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dependent prior that integrates to less than one. Also, if one criterion is always smaller

than the other, then it is clear that none of them can be better than the other in all

circumstances. It is easy to provide numerical evidence of this sort in Example 6.

Finally, in Example 6, the advantage that the AIBF has over the FBF is bought at

a price. For, being exactly equal to a BF with respect to a prior may be preferable to

being so only asymptotically.

We too have our own preferences, namely, the AIBF, a trimmed AIBF and the median

IBF but believe it's too early to come to any definite conclusion.

Example 1 (Section 4.1) illustrates the difficulties with the class of models with

"improper likelihoods" such as the mixture models for which the IBF and FBF cannot

be directly employed. It refers to an unpublished work of Shui (1996) that considers

modifications of the IBF and the FBF approaches to deal with the mixture models.

Hopefully, the interesting work of Shui would be published soon.

5. Teaching Nonsubjectiυe Bayes Testing. How should one teach nonsubjective Bayes

testing in an undergraduate course? What would be the best way to communicate these

ideas to the students who cannot be expected to understand all the subtleties of an IBF?

At least in the classical examples {N(μ, 1) or ΛΓ(μ, σ2)) it may be easier to motivate and

use a BF based on a default or intrinsic prior but one would still have to motivate the

prior. Do Berger and Pericchi have any suggestions?

Fulvio De Santis
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1. Introduction.

Model selection and hypothesis testing are difficult topics. In these problems, as we

depart from the usual assumption of explicitly stated underlying model, fundamental

statistical principles (e.g., likelihood, sufficiency, etc.) begin to fade and we are left

with no clear direction. Substantial debate over the appropriate model selection and

hypothesis testing problems has taken place inside and outside the Bayesian community.

Within the Bayesian approach, controversies arise on how model selection should be

performed, even in the ideal situation where prior information is available. For example,

the recent renewed interest in the development of default model selection methods has
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witnessed many conflicts: not only is the statistical problem hard, but some statisticians

make it even harder by the controversial use of improper priors! The objective Bayesian

approach is of great theoretical and applied importance, not only for its connections

to non-Bayesian analysis, but because it has been able to produce original, useful and

sensible statistical tools. Furthermore, until a few years ago, little had been done for

default model selection, compared to standard estimation. Nevertheless, in the last

few years, important advances have been made towards developing useful strategies for

objective model selection, as the present paper by Berger and Pericchi (BfeP, from now

on) demonstrates. This paper is an important piece of work for at least three reasons.

First, it summarises the extensive experience and important contributions of the two

authors and their collaborators. Furthermore, the paper critiques most of the methods

currently available for default model selection: formal properties, behaviour in important

classes of problems, compatibility with subjective Bayesian methods, difficulties in

implementation and computation. Third, and most importantly, the authors provide

a fair comparison of different model selection methods. This allows them to recognize

limits of the IBF approach and to acknowledge merits of competitive methods.

The goal of this discussion is to outline possible strategies for selecting among default

Bayes factors (DBFs) or for comparing such methods. Next sections propose a possible

complement to the authors' presentation, not an alternative.

This note consists of two sections. Section 2 is devoted to two possible ways for

comparing DBFs. Namely, the discussion focuses on finite-sample properties of DBFs

(Section 2.1) and on the use of a frequentist pre-experimental analysis to perform a

neutral comparison between competing methods (Section 2.2). Section 3 considers the

more specific issue of the selection of the fraction(s) in the FBF approach.

2. Strategies for comparing and selecting default Bayes factors.

The rich literature on DBFs has given a lot of attention to comparative issues, and

the paper of B& P reviews the main approaches to this goal. Comparative analyses of

DBFs have focused, in general, on two aspects: a) coherence of the methods, mainly

thought of as the ability of DBFs to satisfy some typical properties of true BFs; and b)

asymptotic correspondence to real BFs (intrinsic prior theory). The next two subsections

propose to widen the comparison of DBFs from two different points of view.

2.1. Ordinary and default Bayes factors: a finite-sample analysis of
compatibility:

According to B& P (see Section 3), DBFs must be judged in the light of their corre-

spondence to actual Bayes factors. Since, in most of the cases, correspondence cannot be

established for finite sample sizes, the authors argue that such a correspondence might
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be established asymptotically. This consideration motivates the intrinsic prior method-

ology. However, in a finite sample setting, it can be of interest to evaluate how "far" a

DBF is from a real BF. For a given set of data, we can evaluate the compatibility of a

DBF with an ordinary BF computed with a proper prior. This is of particular interest

in the presence of weak prior information. Specifically, suppose that we want to compare

a fully specified model /i( ) with a second model /2( |^2), with unknown #2- Let us

assume that, in the presence of partial prior information, we succeed in eliciting a class

Γ of priors for Θ2, but we are not able to select any specific prior in this set. (Note that,

if prior information is totally lacking, Γ is the class of all the distributions for θ<ι). In

this context the most natural approach is to look at the range of the standard BF over Γ

but, as it is often the case, such a range might be so large not to lead to decisive evidence

in favour of either one of the two models. This is a context in which DBF methodology

can be of some help, even in the presence of partial prior information.

A first way to resort to a DBF, B^x, is to look at its range over Γ, rather than

considering the range of the standard BF. Note that we are suggesting to compute B^,

originally proposed to be used with improper priors, using the proper priors in Γ. Often

the range of B^\ is more informative than the range of i?2i, as it would be the case in

the example under consideration, if Γ contained flat priors for an unbounded parameter

space for #2- This fact was extensively discussed in De Santis and Spezzaferri (1997),

among others. See Liseo (2000) for a recent discussion on robustness isssues in Bayesian

model selection.

A second approach is the following: Given the class Γ of priors for Θ2, we can decide

to use a DBF with a non-informative prior, π ^ . One may study the compatibility of

the DBF with the class Γ in order to determine if the method is sensible. Given a set

of data x n of size n, we say that B®\ is Γ—compatible if there is at least one prior π*

in Γ such that B®\ equals the BF computed with π*. Hence, using either the standard

BF with 7r* or the DBF with πN, we would anyhow be using a true Bayesian method.

Of course, in most of the cases such a prior π* does not exist. It is, however, interesting

to establish how far we are from the class Γ, when we use Bξγ- As noted above, the

difficulty in determining a π* in Γ for finite n is the motivation for looking at intrinsic

priors. In this case Γ is the class of all the distributions and the compatibility between

£?2i a n ( i Γ is established only approximatively.

To illustrate how the approach outlined above can be used for comparing alternative

DBFs, let us get back to our finite sample set-up and let d[Bζ\{^N)^ J?2i(π)] be some sort

of distance between the DBF and the true BF for π E Γ (here we stress the dependence

of BF and DBF on the respective priors). Also, let BJ^ be an alternative DBFs for the
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same problem. Then, for a given data set xn, we prefer Bji t o ^21 if

inf d[B°(πN),B21(π)} < mfd[B»(πN),B2l(π)].
T Γ t l TΓfcl

If mfπ£rd[B2i{πN), #2100] = 0? #21 *s Γ-compatible; otherwise it is to be preferred to

the alternative DBF since it is closer to the true BF.

For example, consider the simple testing problem of Illustration 3 in the paper. In

this problem, the point null hypothesis, θ = 0, for a normal mean with variance equal

to one (model M\) is tested against a two-sided alternative (model M2). Consider for

the prior under the alternative the standard class of conjugate priors, Γco n, with mean

zero and variance τ 2 E 2R+. Suppose we are interested in comparing 4 typical DBFs:

fractional BF (with b = 1/n), expected arithmetic IBF, BIC and posterior BF (POBF,

Aitkin, 1991). For example, suppose that n = 10 and yfnx = 1.96 (corresponding to the

classical .05 p-value). It is easy to check that in this case the values of the 4 DBFs are

1.78, 1.53, 2.15 and 4.83 respectively, but the range of the standard BF in the conjugate

class is (0,2.11) Therefore, with respect to the observed data, FBF and expected IBF

are both Tcon—compatible, while BIC and POBF are not. However, being BIC "closer"

to the possible values of BF in Tcon, it is preferable to POBF.

Of course, compatibility of a DBF with a class of priors is not necessarily guaranteed

over the sample space and for any given sample size. In the example under consideration,

it is easy to check that FBF is uniformly Ycon—compatible, regardless of n, but the

remaining DBFs {expected IBF, BIC and POBF) are Γ—compatible only if the sample

mean is less than V^e"1/2, e"1/2 and Λ/2/ne"1/2, respectively.

Let us extend this idea. In the pre-experimental set-up, it might be of some interest

to look at the probability of obtaining a DBF that is Γ—compatible. In the previous

simple example, let us focus on expected IBF and BIC. It is easy to check that, under the

null hypothesis, the probabilities that such DBFs are Γcon— compatible are Φ(y/2rιe~~1/2)

and Φ(Λ/ne~1/2), respectively, where Φ( ) is the c.d.f. of a standard normal. Therefore,

in this case, expected IBF is uniformly more likely to be Ycon—compatible than BIC,

under the null. This fact implies that, had we to choose the sample size in order to be

guaranteed to have a Γcon—compatible DBF at a given probability level, less data are

needed for expected IBF than for BIC.

This analysis is admittedly crude since the frequentist pre-experimental behaviour

of DBFs should also be studied under the alternative. However, it might give an idea

of how to bridge the asymptotic analysis of compatibility between DBFs and real BFs,

represented by the intrinsic prior theory, to the finite-sample necessity of evaluating

DBFs, in the presence of partial prior information
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2.2. A neutral comparison of default Bayes factors in the presence of proper
priors: a frequentist analysis:

As mentioned by B&P (Section 5.5) and also discussed in the previous section, DBFs
can be used with proper priors as robust methods. It is intuitively easy to understand
that gain in robustness of the prior results in loss of discriminatory power (d.p., in the
following) of the model choice criteria. Of course, between two fairly robust methods, the
one whose loss in d.p. is less should be preferred. Loss in d.p. of a BF can be quantified
by extending ideas given in Verdinelli (1996) and Royall (1997). Following Verdinelli
(1996), we say that a BF (ordinary or default) is decisive if it provides clear evidence
in favor of Mi or M2. Given some data and chosen a suitable threshold k > 1, a BF is
decisive if it is greater than k or smaller than 1/k. However, discriminating ability of BFs
must be established before the experiment is performed. Hence, the idea is to evaluate
the frequentist probabilities that such criteria are decisive. Two alternative DBFs can
then be compared as follows: if, in order to achieve a certain probability of being decisive,
a DBF requires less data than another, the former has a greater d.p. than the latter. In
the standard test of a normal mean, already considered in the previous section, assuming
equal probabilities for the two hypotheses and a prior variance r2 = 1.5, the mimimal
sample sizes required to have decisive ordinary, fractional and expected intrinsic BFs
are 11, 27 and 18 respectively when k — 3. Therefore, even though both FBF and
expected IBF's d.p. are less than ordinary BF's d.p. as expected, FBF seems to be more
conservative than expected IBF as a choice criterion. Of course, that the choice of k is
crucial and calibration of thresholds for DBFs deverves investigation.

In principle, the above analysis might be extended to the comparison of DBFs defined
with improper priors. However, problems arise in the computation of the frequentist
probabilities since these require the use of the marginals of the data that are not defined
when improper priors are used. This problem is considered in De Santis (2000).

3. On the choice of the fraction(s) for FBFs.

B&P clearly point out that in the FBF approach the choice of the fraction b is crucial.
They show that in the Neyman and Scott testing problem, illustrated in Section 4.4, the
basic definition of FBF must be extended in order to achieve consistency. A similar
problem has been pointed out by Iwaki (1997). In the specific context of linear models,
even though the same can be proved in more general set-ups, whenever the data are not
exchangeable, De Santis and Spezzaferri (1999) show how the use of a unique fraction
for the likelihoods in the FBF's correction factor might lead to inconsistencies. They
also propose a constructive method to derive a multiple-fractions, consistent FBF. In my
opinion, FBF as well as IBFs can simply be seen as the result of a suitable combination of
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partial Bayes factors: in the FBF, a geometric mean of the likelihoods for all the different

training samples is performed, while, in the IBF approach, suitable averages of the entire

correction terms are computed. In this way, at least in relevant problems, the selection

of 6, or of multiple fractions Vs, is automatically made once partial BFs are defined. In

fact, the choice of the fraction(s) is the automatic result of the likelihood-combination

process. From this perspective, the computation fo the fraction(s) is, at most, as hard

as it is the determination of the terms to average in the IBF approach.

A further approach is to simply regard b (let us consider now, for simplicity, the simple

case of a unique fraction) as a constant in (0,1), not necessarily related to the size of the

training sample. It has been often noted that the choice of b has an effect on both the

sensitivity to the priors and on the d.p. of the criterion (Gilks 1995, OΉagan 1995).

Conigliani and OΉagan (2000) study the effect of the choice of b on the sensitivity of the

standard FBF to both proper and improper priors. They conclude that, on the grounds

of sensitivity to the prior, the choice b = t§jn, where ίo is the minimal training sample

size, is often appropriate, but not necessarily the unique. The authors point out correctly

that, in addition to the effect on the sensitivity to the priors, the effect on the d.p. must

be taken into account in the choice of 6. This last aspect is however hard to quantify.

A possible, natural way to pursue this is again based on a pre-experimental analysis of

FBF. We can look at the choice of b as a design problem, and dicriminatory power of the

FBF can then be quantified by the pre-experimental probability of observing decisive

evidence in favour of Mi or M<ι. The idea is to determine the probability of having

decisive evidence (i.e. strong discriminatory power) as a function of b to be used in order

to select, before performing the experiment, the optimal fraction. As a simple example,

suppose again that, under Mi, X ~ N(0,1), and, under M2, X ~ N(θ, 1). In this case,

if π^(θ) oc 1, the resulting FBF corresponds to a Bayes factor obtained using, as a prior

under M2, a N(0, (b—l)/bn) density, with b £ (0,1). Therefore, noting that, marginally,

x ~ iV(0,1/n) under M\ while, under M2, x ~ iV(0, (1 — b)/bn), computation of the

probability of observing a decisive FBF, as a function of 6, is straightforward. Table 1

shows the probabilities of obtaining decisive evidence with FBF, when k = 3 and equal

prior probabilities for the two hypotheses are assumed, for some values of n and b.

Table 1. Probabilities of Decisive FBF

n

b = l/n

b = 2/n

10

0.429

0.179

20

0.712

0.429

30

0.787

0.634

50

0.849

0.757

100

0.904

0.849

200

0.937

0.904

500

0.964

0.945

It is clear that reduction in discriminatory power of FBF depends strongly on the sample

size: it is substantial for small sample sizes (n = 10,20) but less and less influent as the
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sample size increases.

Beyond the above stardard oversimplistic example, such an analysis might be the

starting point to develop an objective quantitative measure of discriminatory power of

the FBF, as a function of b. This measure could be combined with measures of sensitivity

of the FBF to the prior, such the ones proposed in Conigliani and OΉagan (2000), in a

unifying tool to be used to choose b.

Two final comments are in order. First, in principle the above analysis can be also

performed in the presence of multiple fractions FBF. Secondly, and more importantly, as

noted above computation of the probabilities to be used to set the fraction(s) requires

the knowledge of the marginal distributions of the data under the two models, and this

is, in general, much more complicated than it is in this problem. The use of fractional

priors might be, at least in some cases, of help (De Santis, 2000).
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