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The paper extends some results of Kallianpur and Wolpert
on stochastic differential equation models for the
behavior of spatially extended neurons. The results are
employed to provide a rigorous treatment of a model
recently considered by Wan and Tuckwell.

1 Introduction and statement of results .

We have recently extended the work of Kallianpur and Wolpert (1984)

modeling the behavior of neurons by means of stochastic differential equations

on the dual of a nuclear space The extensions cover nuclear spaces of a more

general structure and apply to models described in terms of more general

differential operators In this article we state some of the results we have

obtained and show that they provide a general theoretical framework for the

investigation of the behavior of spatially extended neurons. In particular, we

illustrate our approach and its application by giving a rigorous treatment of

the model recently proposed by Wan and Tuckwell (1980). Most of the details of

the proof will be omitted for lack of space and will be published elsewhere

For the same reason we shall have to forego a description of the neurophysio-

logical context which is, however, available in Kallianpur and Wolpert (1984)

and the references cited there

Our principal aim is the study of the random field ξ(t,x) which

represents the difference between the voltage potential at time t at the
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location x 6 X (= surface of the neuron) and the resting potential of about -60

mV. As time passes, ξ evolves due to two separate causes: - diffusion and

leaks, and random fluctuations Taking into account these sources of change one

arrives at the following stochastic partial differential equation (SPDE) for ξ:

t

dξ(t,x) - A ξ(t,x)dt + dM
t
;ξ(0,x) - initial condition.

Here Mj. is an L -martingale and A is a suitable partial differential operator in

spatial coordinates, in fact, the generator of a contraction semigroup {T } on

L (X,Γ), where Γ is a σ-finite measure on X. However, even for very simple

choices of A (e.g. A = I- Δ in two dimensions; (see Walsh (1981)) a solution may

exist only in the form of a generalized stochastic process, i e , a process

taking values in the dual of a space Φ of "test functions". The relevant space

of test functions can usually not be assumed to be the Schwartz space of all

infinitely differentiable rapidly decreasing functions (see e.g. Kallianpur and

Wolpert (1984)) and therefore we shall take Φ to be a general countably Hilbert

nuclear space The linear SPDEs appropriate for this purpose have been

investigated in Christensen (1985) where an existence and uniqueness result is

given for equations driven by a martingale on Φ*. For reasons of space, we

shall not discuss here the relationship of the present work to the approach

adopted by Walsh (1981). The reader is referred to the remarks made in

Kallianpur and Wolpert (1984). In Kallianpur and Wolpert (1984) a restricted

class of differential operators was considered, namely those which generate a

selfadjoint contraction semigroup whose resolvent has a power which is Hilbert-

Schmidt. In this case there is a canonical nuclear space upon which the SPDE

has a very manageable form. However, the structure of the nuclear space is

completely determined by the operator A, and it is desirable to present general

results which are independent of the differential operators to be considered.

In their model, Kallianpur and Wolpert (1984) used a Poisson process

N(A*Bx(0,t]) to represent the number of voltage pulses of size a C A arriving at

sites x C B c X (= surface of the neuron) at times prior to t.
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Here, we adopt the point of view that, in practice, one can only

"average" over the sites. Therefore, it seems more realistic to assume that the

arrival sites are given by "generalized functions" (distributions)

t

η € Λ c φ rather than by points x on the surface of the neuron membrane X As

we shall see, this approach will also offer the advantage of enlarging the class

of possible models

To pursue this idea, let us consider a real rigged Hubert

t

space Φ U U Φ (see Gel
f
fand and Vilenkin (1964), p. 79 for definition).

t t t

Let β(Φ ) denote the Borel σ-field on Φ and recall that 3(Φ ) is the same

t

whether we use the weakly or the strongly open sets in Φ to define it.

To avoid possible confusion with inner products we shall adopt the

t

notation that for φ e Φ and η ( Φ , η[φ] will denote the value of the

t

functional η evaluated at φ. Let Λc β(Φ ) and let, for each

n c N, μ be a σ- finite positive measure on (RχΛ,3(R)
x
3(Λ)) satisfying the

following conditions:

The mapping: Q
n
: ΦxΦ -»• R defined by

Q
Π
(Φ,Ψ) - J

R χ Λ
 a

2
η[φ]η[ψ]μ

n
(dadη) is continuous on ΦxΦ.

Let N
n
 be a Poisson random measure on (RxΛx[0,°°); β(R)x3(Λ)χβ( [0,°°))

with intensity measure y
n
(dadη)dt (a C R, η € Λ, t € [O,00)) (see e.g. Ikeda and

Watanabe (1981), pg. 42).

Let Nn
(dadηds) = N

Π
(dadηds) - μ

Π
(dadη)ds and put

Y* (Φ) = / aη[φ]N
n
(dadηds), φ € φ.

]RxΛx[0,t]

Let m
n
 c Φ

?
, and define X* (φ) - tm

Π
[φ] + Y*[φ], φ € Φ.

Then, for each φ c Φ, X^(φ) is a real CADLAG semimartingale satisfying

ί"(Φ))
2
 = t

2
m

n
[φ]

2
 + tQ

Π
(φ,φ).
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Since Q
n
 is continuous on ΦxΦ, the Kernel theorem for nuclear spaces

(see Gel
!
fand and Vilenkin (1964), pg. 74) yields the existence of r(n) € N and

C(n) > 0 such that

m
Π
[φ]

2
 + Q

Π
(φ,φ) < C(n)||φ||

2

( n )
, for every φ e Φ.

We shall henceforth assume that the same r and C will do for all n € N, i.e., we

suppose that there exists r7 £ N, C > 0 such that

(1) m
n
[φ]

2
 + Q

Π
(Φ,Φ) < C||φ||

2
 for every n c N and φ € Φ.

Γ
2

From Doob
τ
s Martingale inequality we deduce that, for any T > 0,

E sup (X* (φ))
2
 < 2C(4T + T

2
)||φ||

2
 for every n€ N and φ € Φ

0<t<T
 t Γ

2

and therefore Theorem III.1.12 and Remark 7 of Christensen (1985) yields the

existence of q e N, q 2.
 r
2 (

i n d e
P

e n c l
ent of n) and a Φ_ -valued CADLAG

L -semimartingale X satisfying X
t
tΦl

 β
 X

fc
(Φ) for every t > 0 (a.s.) and

every φ e Φ. Let X
n > T

: - (X^tCίO T Γ
 T >

 °*
 L e t m € φ ? a n d l e t

 Q
 : φ x φ

 *
 R b e

a continuous bilinear symmetric functional satisfying

(2) m[φ]
2
 + Q(φ,φ) < C||φ||

2

It can then be shown that there exists a Φ -valued process W with independent

increments and characteristic functional given by exρ( itm[φ] - t/2Q(φ,φ)).

This was shown by V. Perez-Abreu (1985) for the case m = 0 and a nuclear space

of a special structure. The general case,which is well known, may be deduced

t

from theorem III.1.12 in Christensen (1985). We shall henceforth call W a Φ-

valued Wiener process with parameters m and Q.

It can be shown from (1) and (2) (See Christensen (1985), Theorem

III.1.12 and Remark 7) that we may choose q 2.
 r
2

 s u c n t n a t
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n T
X € D([0,T],Φ ) P-a.s. for every n c N and every T > 0, and

-<1

W
T € C([0,T],Φ_ ) P-a.s. for every T > 0.

Let A : Φ -• Φ be linear and continuous, and suppose that A and

{T
t
 : t >_ 0} satisfy:

Al There exists a strongly continuous semigroup [T
fc
: t>0] on H whose generator

coincides with A on Φ and such that:

(a) T Φ c: φ for every t > 0,

(b) T I. : Φ •* Φ is continuous for every t > 0,

(c) t *• T φ is continuous for every φ c Φ

In Christensen (1985) existence and uniqueness of solutions of SDE's

on Φ of the form dX
n
 - A X

n
 + dM

Π
, X* - Y

n
 are studied as well as the weak

convergence of X to a Φ -valued process X which is the unique solution of an

SDE of the form

dX
t
 = A X

t
dt + dM^XQ - Y

(Here Y
n
 and Y are Φ -valued random variables). The theorems stated below are

0 '
obtained as consequences* Let ξ and η be Φ -valued random variables, and,

let ξ * ^ t \ > 0 ^
e n o t e t l ι e u n i (

l
u e
 solution to the SDE on Φ

and let η • (η ) denote the unique solution to
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η°

Remark 1. If the operator A is selfadjoint and dissipative (regarded

as a densely defined linear operator on H) with (I-A) * being a Hilbert-Schmidt

operator for some r^ > 0, and if Φ is the nuclear space generated by (I-A) (i.e.

Φ = ίφ ε H: I |(I-A)
Γ
φ| |jj < «, for every r € R; see Kallianpur and Wolpert

(1984)) then the solution may be expanded as a series

(converging uniformly on [0,T] in the Φ -topology (a s ) for every T > 0 and

q > r^ + r
2
; where (φ., -λ.); 0 < λ. < λ < ... with λ > » as n •>• », is the

eigensystem for A, and where η is the one-dimensional Ornstein-Uhlenbeck

process given by

d η t = ~ V t d t + d w

t

[ φ j 1 ; ηo s η ° [ φ j ]

A similar expansion is possible for X in this case. We refer to Kallianpur and

Wolpert (1984) for details.

Remark 2. Regardless of the structure of Φ one can show that whenever

A satisfies Al for every T > 0, there exists ρ
τ
 > 0 such that

η
T € C([0,T], Φ ) (a.s.)

P
T

where C([0,T], Φ denotes the complete metric space of all continuous

T
T

functions f: [0,T] •*• Φ and where η := (ir).
 Γ n

 „,, .
-p

τ
 t t c LO,TJ

THEOREM 1.1. Suppose that, in addition to (1),
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(3) Q
Π
(Φ,Φ) * Q(Φ,Φ) for every φ € Φ

n"*°°

(4) lim / I a η[φ]1
3
μ

n
(dadη) - 0 for every φ C Φ

(5) There e x i s t s r € N: sup max (E| |η° | | ^ r > E | | ξ j | ^ } < and ξ n => ηC

n
on Φ as n + °°

(6) m [φ] + m[φ] for every φ € Φ.

Then, for any T > 0, there exists a p
τ
 € N:

η
T
 on D([O,T],Φ__ )

P
τ

where ξ
n
'

T
 = «*>

t 6 [ 0 > T ]
 and η

T
 = <Vte[0.T] '

Next, we shall give conditions under which the processes ξ ' will

T
converge weakly on D([0,T],Φ_ ) to a process ξ which is the solution of a SDE

driven by a Poisson random measure N on RxΛχ[0,°°) in the same way as ξ was

constructed from N
n
. Let m c Φ and let μ be a σ- finite measure on

(RxΛ,3(R)χ3(Λ)) satisfying

(6a) m[φ]
2
 + B(φ,φ) < c||φ||

2
 for every

(6b) / |
e

i a η [ φ l
 - 1 - iaη[φ]|μ(dadη)

RxΛ

where

o o
>>Φ) 5* / ^ τι[φ] μ(dadη); for every φ € Φ.

RxΛ

Let N be a Poisson random measure on (RxΛx[O,°°),3(R)x3(Λ)x3( [O,
00
))) with

intensity measure μ(dadη)dt (a c R, η C A, t > 0).
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Define

/ aη[φ](N(dadηds) - μ(dadη)ds); t > 0; φ € Φ, and
]RxΛx[0,t]

Xt(Φ) - tm[φ] + Y t(φ).

Since the τ^ required in (6a) is the same as that of (1), Theorem III.1.12 (b)

of Christensen (1985) implies the existence of a Φ_ valued semimartingale

X - (X ) satisfying X [φ] - X
t
(Φ) (a.s.) for every φ c Φ. Let ξ° be a

Φ - valued r.v. and let ξ = ^t^t>0
 ( i e n o t : e t l ι e u n i <

l
u e
 solution to the Φ

1
- valued

SDE

dξ
t
 = A
^t

 + d
V

 ξ
o

THEOREM 1 2. Let if
1
 and μ satisfy (1), let m, μ satisfy (6a,b) and suppose

that the following conditions hold:

(7) / (e
iaη[Φl

-l-iaη[φ])μ
n
(dadη)k + / (e

iaη[Φl
-l-iaη[φ]μ(dadη)

RxΛ RxΛ

for every φ € Φ

(8) m
n
[φ] •• m[φ] for every φ e Φ,

(9) There exists an r € N: sup max {E||ξn
||^

r
, E||ξ°||^

r
} < » and ξ

n
 => ξ°

n

on Φ
-r

Then, for any T > 0, there exists an p
τ
 e N such that

ξ
n
'

T
 => ξ

T
 on D([0,T], Φ_

p
 ), where ξ

T
 = (ξ

t
>

t ζ [Q
^
}
.

Let, for n c N, m
11
 c Φ and let B

Π
: ΦxΦ + R be bilinear symmetric functionals
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satisfying (1). Let W*
1
 = (W

11
)
 0
 denote the Φ - valued Wiener process with

Φ
-q

parameters m
n
 and B

n
. Equation (1) implies that W € Φ_ for every t > 0, for

some q which does not depend on n€ Dϊ

Letting r\
n
 = (η")

 Q
 denote the unique solution to the SDE

on Φ : dη
n
 * A η

n
dt + dlί; r\

n
 - τ? and η = (

η

t
)

t
>o

 b e t t ι e Φ
 "

v a l u e d
 process

introduced above, we have

THEOREM 1.3. Suppose that, in addition to (1), B
η
 and m

n
 satisfy

(10) B
η
(φ,φ) • Q(φ,φ) for every φ € Φ,

(11) m
n
[φ] • m[φ] for every φ c Φ,

Also let η and η satisfy

(12) There exists an r € N: sup max {E| |η n
| |_

r
, E| | Π° | |f

r
> < « and η

11
 => η

on Φ
-r

Then for every T > 0, there exists a p e N s .t. n
n > T

 => η
T
 on C([0,T], Φ_ )

where n
n
'

T
:=(η

p e N s .t. n => η on C([0,T], Φ_

:=(η^
t e [ 0 > χ ]

 .

As indicated at the beginning of this section, Kallianpur and Wolpert

(1984) used Poisson random measures defined via intensity measures on

(ΪRxX,3θR)
χ
3) where (X,3) is suitably chosen measurable space, rather than by

t

mean/covariance measures defined on 0RxΛ,30R)
χ
3(Λ)); Λ £ β(Φ ) as we have done

it here.

The set up of the present paper contains the Kallianpur-Wolpert

framework if the following conditions are satisfied: X is a compact Hausdorff

2
space, H = L (X,Γ), the elements of Φ are continuous functions on X and the

functional δ : φ ->- φ(χ) is continuous on Φ for every x c X
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2. The Wan & Tuckwell Model.

Next, we shall apply our results to provide a rigorous formulation and

investigation of a model recently proposed by Wan & Tuckwell (1980):

In order to study the behaviour of the difference V(t,x) at time t

between the so-called resting potential and the actual potential at point x on

the surface of an infinitely thin cylinder-shaped neuron which receives synaptic

stimuli of the finite spatial extent €. at each of N sites x., Wan & Tuckwell

investigated the model formally given by

(13)

),x) - 0, |- V(t,0) - 0 - |- V(t,b); for every t > 0,

where

h(x;x ,ε ) « 1, x(x), (x, ,ε. > 0 fixed for i=l,...,N)
i i u

±
 - ε

±
,x

±
 + ε

±
; i l

and where W i-l,...,N are independent standard Wiener processes. The α and

3. represent input current parameters and the neuron is thought of as the

interval [0,b]; for some b > 0.

1

To see how this model can be given a rigorous representation as a Φ -

valued SDE, let H « L ([0,b]) with inner product denoted by <.,.>
H
 Let L

denote the operator I - Δ (Δ « Laplace operator in one dimension) with Neumann

boundary conditions at 0 and b. Then L is a densely defined positive definite

selfadjoint closed linear operator on H and admits a CONS {φ.: j-0,l,2, } in H

consisting of eigenvectors of L;

A
2

LΦ, - λ φ j-0,1,2,..., where λ = J-r- and
J J J J κ

z
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•j(x)

tΓ
1 / 2
 if j = 0

(|)
1 / 2

Cos (

Further A := -L is the generator of a selfadjoint contraction semigroup

{T
t
: t >̂  0} on H whose resolvent R(λ) - (λI-A)~~ is Hilbert-Schmidt on H.

Letting

Φ := {φ ζ H: I |(I-A)
Γ
φ| |

R
 < °° for every r €

and defining norms || || r $ ]R on Φ by

r
 := ||(I-A)

r
φ||

H
; φ € Φ

we put Φ equal to the || . ||
r
-completion of Φ.

Then Φ = Φ and τ denotes the Frechet topology on Φ generated by
r£ K r

I t

{| I .I I : r e R} and (Φ,τ) -• H •* Φ (where Φ denotes the strong dual

of (Φ,τ)) is a rigged Hubert space* Since A = -L, and L is a densely defined

positive selfadjoint closed linear operator on H it is easily seen that A

and {T
t
: t >_ 0 } satisfy Al of section 1.

Moreover, {φ.: j € IN} C Φ, Φ € Dom(L) and by construction, every element of Φ is
oo I

a C function. Let N C IN fixed, and for each i-l,...,N, let ξ e Φ

Let v i=l,...,N be σ-finite measures on 3R satisfying

/ a v (da) < » for every i,
R

and let μ be the measure onlRxΛ, where Λ - {ξ : i,. .,N}, given by

μ = Σ v.xδj. where 6 is the point mass at ξ.
i»l ^i *

Define
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Q(Φ,Ψ) - / a η[φ]n[ψ]μ(dadη]; φ,ψ e Φ
RxΛ

N

= Σ / a v ( d a ) ξ [φ] ξ [ψ].

i=l 1R *
 X 1

Then Q is a continuous, bilinear symmetric functional on Φ, so for m € Φ given,

r

let W » (W. ) be the Φ -valued (actually Φ -valued for some q € ΊN
Π
) Wiener

t —q u

process with parameters m and Q

t

Consider the SDE on Φ :

(14)

t 9

Now, W is a weak Φ - valued continuous L -martingale, and since A and
I

{T
t
: t ̂  0} satisfy Al there is a unique continuous Φ -valued solution (from

Christensen (1985), Theorem Ill.l.r and Remark 6) given by

\[Φ1 • /Λ
 w

s
[

τ

t
_

s

A
Φ l

d s + w

t
tΦ]

 f o r
 every φ € Φ (with probability one).

ε
 N

Choosing ξ = <h( ;x.,ε ), .> for every i
a
l

9 9
N and m = m := Σ α.ξ.

i i i H , . 1 1

2
 r

 2 i-1 ,
4̂
 s
 in5

a v

4
(dA), we obtain (14) as the representation of (13) as an SDE on Φ .

i JK 1
 m

To see that this is indeed the case, expand φ • Σ <φ,φ.> φ. (converging in

j-o
 J H J

the Φ topology) (recall that φ. ε Φ for every j ε Bϊ). Then

(writing η for η ) we have

η^[φ] = /
0
 V

£
(t,x)φ(x)dx (P-a.s ) for every φ C Φ, where

N φ (x)ψ (x ε ) -λ t

EV(t,x) - Σ α Σ -J { (1 - e
 J
 )

8
 i-1

 i
 j-0

 λ
j

which is formula (8) on page 279 obtained heuristically in Wan & Tuckwell

(1980). Here as in Wan & Tuckwell (1980)
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x +ε

Ψ
j
(x

i
;ε

i
) = <h(.;x

i
,ε

1
),φ

j
>

H
 = J

χ

1

- ε

1
φ

j
(x)dx. Next,

N « Φ.(x)Φ
v
(x)Ψ.(x.;ε )ψ (x ε ) -(λ +λ )t

Var V
p
(t,x) = Σ ή Σ Σ -^

 λ
 ί

 λ
 (1-e

 J
 ),

ε
 i=l * j-0 k-0 j k

which is formula (10) in Wan & Tuckwell (1980).

Wan & Tuckwell proceed to compute the limit as ε. -• 0 for every

i=l, .,N in such a way that ε α -• a and ε β •• b > 0 of EV (t,x)

and VarV (t,x), and they find that these limits correspond to having point

stimuli (i.e , h(x,x
i
,ε ) replaced by δ (x)) at each x ^ i=l, ..,N. This

result may be obtained from Theorem 1 3 in the following manner:

For each i=l,. ,N, take v, = b.ε μ , where μ. is a finite measure on

R with compact support

Noting that every φ * Φ is a continuous function on [0,b] (recall

that Φ S Dom(L) and that L is a differential operator) we let ε -• 0 in such a

way that ε α -• a. and ε β + b. > 0. Then it is easily verified that

lim m [φ] - Σ 2a φ(x ) = Σ 2a ό [φ]

ε
t
-K) i-1

 i i
 i=l

 i X
i

and

lim Q
ε
(φ,φ) - Σ 4b^(ό [φ])

2
 . / a

2
μ.(da),

ε
±
-K) i=l

 X
i *

 1

Also,

|m
ε
[φ]|

2
 + Q

ε
(φ,φ) < K ||φ||fl for every ε

since ε ^ ^ •• a^ and ε *• 0; where K is independent of ε , so condition (1) of

Section 1 is satisfied. Since the initial condition is zero, Theorem 1.3 yields

the following

PROPOSITION. As ε > 0 such that ε α -• and ε β -• b > 0, we have
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ε T
η
 ±
 => η

T
 on C([O,T], Φ_ ), T > 0,

q
τ

for some q^ > 0, where η = ^
η
t-^t>Ω *

s t
*

ιe
 solution to (14) corresponding to

N
Q(φ,φ) = Σ 4 bΠφ] / a μ (da), and

i=l ΊR

m[φ] - Σ 2a δ [φ] .
i=l

 X
i

Now, take / a μ (da) = 1, i
β
l,...,N. Then

N - <φ,φ > φ (x ) -λ.t
En [φ] « Σ 2a. Σ 3 ° J (1 - e

 J
 ); φ c Φ

t
 ^

 λ

and

N « « <φ,φ > <φ,φ > φ (x )φ (x ) -(λ.+λ )t
Var η fφ] = Σ 4b^ Σ Σ

 LJL
-z—-—^—~—* . (1 - e

 J κ

t J t ^ Λ n λ r\ A i

1—I J
a
U iĈ U J K.

oo

Since V
ε
(t,x) = Σ n

t
[φ

j
]φ

j
(x) (in L

2
(Ω,F,P)), we get

N « φ.(x ) -λ t
(15) EV (t,x) + Σ 2a Σ 3

 1
 φ.(x)(l - e

 j
 )

ε
 i-i V o

 λ
i

 J

and

N
 2

 φ (x )φ (x )
(16) VarV (t,x) • Σ 4b^ Σ Σ

 3

λ
 • f φ (x)φ

fc
(x).

ε
 i-1

 A
 j-0 k=0

 λ
j

 +
 \

 J k

Equations (15) and (16) are the expressions found by Wan & Tuckwell for point

stimuli at x^; i
β
l, .,N

In practice, equation (14) is likely to arise as a limit of equations

where the noise is not a Wiener process, but rather a process generated by a

Poisson random measure in the manner considered in Section I As an

illustration, take μ to be measures on3R x Λ; where Λ » {ξ : i=l,...,N} of the

N
 n

form \i
n
 - Σ v

n
χδ

p
 , where for each n(]N and i-l,...,N, v

n
 is a σ-finite

i=l
 ξ

i
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measure on IR such that

sup / aV*(da) < C < for every 1-1,...,N
IR

Let mn € Φ converge weakly to m
£
 . Then there is r £ IN such that

|m
n
[φ]|

2
 < K||φ||

2
 for every nξ]N. Since

K^tΦ]I
2
 < (2ε

i
)

2
||φ||Q < (2ε

i
)

2
||φ||

2
, we get (for some constant K),

|m
n
[φ]|

2
 + Q

n
(φ,φ) = |m

n
[φ]|

2
 + Σ La

2
v

n
(da)(ξ.[φ])

2
< K ||φ||

2
 for every n € IN;

1-1

i.e. (1) holds with τ^ = r Let {X n > 1} denote the Φ - valued process

constructed earlier from m and μ

Letting ξ denote the solution to

t " t t* 0 '

Theorem 1.3 gives the existence of p»j, such that

ξ
Π > T

 ^ η
ε > T

 on D([0,T], Φ_ ) a.s,

provided that

(17) lim / |a|V*(da) = 0 for every i=l,...,N
n-*-

00
 IR

and

(18) lim / aM(da) - 3
2
 for every i=l,...,N,

nH» 3R

i .e., the previously considered process η can be thought of as the limit of

solutions to SDE's with Poisson generated noise. Physically, this type of weak

convergence models a situation in which the individual current stimuli of the
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neuron arrive very densely in each small time interval so as to create a total

contribution to the electrical potential which behaves like the continuous

Wiener process.

On the other hand, if (17) and (18) are replaced by

lim / (e
i a y

 - 1 - iay)v
n
(da) = / (e

i a y
 - 1 - iay)v

ε
(da)

n+« ΊR ]R

for all y € ΊR, then Theorem 1.2 gives

ξ
n,T ^

 ξ
ε,T

 o n D ( [ 0 > τ h φ }

n *
00 P

T

where ξ is the process with mean functional m constructed from the Poisson

random measure with intensity

μ = Σ v xό

This latter convergence can be thought of as modeling a situation in which the

individual stimuli received by the neuron do not tend to arrive very densely

packed in each small time interval, but rather tend to arrive clustered at

random points of time

The results of Section 1 can be applied to other models besides that

of Wan and Tuckwell, e g , to cases where the interval [0,b] is replaced by more

general domains such as the ones considered in Kallianpur and Wolpert (1984).
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