform domination cannot be attained.

Consider, for instance, the use of 'discriminatory power7 as discussed by De

Santis. For the particular situation he considered, the IBF happened to have higher

discriminatory power than the FBF. But both the IBF and the FBF in this example

have proper intrinsic priors, so that presumably a different choice of the 'design' prior

for θ (the prior under which discriminatory power is computed) or a different choice of

k (or allowing different k for choice of different models) could easily reverse this finding.

Another issue here is that we feel the 'design' prior must be fixed in carrying out pre-
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experimental comparisons and, in particular, should not equal the intrinsic prior for a

procedure (as is apparently done in section 3 of the discussion). In other words, one

must fix the pre-experimental 'truth' and then judge various procedures against this

truth, rather than allowing the truth to shift with the procedure.

Of course, part of the message of De Santis is that one should formally consider

experimental design, with the goal of ensuring that the discriminatory power of the

procedure to be used is adequate, and we completely agree. It is just that we do not feel

that generic comparison of objective Bayes factors can easily be carried out in this way.

3. De Santis reaffirms the need for modifying the FBF to allow for multiple fractions.

Indeed, De Santis and Spezzaferri (1999) propose a quite compelling method for

determining the multiple fractions. We have two comments. First, no method can

overcome the difficulties of FBFs in irregular models, such as our Example 2. Second,

when observations can be dependent, it is something of a misnomer to call the method an

FBF method, since it produces a prior that cannot then be written in terms of fractions

of multiplicative parts of the full likelihood. Indeed, their method is more closely related

to what is known as use of the empirical expected posterior prior (use of (5.2) with ra*

chosen to be the empirical distribution of minimal training samples); (5.2) can then

be viewed as the arithmetic average of minimal training sample posteriors, while the

approach of De Santis and Spezzaferri leads to a geometric average of these training

sample posteriors. These connections are all very interesting and affirm the basic point

made by De Santis that all these objective Bayes factors are based on much the same

principle.

Reply to Professors Ghosh and Samanta:

1. We agree with Ghosh and Samanta that the direct intuitive appeal of certain of the

objective Bayes factors can actually lend support to use of the corresponding intrinsic

prior. It is indeed useful to think of the justification as a two-way street. We also agree

that, in situations in which the number of parameters is allowed to grow with the sample

size, the existing theory of Intrinsic Priors need not apply (although it can sometimes

be directly modified in an appropriate fashion, as was done in our Example 4).

Ghosh and Samanta raise the interesting issue of propriety of the conditional

Intrinsic Distribution TΓ^C ÎV7)- We actually seek much more than just propriety of

this distribution; we also want the (typically improper) marginal intrinsic priors for

the nuisance parameters under the two models to be properly 'calibrated.' Dass (2000)

shows that this can be done in problems with a suitable group structure, as long as the

initial noninformative priors that are used to derive the IBF are the right Haar priors.
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2. We agree with the observation that increasing the size of the training sample will

imply more peaked Intrinsic Priors. This is of particular relevance because of the next

comments of the discussants.

3. The discussion of the 'Scale of the Priors' is fascinating. It may, indeed, frequently be

the case that, in well-designed experiments, the pre-experimentally chosen sample size,

no, is such that 'local alternatives' like θ = δ/y/rϊo are those that are apriori viewed to

be likely, and objective Bayes factors would need to adjust to this scale. The various

technical mechanisms discussed by Ghosh and Samanta for achieving this adjustment

(such as increasing the training sample size in IBFs) are quite clever.

There remains, however, the outstanding practical issue of determining when a scale

adjustment is necessary. One possibility - seemingly that envisaged by Ghosh and

Samanta - is to subjectively elicit the appropriate scale, and then embed this scale in a

suitable default procedure. This is entirely reasonable, but does require some subjective

thinking.

One might, of course, begin by computing the answers arising from both a 'local

alternative' scale and the usual scale; it is only if these yield contrasting conclusions

that one would need to make a subjective decision as to which scale is most appropriate.

By the 'local alternative' scale here we effectively mean that which would arise as a

lower bound from a robust Bayesian analysis with respect to a reasonable class of priors.

Unfortunately, it is not clear how one can automatically find this scale through use of

modifications of IBF type procedures.

This discussion is also related to the idea of 'local' vs 'global' alternatives in Smith

and Spiegelhalter (1980). Also of interest, from that paper, is the observation that

use of local alternatives can lead to AIC type approximations to Bayes factors; this is

related to the observation of Ghosh and Samanta that local scales can bring Bayesian

and frequentist answers closer together. While this is true asymptotically, it should be

pointed out that, for moderate sample sizes, a significant discrepancy remains between,

say, p-values and Bayes factors (at any scale).

4. Examples: As pointed out by the discussants, one always has to consider comparison-

by-example with caution. The main point of the examples in the chapter was to indicate

the types of things that could go wrong with default procedures (so that one could be

properly cautious in their use) rather than to try to 'prove' which procedures were better.

Our surprise that the IBF seemed to automatically overcome all obstacles probably led

us to emphasize the comparison aspect a bit too much.

Concerning the FBF, we should mention that we have always thought of the FBF

as a multitude of procedures, especially when multiple fractions are allowed. Thus we
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introduced multiple factions in examples (such as Example 4) where it seemed to be

necessary.

Our purpose in Example 6 When Neither Model is True was apparently not stated

very clearly. We certainly did not mean to suggest that the GIBF is better than the

FBF because it is smaller. In the example we were, instead, reacting to the comment in

OΉagan (1997) to the effect that the appearance of the sample variance in the GIBF

leads to "...not intuitively reasonable behaviour". We were simply suggesting that the

situation is far from clear, and that the appearance of the sample variance in the GIBF

can be motivated through consideration of robustness to the assumption σ2 = 1. The

effect, on the FBF, of violation of this assumption is quite serious, while the GIBF seems

to compensate rather well to its violation. We also wanted to present the example to

point out that IBFs may well have advantages over, say, the use of the corresponding

intrinsic prior, when it is suspected that none of the models under consideration may be

true.

5. Teaching Non-Subjective Bayes Testing. We have certainly been thinking about

possible ways to teach this material. Part of the problem is that one might choose

to emphasize quite different methods for different audiences. In a Bayesian course

emphasizing MCMC, it would be natural to focus on objective testing and model

comparison based on use of expected posterior priors (often equivalent to intrinsic priors

from AIBFs), since they can usually be directly incorporated into MCMC schemes. For

a low level undergraduate service course, one might settle for simply teaching students to

calibrate p-values via the BF = —ep\og(p) formula of Sellke, Bayarri and Berger (2001).

At a higher level undergraduate course, one might emphasize the idea of training samples

and present the median IBF as a general purpose testing and model selection tool. There

is surely also a role for approximations, such as BIC and its possible generalizations or

reformulations.
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