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I begin by congratulating the authors, Professors Rao and Wu, on this very illumi-
nating and scholarly piece of work which will inspire future researchers in this area. They
have done an enormous job of which we are the beneficiaries.

Considerable attention has been given in this paper on the important problem of
selecting an appropriate sub-model starting from the linear model (2.1). I, therefore,
find it relevant to briefly discuss some related issues in design of experiments. The
discussion will be focussed primarily on discrete designs. Incidentally, experimental
design problems under model uncertainty have been of substantial interest in recent
years (Dey and Mukerjee, 1999; Wu and Hamada, 2000).

To motivate the ideas, consider the setup of a 2n factorial experiment, a situation
where there are n factors each at two levels. Suppose interest lies in identifying the active
factors, i.e., the ones with nonzero main effects, under the absence of all interactions.
A factor screening experiment is one which can achieve this. Interpreting the factors as
regressors, the problem here is the same as that initiated by (2.1) and (2.2). The model
(2.1) now consists of the general mean and the main effects of the two-level factors,
each main effect being represented by a single parameter. Clearly, then at least n + 1
observations are needed to examine (2.1) and all possible sub-models thereof.
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Unfortunately, in many practical situations, especially in exploratory studies, n can

be quite large and even n - f l observations are not affordable. This poses additional

concerns. A way out is possible via consideration of the phenomenon of effect sparsity.

Often it is known that among the n factors at most k are active where the known quantity

k is small compared to n. However, there is no knowledge about which factors are active.

The problem is then to identify the active factors, which are at most k in number, and

to estimate the corresponding main effects as well as the general mean.

The notion of search designs, pioneered by Srivastava (1975), plays a crucial role in

handling problems of this kind. To highlight the underlying ideas, we consider a linear

model E(Y) = Xλβλ + X2/32> Cov(Y) = σ2IN, where Y is the N x 1 observational

vector, X = [X^X?] is the known design matrix, βι is an unknown parametric vector,

σ2 is the common variance of the observations and IN is the N x N identity matrix.

The parametric vector β2 is partially known. It is known that at most k its elements are

nonzero, where k is small compared to the dimension of β2. No knowledge is, however,

available about which elements of β2 are possibly nonzero and what their values are.

Interest lies in estimating βγ and searching and estimating the possibly nonzero elements

of β2. Following Srivastava (1975), an experimental design d (associated with a choice

of X), that enables one to achieve this, is called a search design with resolving power

(/Ίί/^k)- Observe that if βλ is taken as the scalar representing the general mean and

β2 is taken as the vector of the main effects of the factors then the search design problem

reduces to the factor screening problem introduced above. Of course, the idea of search

designs applies to many other situations. For example, one can consider more complex

factorials including asymmetric factorials and entertain interactions too in addition to

the general mean and main effects.

The following result, due to Srivastava (1975), is a fundamental tool in the study of

search designs.

Theorem 1. For a design to have resolving power (βι^β2 )k) in the above setup, it

is necessary that for every N x 2k submatrix X2o of X2, the matrix [Xι,X2o] has full

column rank. Furthermore, in the noiseless case σ2 = 0, this condition is also sufficient

for to have resolving power {βι,β2,k).

For σ2 = 0, if the rank condition of Theorem 1 is satisfied then the true model can be

identified with probability unity. Further discussion on the actual identification of the

true model is available in Srivastava (1975). The design problem here consists of finding

a design such that the rank condition holds. The construction of such experimental plans

and related combinatorics have received much attention in the literature and we refer to

Gupta (1990) and Ghosh (1996) for informative reviews. The latter article also discusses

the important issue of sequential experimentation in this and related contexts.
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For σ2 > 0, even under the rank condition, detection of the true model is not possible

with probability unity. Discussion on the search procedure in this case is available in

Srivastava (1975, 1996). The design problem here consists of ensuring the rank condition

as well as attaining a high probability of correct search. Significantly new grounds have

been broken in this direction by Shirakura et al. (1996). The actual construction of

optimal designs for the case σ2 > 0 deserves further attention.

With reference to the problem of factor screening, supersaturated designs have also

been of much interest. With a 2n factorial, under the absence of all interactions, let X

be the N x (n +1) design matrix where TV is the number of observations and the columns

of X correspond to the general mean and the n main effects. As before, let N < n + 1,

and suppose the objective is to identify the active factors under effect sparsity. Since

N < n + 1, one cannot achieve orthogonality in the sense of making XτX a diagonal

matrix, where Xτ is the transpose of X. The idea of supersaturated designs, which

dates back to Booth and Cox (1962) and has witnessed a revival of interest in recent

years, essentially aims at choosing X such that the sum of squares of the off-diagonal

elements of XTX is minimized. Li and Wu (1997) describe several other criteria for

choosing such designs. Data analytic techniques for the use of supersaturated designs in

the identification of the correct model, via detection of the nonzero main effects, have

been discussed in Lin (1993, 1995); see Dey and Mukerjee (1999) and Wu and Hamada

(2000) for more references on supersaturated designs.

Cheng et al. (1999) consider another approach towards the design problem for the

study of model robustness and model selection. In connection with regular fractions

of symmetric factorials, i.e., the ones specified by a system of linear equations over a

finite field, they introduce the notion of estimation capacity which is a criterion of model

robustness. The objective here is to retain full information on the main effects and as

much information as possible on the two-factor interactions in the sense of entertaining

the maximum possible model diversity, under the absence of interactions involving three

or more factors. Cheng and Mukerjee (1998) report further theoretical results on designs

with maximum estimation capacity.

Turning to continuous experimental designs, an important design problem in model

selection is the one where an objective is the identification of the appropriate degree of

the polynomial in a polynomial regression model. Innovative results on this problem, via

the use of canonical moments, have been reported by Dette (1995) and Franke (2000),

where further references are available.

To summarize, the experimental design problem for model selection has already been

an active area of research and even greater activity, catering to both frequentist and

Bayesian inference, is anticipated in this area in the near future. The elegant exposi-
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tion given by Professors Rao and Wu in the present work will definitely act as a great

stimulator for future research in this direction.
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REJOINDER

C. R. Rao and Y. Wu

The authors would like to thank S. Konishi and R. Mukerjee for their valuable com-
ments. Konishi suggests an extension of the GIC criterion using a penalized maximum
likelihood estimator of the unknown parameters. This new method may provide some
robustness to the choice of a model. To what extent is the selection of the model affected
by the particular choice of the prior distribution of parameters and models suggested by
Konishi needs some investigation. Mukerjee raised the problem of design of experiments
to provide the minimum number of observations needed for model selection ensuring
some robustness. This is, indeed, a new area of research, but much depends on the
accuracy of apriori information regarding the unknown parameters. For instance, in the
example mentioned by Mukerjee, the number of active factors out of a large number n
of factors is known to be a given number k < n, and the problem is that of generating
a minimum number of observations to determine which subset of k factors is active. It
would be interesting, perhaps more relevant in practice, to know whether supersaturated
designs suggested for this purpose can also be used to select a subset of factors which
are more active than the others. The problem of model selection needs more discussion
in terms of objectives, the use of prior information, appropriate methodology and ro-
bustness. We hope our review with the additional material contributed by Konishi and
Mukerjee will stimulate further research in statistical model selection.




