
CHAPTER 9

Application to Type I Problems:
Special Group Structure

9.1. Preliminaries. For convenience, but with abuse of nota-
tion, we shall in this and subsequent chapters not distinguish in nota-
tion between a random matrix and its possible values. Furthermore,
the distribution of a random matrix, say X, will usually be written
P(dX) without any label on P, even though this P may represent
a different distribution from one example to the next. The exam-
ples that will be exhibited below have been chosen because they deal
with transformations that are basic and have important applications,
and/or because they provide a good illustration of the method de-
veloped in Chapter 8. No attempt at exhaustiveness has been made.
In particular, the treatment of GMANOVA has not been included.
However, it can be found in Wijsman (1986), Section 6.5. There are
several examples in this and the next chapter where the method could
be applied from scratch, but where it is also possible to combine the
results of two other, simpler, examples. In such cases we shall always
follow the latter route. Concerning notation, from now on we shall
not insist on restricting the use of symbols X and T to their meaning
in Chapters 1 and 8, i.e., to the random variables with values in X, T,
respectively. For instance, T will often be used to denote a triangular
matrix. For future use we rewrite equation (8.20):

(9.1.1) x = ghx0.
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It should be kept in mind that the right-hand side of (9.1.1) depends

on g and h only through [g] = y and [h] —t.

All examples will be of the following general nature: X is an

invariant (under the group K) subset of some Euclidean space and the

relatively invariant measure λ of Theorem 8.14 is Lebesgue measure.

Then the value of the multiplier χ{k) for k G K is needed. If the

transformation of X by k is a translation, then χ{k) = 1, of course.

If the action of A; is a nonsingular linear transformation of X, then

by (4.3.7) χ(k) equals the absolute value of the determinant of the

linear transformation. It follows that for an orthogonal transformation

the value of χ is 1. Other transformations are often of the following

types (for notation see Section 7.7): if C is nonsingular, then

(9.1.2) XeM(m,n), X -> CX, χ(C) = |C| n,

(9.1.3) XeM(m,n), X-> XC, χ(C) = | C | m ,

(9.1.4) S e PD(n), S -> CSC", χ(C) = | C | n + 1 ,

(9.1.5) A e AS(n), A -> CAC, χ(C) - \C\n'1.

Here (9.1.2) follows from (4.3.7) by applying it to the n-fold product

of Rm with itself, and (9.1.3) follows similarly. For (9.1.4) see (5.3.13);

(9.1.5) is obtained in a similar fashion.

9.2. Distribution of X'X and Cholesky decomposition.

Let X be a random qxp matrix with distribution P(dX) = p(X)(dX)

(note that (dX) is Lebesgue measure). We may assume that X is of

maximal rank since the P-probability that this is not so is 0. There-

fore, put s = min(p, q) and define X = { l 6 M(q,p) : rank(X) = s}.

Let G = O(q) with action on X defined by X -> ΓX, Γ G G. The

multiplier is χ(g) = 1. A maximal invariant under G is X'X. There

are two cases to be considered that have to be dealt with slightly dif-

ferently: q > p and q < p. The first case has immediate relevance

to the Wishart matrix (central or noncentral) if the rows of X are

independent and p-variate normal with common covariance matrix.

Also of interest is the Cholesky decomposition

(9.2.1) X'X = TT\ T e LT(p).
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The result for general q is needed in Section 9.4.
Case 1: q > p. Take H = LT(p) with action X -> XT', T e f f ,

and multiplier χ(h) = χ(T) = |T|* by (9.1.3). Then K = GH is a
transitive group (coinciding with G x H) in which (2 and H commute.
Choose xQ = [Ip, 0]' : q x p (the block of zeros is absent if q = p). Then
HQ = {e}, and the validity of the hypotheses of Theorem 8.14 is easily
checked. Partition Γ = [Γj, Γ2] with Γ2 : g x p , then in terms of the
present symbols the equation (9.1.1) becomes

(9.2.2) X = T1T'.

Note that T is the unique matrix T £ LT(p) in the. Cholesky de-
composition (9.2.1). Since HQ = {e}, 7 = H/Ho = H, so that T
is a maximal invariant. We shall now find the form that the factor-
ization (8.22) takes in this example. The left-hand side of (8.22) is
(dX). In the function β{h) of (8.21), since G and H commute, we
have Aκ(h) = AH(h) so that β{h) = χ{h) = |T|«, and note that
in (8.22) t = h. Furthermore, χ(y) = 1, μ7 = μH = VLT(P)

 1S g i v e n

by (7.7.2) (with n replaced by p) and μ^ by (7.7.15) (with n replaced
by 5, s by q — p). In order to find c of (8.22) write down (8.26) in
terms of differential forms:

(9.2.3) (dX) = cc^dΓJidT).

Then differentiate (9.2.2) at x0, i.e., Γ = Iq, T = Ip: dX = dTx +
dT'. Taking the wedge product of all dx{- gives (dX) = (dT^dT).
Comparing this with (9.2.3) yields c = c~* . Thus, (8.2.2) becomes

(9.2.4) (dX) = c;lpμy(dy)\T\«μLT(p)(dT).

It was tacitly assumed in this derivation that q > p. However, the
result remains valid if q = p, with ^ = G, thanks to the convention
c0 = 1. The distribution of the maximal invariant Γ, given by (8.23),
now becomes

(9.2.5) P(dT) = c;lpf[tΓ(dT) ί
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where c was defined in (7.7.9). If p is taken as the joint density of q
iid iV(0, Ip) variables, then KΓjT') is proportional to e x p ( - | tr TV)
and (9.2.5) reduces to

(9.2.6) P(dT) = cexp (-± tr TT')

(with some c > 0) which reveals the well-known fact that in the
Cholesky decomposition of the standard Wishart matrix the elements
of T are independent, with standard normals off, and χ~variables on
the diagonal.

In (9.2.2) the q x p matrices I\ take their values in the Stiefel
manifold V of p-frames in (/-space (James (1954), Muirhead (1982);
usually q is denoted n in this context). Thus, ^ = G/Go can be
identified with Vpq and the measure μy in (9.2.4) is a version of the
invariant measure on Vpq under the (left) action of G. The fac-
torization (9.2.4) is implicit in Eaton (1983), Example 6.18, and is
stated in Muirhead (1982) as Equation (19) of Theorem 2.1.13. An
explicit expression for the invariant measure on V n can be found in
James (1954), Section 4.7, or Muirhead (1982), Equation (20) of The-
orem 2.1.13. However, it should be noted that this explicit expression
is not needed for (9.2.4); only the expression for μ^ at y = [e] is used.
The factorization (9.2.4) also shows that T1 and T are independent
if ^(ΓjT') factors; for instance, if p(X) is invariant under X —> TX
(Γ G O(q)) as is the case when the rows of X are iid iV(0, Σ).

The distribution (9.2.5) of Γ leads directly to the distribution of
S = X'X = TV (by (9.2.1)) via (5.3.16) after replacing in the latter
n by p, with the result

(9.2.7) P(dS) = 2-"c;lp\S\^-r-1HdS) J P(ΓX)μcKq)(dΓ),

in which X is any q x p matrix such that X'X = S (this is justified
by the invariance of μo(q)

 a n d the fact that there is a fixed Γo £ O(q)
such that Γ0X = [T, 0]', which after absorbing Γo into Γ reduces the
integral in (9.2.7) to the one in (9.2.5)).
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The W(n, Σ) distribution emerges from (9.2.7) (after replacing q

by the more customary n) if the n rows of X are iid iV(0, Σ). In that

casep(X) = (2π)-** n |Σ |-s n exp(-± trXE"- 1*')- Then p(ΓX) =

p(X) does not depend on Γ and can be taken outside the integral

in (9.2.7). The remaining integration produces the constant cn given

by (7.7.9). Furthermore, tτXΣ~1Xf = t r Σ ^ S . Thus, the distribu-

tion of S ~ W(n, Σ) is

(9.2.8) P{dS) = (2π)-12Pn2-Pcnc-ip\Σ\-l^n-^1h-^iτΣ'ls(dS),

provided n > p. This derivation of the well-known distribution of

the central Wishart matrix (see, e.g., Anderson, 1984, Sect. 7.2)

shows that the contributions to the numerical constant come from

three sources: the factor (2π)~2pn from the standard normal distri-

bution; the factor 2~p from the relation between left invariant measure

on LT(p) and on PD(p); and the factor cnc~]_p from integration of

nonnormalized Haar measures on orthogonal groups. The same phe-

nomenon seems to occur in other typical multivariate distributions.

For instance, see (10.1.3).

Equations (9.2.5) and (9.2.7) can be used for the distribution of

Γ or X'X when X has arbitrary density. Equation (9.2.7) will also be

used in Section 10.2 for the distribution of singular values of a matrix.

Case 2: q < p. Partition X = [Xι,X2]-> where we may assume

XΎ G GL(q) by removing from BP* a null set. Take H = LT(q) x
M{<1,P ~ q) w i t h action Xλ -> XλT', X2 -> X2 + A, T G LT(q),

A G M(q,p — q). Then the combined actions of G and H amount

to the transitive action of a group K = GH, such that H is normal

in K. If h = (T,A) G H, then χ(h) = |T|*, by (9.1.3). Choose

x0 = [/g,0], then GQ = Ho = {e} and Theorem 8.14 applies. Since

GQ = {e}, μy(dy) = μG(dg) = (dΓ) at g = e (equation (7.7.7)). Since

HQ = {e}, μ7(dt) = μH(dh) = (dT)(dA) at h = e (use (7.7.2)). Thus,

(8.26) reads

(9.2.9) (dX) = c{dT){dT)(dA) at x = xQ.

On the other hand, (9.1.1) reads

(9.2.10) X = T[T',A}
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and differentiation of (9.2.10) at Γ = Γ = I g , A = 0, yields dX =
[dΓ + dT',dA]. Equating the wedge products on both sides gives
(dX) = (dΓ)(dT)(dA) at x = x0. Comparison with (9.2.9) shows that
c = 1. Therefore, (8.23) becomes

(9.2.11) P(dT,dA) = f[ήΓ(dT)(dA) ίp(Γ[T\A})μo{q)(dΓ).

This result can be put in a form analogous to (9.2.7). However, the
matrix S = X1 X is now singular so it does not have a density. In-
stead, partition 5 = ((5^-)), i,J = 1,2, with Su G PD(q), then
( S n , 5 2 1 ) has a density and S22 — ^21 ̂ ϊϊ1 ̂ 21 - With (dS) we shall
now mean (dS11)(dS2ι) ) and with P(dS) the distribution of (5 1 1 ,5 2 1 ) .
With help of (9.2.10) we find Sn = TV, S21 = A'V. Differentia-
tion of these equations, together with (5.3.16) (with n replaced by q)
and (9.1.3), yields

(9.2.12)

and substitution into (9.2.11) gives

(9.2.13) P(dS) = 2-«\Sn\^-r-1\dS) J p(TX)μo(q)(dr)

with X any q x p matrix for which X'X = S. For the sequel it is
convenient to present (9.2.7) and (9.2.13) as one formula. To this end
define, for integer r,

1 if r < 0

2rcΓ1 if r > 0
(9.2.14) c(r) = ,

with cr defined in (7.7.9). Then for any positive integers p, </, and
s = min(p, g), (9.2.7) and (9.2.13) can both be written as

(9.2.15) P(dS) = 2-«c(q-p)\Sn\^-r-1\dS) Jp(ΓX)μo(q)(dΓ)

in which X is any q x p matrix such that X1 X = 5, 5 n is the s x s
upper left submatrix of 5, and (dS) is the wedge product of all dst •
with i > j < s.
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9.3. MANOVA under triangular group. Let X be the

space of all (U,S), U G M(p,q), S G PD{p), and G = LT(p) with

action

(9.3.1) U -> UT\ S -> TST', T G G.

This problem has been considered by Schwartz (1967) in the mul-

tivariate analysis of variance (MANOVA) case, where the rows of

U are independent p-variate normal with common covariance matrix

Σ G PD{p) and S is an independent W(n, Σ) matrix. When, in

addition, 5 = 1, the problem has been treated by Giri, Kiefer, and

Stein (1963), and by Farrell (1985), Section 9.2. The problem for

arbitrary q has application to MANOVA if for some reason it is de-

cided not to reduce by the full invariance group but only by the lower

triangular group (as in Schwartz, 1967). The result can also be used

to great advantage as one of the steps in the full reduction of the

MANOVA problem; see Sections 9.4 and 10.3.

Take H = M(q,p) with action U —> U+X, X e H, S unchanged.

Then H is normal in the transitive group GH. Take x0 = (0,/^) G X

so that (9.1.1) reads

(9.3.2) U = XT', S = TT', TGG, X G H.

Then G Π H, Go, and Ho are all trivial so that y = G, 7 = if, and

X G H is therefore a maximal invariant. In terms of ({7, S) it follows

from (9.3.2) that this maximal invariant is

(9.3.3) X =

where

(9.3.4) S = TST'S, TseLT(p),

is the Cholesky decomposition of S. Theorem 8.14 applies and β = χ

since H is normal. Furthermore, χ(t) = χ(X) — 1, and χ(y) =
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χ(T) = | T | « + P + 1 by (9.3.1), (9.1.3), and (9.1.4). In order to evaluate

c in (8.23) write down (8.26) in terms of the present symbols:

(9.3.5) (dU)(dS) = c(dT)(dX), Άtx = x0.

Differentiate (9.3.2) at T = Ip, X = 0 and obtain (dU)(dS) =

2p(dX)(dT) at x = x0 (the result (dS) = 2?(dT) was obtained in

the computation that led to (5.3.16)). Comparison with (9.3.5) shows

c = 2p. Hence, (8.23) reads

Γ p

(y.o.Dj r\dΛ ) = Zy{aΛ ) I p{Λ 1 ,11 ) I I

J fJi
when (C/, S) has density p(ί7, S).

9.4. Distribution of t/5"1C/'; MANOVA under general

linear group. As in Section 9.3, x — (Ϊ7,5) with U : q x p and

S e PD{p), but now G = GL(p) with action

(9.4.1) U -> tfC", 5 -> C 5 C , C e G.

This is part of the usual invariance reduction in MANOVA. (The

remaining reduction by an orthogonal group will be treated in Sec-

tion 10.3.) A maximal invariant of the action (9.4.1) is

(9.4.2) Q = US-λU'.

Its distribution can be obtained by combining the results of Sec-

tion 9.2 and 9.3. Take X of (9.3.3) with Ts of (9.3.4), then Q =

XX1. The distribution of X is given by (9.3.6), and then the dis-

tribution of Q is given by (9.2.15) in which S is to be replaced by

Q, X1 by X, and p and q interchanged. In the resulting double

integral the function p(XΓ /T /,ΓΓ /)|T|^+^+ 1 is integrated with re-

spect to μ£T(p)(^)μo(p)(yΓ) This can be contracted, using (7.7.10)

and (7.7.1), with the result

(9.4.3)
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in which X is any q x p matrix such that XX1 = Q, p(Z7,5) is the

density of (Ϊ7,5), and Q n is the s x s upper left submatrix of Q,

with s = min(p, q). The wedge product (dQ) is to be understood in

the same sense as (dS) in (9.2.15), and the constant c( ) is defined

in (9.2.14).

In the central MANOVA case the rows of U are iid iV(0, Σ).

The distribution of Q does not depend on Σ so that we may choose

Σ = Ir Then p(U,S) = cexp(-f tr U'U - ±tτS)\S\τ(n-*-V (we

shall not keep track of the values of the constant, generically denoted

c). Substitute this into (9.4.3), then the integral becomes

J exp ( - 1 tr C(Ip + X'X)C'^J \C\n+'\C\->(dC).

Make a change of variable C(Ip + X'X)1!2 = B and use the right

invariance of the Haar measure \C\~p(dC), then the value of the in-

tegral is proportional to \Ip + X'A"|-i(»+«) = \Iq + XX'\-$(»+*) =

\Iq + Q|-i("+9) and (9.4.3) becomes

(9.4.4) P{dQ) = c\Qn\U'-i-i)\iq + Q\-Hn+9\dQ).

This distribution was obtained for the case q < p by Olkin and Ru-

bin (1964) who termed it the central Studentized Wishart distribution.

Khatri (1965) obtained for arbitrary q the analogous distribution for

the complex noncentral case.

9.5. Multivariate beta. This was treated by Olkin and Ru-

bin (1964), Theorem 3.2 in the central case. The noncentral case is

treated in Farrell (1985), Section 10.3 for two Wishart matrices. Let

5 0, Sl9... , Sk E PD(p) and let G = LT(p) with action Sj -> TSfΓ\

j = 0,... , fc, T G G. Choose H = LT(p) x - x LT(p) (k factors),

with action Sj -> ZJSJZ^ Zj e LT(p), j = 1,... , k. Then K = GH

is transitive over X = PD(p) x x PD{p) {k + 1 factors), and H

is normal in K. Choose xQ as the point where Sj = Ip, j = 0,... , fc,

then G Π H = Go = fΓ0 = {e} so that y = G, T = -ff. It follows that
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( Z 1 ? . . . )Zk) is a maximal invariant, or, equivalently, (C/ l 5 . . . -,

where Uj = ZjZj, j = 1,... , fc. Easy computations of a similar na-

ture as in the previous sections, plus use of (5.3.16), transform (8.23)

into

(9.5.1) P{dUx,... , dUk) = 2p(dU1)... (dUk)

f p

• / p(ττ ;,Γ^Γ',... , τ ^ r ' ) JI*<f+1)(fc+1)"

in which p(5 0 , . . . , Sk) is the density of (SQ, . . . , 5 .̂). If one takes for

the latter k + 1 independent Wishart matrices with the same covari-

ance matrix, then (9.5.1) reduces easily to Equation (3.6) in Olkin

and Rubin (1964).




