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An estimator of the median survival time m is
constructed from survival data subject to random right
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p-th mean, asymptotic normality, and a.s. convergence.

1 Introduction.

In several longitudinal studies the median and mean survival times are

considered important summary statistics describing the survival experience of

the sample under observation. The mean survival time is a commonly used

statistic in the case of no censoring This is due to its ease of computation

and the considerable literature available on its properties. However, its

competitor, the median survival time may be preferred with censored survival

data because it is less sensitive to large observations and to the censoring

pattern. The purpose of this article is to introduce an estimator of the median

survival time which has applications in a variety of situations encountered in
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survival analyses. Furthermore, we derive and study its asymptotic properties.

We envisage the usual random censorship model, that is, the survival

variable X may be deterred from complete observation by the action of a

competing censoring time variable Y, which is independent of X. Thus, one has

available only the datum (Z,δ), where Z = min (X,Y) and δ identifies whether Z

is a true survival time (δ = 1) or a censoring time (6 = 0). The underlying

distributions of X and Y are left unspecified.

Given a sample of n independent observations {(Z , δ ) : 1 < i < n}

with each (Z ,δ.) having the distribution of (Z,δ), we shall estimate the

survival function F(t) = P[X > t] by the product limit estimator given by

( N(Z.) i 1 2 !^ ' V 1 1

( 1 . 1 ) F n ( t ) - Π l = l | l + N ( Z ) | > t > 0 >

where N(t) = £? [Z > t] and [A] is the indicator function of the event A The

median m = m(F) of F is then naturally estimated by m(F
n
),

where m(F ) = inf{t > 0 : F (t) < j} . Since F
n
 is a step function that

decreases at uncensored observations, m(F
n
) coincides with one of the order

statistics of Z^, ,Z corresponding to an uncensored observation. Under some

mild conditions on F and the censoring distribution G(.) = P[Y > . ] , it can be

shown that

(1.2) L{n
1/2
(rn(F

n
) - m)} -• N(0, σ

2
/4),

where

(1.3) σ
2
 = σ

2
(F,G) = f

 2
(m)C(m),

f being the density of (1 - F) and c(t) =• J
t
F~

2
G *f. Notice that an estimator

of (1.3) can be constructed from the observations once a suitable estimator of f

is available.

In some medical applications, Peto et al. (1977) have advised that a
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confidence interval estimate of m may be more appropriate than a point estimate

since considerable variation could exist in the estimated median at 50%

survival. The main purpose of this article is to develop an estimate m (of m),

its large sample properties, and confidence intervals for m.

We remark here that previous investigators have avoided the problem of

estimation of the variance (1.3) by examining direct estimates of the

distribution of m(F
n
). (See Reid (1981)). Brookmeyer and Crowley (1982) and

Emerson (1982) describe a method of constructing a confidence interval for m by

utilizing an appropriate analog, for the case of censored data

{(Z ,δ ) : 1 < i < n}, of the traditional sign test statistic. This modified

test statistic can be given in terms of the product limit estimator (1.1).

Since

(1.4) L{n
/ Z
(F

n
(m) -y)/F

n
(m)} +N(0,C(m))

and, since with m fixed, C(m) can be estimated by ^l^.&ΛZ.
 < m

l
N
" (

z
 )> a

confidence region R^ for m with confidence coefficient 1 - α is immediately

obtained by inversion, that is

(1.5) R
α
 = {x : |F

n
(x) - ||

2
 < χ

2
(c0F

2
(x)I"

=1
 6 ^ < x]N

2
where χ (α) is the (1 - α)th quantile of the chi-square distribution with one

degree of freedom. The problem with (1.5) is that it need not be an interval.

Simulation results have been reported in Brookmeyer and Crowley (1982)

indicating that R may be a one-sided interval, especially if there is heavy

censoring. The reader is referred to their paper cited above for further

details The methodology which we have developed avoids this difficulty by

giving a confidence interval for m.

There are certain drawbacks associated with the papers to date In

the case of the papers by Sander (1975) or Reid (1981), fixed sample size

confidence intervals are not possible even for large n since no estimate
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2
of σ in (1.3) has been suggested. The papers by Brookmeyer and Crowley (1982)

and Emerson (1982), although they contain confidence regions for m with the

possible difficulties noted above, do not contain an explicit estimate of m.

This paper provides an estimator m in explicit form which has all the necessary

fixed large sample size properties. Furthermore, these properties can be used

to develop certain desirable sequential properties of m. This will be done in a

subsequent paper.

The substantive material of this paper is divided into several

sections. In Section 2 we introduce the basic notation and assumptions used

throughout the entire paper together with our definition of an estimator m of m

based on a sample of size n. Section 3 states the theorems concerning our

estimator m and gives a consistent estimator of σ in (1.3). It also contains

some remarks on these theorems. Section 4 contains proofs of the theorems

stated in Section 3.

2. Preliminary notions and definitions .

Let {X. i > 1} be a sequence of nonnegative independent and

identically distributed (i.i d ) random variables (rv) representing the survival

times, and let {Y. i > 1}, be the corresponding sequence of iid rv
f
s of

censoring times. We assume censoring is noninformative; that is, censoring and

survival times are independent. The observable variables are

{(Z
±
,δ

1
) : i > 1}, where

(2.1)
 Z

i
 = X

i
 Λ Y

i
 a n d 6

i "
 [ X

i
 < Y

i
]
*

Here [A] denotes the indicator of the event A and X Λ Y denotes min(X,Y). If F,

G denote the survival (right hand tail) distribution functions of X, Y, then Z

has survival distribution H and subdistributions H, H given by

(2.2) H - FG H = P[Z < . , 6 = 1 ] H - 1 - H - H.
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The median corresponding to the distribution (1 - F) is defined as

(2.3) m(F) = infίt > 0, F(t) < |}

and will be abbreviated by the symbol m.

Given the sample of observations {(Z.,δ ) : 1 < i < n}, we estimate F

by the product limit estimator F of (1.1). The corresponding product limit

estimator G
n
 of G is obtained by interchanging the roles of the censoring and

survival times It follows that

(2.4) F G - N/n
n n

where N = nH
n
 and Έ^ is the ordinary empirical survival distribution of

{Z. 1 < i < n}. Thus we always have

(2.5) m(F ) > m(H ).
n n

In general there is no nontrivial upper bound on m(F
n
). As described above the

ultimate objective is to obtain certain asymptotically efficient procedures for

the estimation of m. For this purpose the convergence of the moments of our

2
estimate and of those of the asymptotic variance σ in (1.3) together with

appropriate rates of convergence are needed

In order to facilitate such results, we consider m defined by

(2.6) m - m(F ) Λ a ,
n n

where a
n
 is a' known sequence of constants diverging to °° such that

ϊϊm a /n^ < 0,
 f o Γ

 some 3 > 0,
 a n d m

(
F

n
)
 i s t l i e m e d i a n o f t n e

 estimator F
n
 in

(1.1). For most studies in which lifetimes are known to be no larger than T,

one can take a
R
 = T. To obtain r-th moment convergence for every r > 0 (which

implies a s. convergence), the asymptotic distribution of
 m >
 etc., we need some
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local conditions on F and G. Hence, we assume

[Al] F is continuous at m with F
f
 continuous and negative at m,

[A2] G continuous at m and G(m) > 0,

and that, additionally, F and G do not have any common points of discontinuity

in (0,m). Without further reference, we assume that there is a Δ (> 0) such

o

that H(m + Δ ) > 0, and that the conditions above are satisfied,
o

3. Results.

The estimator m defined by (2.6) satisfies the following theorems.

Their proofs are deferred to Sections 4 and 5.

THEOREM 3.1. With σ defined by (1.3), /n(m - m) converges in law to the normal

2
distribution with mean zero and variance σ

THEOREM 3.2. For each p > 0, ||m - m|| = 0(n ) where the constant in the

order could depend on p.

The asymptotic distribution in Theorem 3.1 involves σ . To find

2
approximate confidence intervals for m, a consistent estimator of σ is

desired. For this, we let k be a real valued function such that k vanishes off

(0,1), /k = 1, and its derivative is bounded. Then define f by

(3.1) -
ε
n

f ( # ) =
 f

 k ( ( t
 " )/ε

n
)dF

n
(t),

where ε converges to zero as n •>• ». Since C(t) = / H dH, we

estimate
 σ

2
 = C(m)/f

2
(m) by

(3.2) σ
2
 = /

m
 (lf

2
)dH

n
/(f(m))2,
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where nH
n
( .) = J" [Z

±
 > •] and nH

n
( •) = I ^ i

6
^

2
!

 <
 1

 a n d m i s t h e
 estimator

of m defined by (2.6)

Λ
2 2 2

THEOREM 3.3. σ is a consistent estimator of σ if nε -• ~.
n

REMARK 3.1. The asymptotic distribution given by Theorem 3.1 is the same as the

asymptotic distribution given by Sander (1975) or Reid (1981). However, their

results do not contain the moment covergence results for their estimator as

Theorem 3.2 does for our m. In fact the conclusion of Theorem 3.2 can be

strengthened in the following way. One can show that

E[|m - m| ] - c /TΓ + o(n ) for some constant c . Note that C2 comes out

2
to be σ as in (1.3). Results of this type are needed to obtain sequential

estimators of m. The proof of the above expansion is quite involved and will

appear in a separate paper.

REMARK 3.2. Since a
R
 diverges to infinity, m does not differ from m(F

n
) with

high probability and m(F
n
) is simply an order statistic of {Z.} .. Since F

n

decreases only at uncensored observations, m(F
n
) is necessarily an uncensored

observation.

REMARK 3.3. Here, an estimator of f(m) was based on the kernel function k as in

Blum and Susarla (1980). However, one could also consider the histogram type

estimators such as those studied by Liu and Van Ryzin (1985).

REMARK 3.4. With appropriate modifications of the assumptions [Al], [A2], etc.,

we can obtain estimators m of the α-th quantile (0 < α < 1) of F with

m satisfying conclusions similar to Theorems 3.1, 3.2, and 3.3. In fact, some

results for the process {m : α~ < α < α.}, 0 < α~ < α. < 1, are possible.

However, these will not be pursued here.

The following theorem proved in Section 4 is used repeatedly in the

proofs of Theorems 3.1 - 3.3.

THEOREM 3.4. For each t > 0,
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F
n
(t) - F(t) - {iΓ

1
! ξ(Z

i
,6

i
,t) + R

n
(t)}F(t),

where

(3.3) ξ(Z
i
,δ

1
,t) = C(Z

±
 Λ t) - δ

i
[Z

i
 < t]H"

1
(Z

i
) and

(3.4) βup||R
n
(t)|| = (XrΓ

1
), if p > 2 and H(c) > 0.

t<c
 n P

4. Proofs.

We begin with a description of notation used throughout this section:

i ranges from 1 through n; the range of summation is over i from 1 through n.

Arguments will not be exhibited if they are clear from the context, c,, Co,

etc. denote constants independent of n. We assume Δ (> 0) is such that

F
f
(m + Δ ) H(m + Δ ) < 0 for 0 < Δ < Δ. Such a Δ is guaranteed to exist by

[Al] and [A2]. All limits are as n + «.

Proof of Theorem 3.1. Since /n(m(F ) - m) is shown to have an asymptotically

2
normal distribution with zero mean and variance- σ by Sander (1975), it is

enough to show that /n(m - m(F )) •• 0 in probability. For this, let ε > 0.

Then, P(/n|m - m(F
n
)| > ε) < P(m(F

n
) > a

R
 + ε//α) < P(m(F

n
) > m + Δ), where the

last inequality holds for sufficiently large n since a + °°. Now

n
P(m(F ) > m + Δ) < P(F (m + Δ) - F(m + Δ) > η) where 2η - 1 - 2F(m + Δ) . This

n n

last probability is at most Pίln"
1
^ ξ^m + Δ) | > η/2) + P(|R

n
(m + Δ) | > η/2) .

Now the conclusion of Theorem 3.4 gives that P(|R (m + Δ)| > η/2)

converges to zero. Since ξ. are i.i d bounded random variables, it also

follows that P(|n £ ξ.| > η/2) converges to zero, completing the proof of the

theorem.

Proof of Theorem 3.2. To prove Theorem 3.2, first write

n
Γ / 2

||m - m||* - f~ P(/n|m - m| > t)dt
Γ
.
 s i n c e

 m < a
R

 b
y definition, the range

of the integral will be at most /ϊΐ a . We break the resulting integral into two

parts, one on (0,Δ/n), and the other on (Δ/n,/n a
R
) . For the integral on the

latter range, it is observed that this integral will be at
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most (/n a )
Γ
 P(|m - m| > Δ) . So it is enough to show

that P(|m - m| > δ) = n"
Ύ
 for any positive γ, since it is assumed

that lim a /n < « for some 3. We deal only with P(m > m + Δ) the other case
n

being similar. Note that

P(m > m + Δ) < P(m(F ) > m + Δ) < P(n"^ ξ, (m + Δ) > η/2) + P(R (m + Δ) > η/2),
n I n

where 2η = 1 - 2F(m + Δ). The second probability on the r.h.s. converges to

zero like 0(n ) for any s > 0 by Theorem 3.4 and the first probability there

converges to zero like 0(n
 S
) again for any s > 0 since ξ. are i.i.d. bounded

random variables. Hence, (/n a ) P(m - m > Δ) •* 0. A similar argument also

shows that (v'n a )
Γ
 P(m - m < -Δ) -• 0.

n

We are now left with /
 n
 P(/n|m - m| > t)dt

Γ
. It suffices to show

that L
 Π
P(/rΐ(m - m) > t)dt

Γ
 is finite. The finiteness of the other integral

can be shown in a similar fashion. Rewrite the integral

as P(m > m + t//n) which is at most P(m(F ) > m + t//n) which in turn can be

n

bounded by

P(F (m + t//n) - F(m + t//n) > F(m) - F(m + t//n)). Since t//n < Δ, this last

inequality is at most P(F (m + t//n) - F(m + t//n) > tc //n) for some

c. > 0 because f is continuous and positive at m Hence

JQ
 n
 P(/n(m - m) > t)dt

Γ
 < n

1
^

2
/^ P(F

R
(m + u) - F(m + u) > c u)du

Γ
. It is

enough to consider the last integral on the range (c
2
//n,Δ) to obtain the

result.

Now by Theorem 3.4, P(F (m + u) - F(m + u) > c u) is dominated by

P(|n 1 ξ
±
(m + u)| > c.u/2) + P(|R (m + u)| > c u/2) where the second term is

u"
s
0(n~

s
) for any s > 0 by Theorem 3.4. Thus,

n
Γ / 2

/^ μ- P(|R
n
(m + u)| > c

χ
u/2)du

Γ
 = 0(1). Since ξ

±
(m + u) are i.i.d. bounded

2
random variables, we have by Hoeffding's inequality (1963),

Pίln"
1
! ξ

±
(m + u)| > c

χ
u/2) < d

4
 . exp(-d

3
nu

2
),

 w h e r e d
3»

d
4
 a r e

 constants

independent of n and u.

Hence, e L P(|n" \ ξ (m + u)| > c u/2)du
Γ
 = 0(1), and this completes the



ADAPTIVE STATISTICAL PROCEDURES 359

proof .

Proof of Theorem 3.3. We show that C(m) + C(m) and f(m) + f(m), both in

probability. Let ε > 0 and Δ > 0 be such

that f
m + Δ

 dH/H
2
 < ε and f

m
 . H~~

2
dH < ε. Since in > m in probability, we consider

m m—Δ

the C(m) - C(m) on the set

[|m - m| < δ] = A. On A, |C(m) - C(m)| < J™
+ Δ
 H~

2
dH + /™_

Δ
 H~

2
dH +

I/" (H"
2
 - H"

2
)d5| + I/™ (H - H)dH"

2
| + |H"

2
(m)| |5(m) - H(m)| . Hence

P(A Π (|C(m) - C(m)I > 5ε)) will converge to zero because the first two

quantities on the r.h.s of the above inequality converge in probability to

jm+Δ
 R
-2

d
jj

 d
 rm

 H
"

2

d
g

 w i t h b o t h o f
 these limits less than ε, the third

J
m
 J

m-Δ

quantity converges to zero by the strong law of large numbers since H(m) > 0 and

the last two quantities can be shown to converge to zero by using the fact that

sup{||5(x) - H(x)|| : 0 < x < m} = 0(n

Now consider f(m) - f(m) . Write f(m) - f(m) as

{ί(m) - f(m)} + {f(m) - f(m)} = I + II. By the mean value theorem,

I = (m - m)f
f
(m*) with the consequence that |l| < |m - m|/ε = 0(ε n ) by

Theorem 3.2. So I
 s
 0(1) by our assumption on ε For II, we have

f(m) - f(m) = [-ε"
1
/ k((x - m)/ε

n
)d(F(x) - F(x))] - [ε^

1
/ k((x - m)/ε

n
)dF(x)

+ f(m)]. By standard arguments for kernels (see, e.g., Parzen (1962)), the

second nonstochastic term converges to zero since f is continuous at m. Since k

has support in (0,1), integration by parts gives that the first term in absolute

value is at most ε sup{|F(x) - F(x)| : m < x < m + Δ} for sufficently large

n But by the results available in the literature on the Kaplan-Meier process

Z - n̂ 2 (F-F)F
-1
 on (m, m+Δ) (see, e.g., Gill, 1983, Theorem 1.1) this bound

—1 —1/2
is 0 (ε n ). This becomes o (1) by our assumption on ε , which completes the

proof
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Proof of Theorem 3.4. First write F
R
 - F in the form {exp(ln(F

n
/F)) - 1} F and

then via a two-term Taylor expansion we get

(4.1) F
n
 - F = Un{F

n
/F} + | e

C
*(ln(F

n
/F))

2
}F,

where c* lies between 0 and ln(F
n
/F). From (1.1) we have

In F
n
(t) - l[Z

±
 < t, δ

i
 = l]ln{N(Z

i
)( 1 +

Expanding the logarithm term, we can write

(4.2) In F
n
(t) - -Σ[Z

t
 < t,

where τ(Z
±
) = (1 + Nί^))""

2
!?,^ (J

 +
 2)~

1
(1 + N(Z.))

 d
. Write

n(l + N ) "
1
 - {n(l + N)""

1
 - 2H"

1
 + H H~

2
} + 2H*

1
 - H H~

2
 and note that

n n

n
 l
l[Z

±
 < t, 6

1
 = l]H

n
(Z

i
)H

 2
(Z

±
) = n"

L
(n - l)U

n
(t),

where U
n
(t) is a U-statistic of degree 2 with kernel

(4.3) •
t
((Z

l f
δ

1
)

f
(Z

2 f
δ

2
)) ={ίθ

1
[Z

1
 < t,

Hence, (4.2) takes the form

δ
2

[ Z
2
 < ty Z

l

In F (t) = -2n
 A
J δ.[Z. < t]H (Z,) + n~

A
(n - 1)U (t) + r.(t),

n I I I n 1

where

(4.4)
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Finally, replace the U-statistic U
n
 by its projection U , namely

U » 2n~
1
£ {E(Φ|(Z.,δ.))} + In F(t).

By direct computation, with C(t) = /* H dH, we have

t]H
 1
(Z

i
) + C(Z

±
 Λ t)}

Collecting our results this leads to

ln{F
n
(t)/F(t)} = n"

1
I{C(Z

i
 Λ t) - 6

±
[Z

±
 < t]H

Therefore, from (4.2) this yields

F
n
(t) - F(t) - n

 l
l ξ(Z

j
.,δ

i
,t) + R

n
(t),

where R
fl
(t) - (U

R
 - ϋ

n
> - n "

1
^ - r

χ
(t) + |e

C
*{ln(F

n
(t)/F(t))} . To complete the

proof of the lemma we treat separately each of the terms in R
τι
(t) Clearly

sup Φ < Φ and so ||sup U (t)|| = 0(1) for any p > 0. Also note that in

t<c
 fc

 2
 t<c

 n P

(4.2), r(Z
±
) < N (Z

1
) and so

(4.5) ||sup I* r(Z )δ [Z. < t]|| < n|In"
1
^ N~

2
(Z )δ [Z < c]|| .

t<c
 P p

On applying the Holder inequality with p > 1 and then evaluating the expectation

by first conditioning with respect to (δ ,Z ), we get that the right-hand side

of (4.5) is bounded by

c]E{N~
2 p
(Z

i
)|(δ

i
,Z

i
)}})

1 / ί
\

The inner conditional expectation is an inverse moment of a left-truncated

binomial random variable with parameters (n, H(Z
±
))

 a n d
 therefore it is bounded
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by C (n,H(Z
i
))~

2 p
. Arranging our results, we finally get (suppressing

P

constants), for p > 1

(4.6) I I sup I r(Z )
t<c

To handle the other terms in r^(t) of (4.4) use the fact that

N)
 l
 - (2H

 l
 - H

 2
H

n
) | < 2N~

1
H
 l
 + nN

 1
H"

2
|H

n
 - H|

2
 + 2tf

1
H
 2
|H

n
 - H|

Following the same arguments for each term as those leading to (4.6), we get,

for p > 1,

(4.7) ||sup r
1
(ϋ) I I = 0(n ).

t<c
 P

Observe that exp(c*) F(t) < 1 and that

(4.8) |ln{F
n
(t)/F(t)}| < {n"

1
^ δ ^ < t j ί f

1
^ ) + In F(t)}

N(Z
±
))

 l
 - H

δ
i
[Z

±

For the first term in (4.8) apply the Marcinkiewicz-Zygmund inequality. With

p > 1 and suppressing constants, we get

|n
 l
l δ

±
[ Z

±
 < t] H "

1
( Z

±
) + In F(t)|| < II* ̂ 1 \ l \ < t]H

Applying the Holder inequality with p > 2 yields a bound for the right-hand side

a s
 (J

11
 H~

P
dH)n"

1
^

2
. The remaining terms in (4.8) are handled as before. Thus

we have obtained, with p > 1

(4.9) sup||(ln(F (t)/F(t)))
2

e

C
*F(t)|| < sup(||ln(F (t)/F(t))|

t<c
 n p

 t<c
 n
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Finally to handle (ϋ (t) - U (t)) we employ the arguments in Serfling (1980,

Lemma B, page 186). We get, with p > 2

(4.10) sup||U
n
(t) - U

n
(t)||

p
 - 0(n

 l
) .

From (4.6) - (4.10), (3.2) of Theorem 3.4 holds. This completes the proof.
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