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This paper extends empirical Bayes estimators with
squared error loss and tests with linear loss for two
classes of exponential families when the observed data
is randomly right censored Sufficient conditions for
proving asymptotic optimality of the procedures are
given. Various extensions to multiple action problems
and to rate of convergence results are indicated.

1 Introduction.

The empirical Bayes approach of Robbins (1955, 1963, 1964) is

applicable to statistical situations when one is confronted with an independent

(but not necessarily identical as in 0
1
Bryan and Susarla (1977)) sequence of

Bayes decision problems each having similar structure. The statistical

similarity in these problems includes the assumption of an unknown prior

distribution Λ on the parameter space involved. Robbins (1964) argues that much

can be gained by using the empirical Bayes approach which uses the data

available in the first n decision problems in the (n + l)st Bayes decision

problem. Since Robbins
1
 initiation of this idea, many papers evolved
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on developing empirical Bayes procedures and their asymptotic properties as the

number of problems, n, approaches °°. Most of these empirical Bayes methods have

treated situations in which the observed data is noncensored data. Work on

empirical Bayes problems in which the observed data is randomly right censored

data first appeared in Susarla and Van Ryzin (1978). They treat the empirical

Bayes problem of estimating a distribution function with the unknown prior

involved being a Dirichlet process (Ferguson (1973)). Here, we investigate the

empirical Bayes approach to some squared error loss estimation and linear loss

k-action problems when the data is randomly right censored We further assume

the family of densities (with respect to the Lebesgue measure on Borel σ-field

in R = (-
00
,
00
)) is either of the form: (Case I). f(x, λ) = c(λ)h(x) exp (λx),

or of the form: (Case II). f(x,λ) = c(λ)λ
X
h(x) . Here λ is a generic element in

the natural parameter space Ω of the exponential family involved and h(x) > 0 if

and only if x > a.

Section 2 describes the estimation problem and its empirical Bayes

analogue with censored data. It also introduces notation used throughout the

rest of the paper. Section 3 constructs empirical Bayes estimators under the

two exponential families cited above, and obtains sufficient conditions under

which the proposed empirical Bayes procedures are asymptotically optimal

(a.o ). Section 4 treats the empirical Bayes linear loss two-action problem and

points out its extension to linear loss k-action problems. Section 5 gives some

examples in which conditions of the various theorems are satisfied. The final

section contains remarks on how one can construct empirical Bayes procedures

which are a.o. with rates.

For notational convenience, we let [A] denote the indicator function

of A and the arguments of functions will not be exhibited whenever they are

clear from the context. Integrals are over (-
00
,
00
) unless otherwise stated. All

the limits are as n •• «. Throughout the index i will range over l,...,n.
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2. The Empirical Bayes Problem With Censored Data.

Let (λ,X,Y) be a random vector where λ has a prior

distribution Λ; given λ, X has density f(x,λ) with respect to Lebesgue measure

on the real line R, and Y is a random variable with distribution G which is

independent of (λ,X). The triplet (λ,X,Y) is unobservable. Instead we observe

the pair (δ,z), where δ = I[X < Y] and Z = min {X,Y}. This is the situation one

generally encounters in analyzing randomly right censored data. Consider the

Bayes statistical decision problem for squared error loss estimation

2
of λ using δ and Z = z. If E[λ ] < «, the Bayes decision rule can be shown to

be

fλf(z,λ)dΛ(λ)

(2.1) d
Λ
(δ,z)

Jf(z,λ)dΛ(λ)

JλF(z,λ)dΛ(λ) if 6 - 0

J?(z,λ)dΛ(λ),

where F(x,λ) = / f(t,λ)dt with any undefined ratios here and elsewhere taken to

be zero. The Bayes estimator d. minimizes the risk among all estimators. Its

risk is denoted by R. . If Λ is known, we can use d. and attain R. But Λ is

rarely known even if it assumed to exist.

Suppose now that the above decision problem occurs n+1 times leading

to the random vectors {λ ,δ.,Z )} ., , where each triplet has the same

probability structure as (λ,δ,Z) given above. The ίλ } are unobservable

and {δ.,Z )} is the available observable data at the (n+l)st problem.

Following Robbins (1955, 1964), we would like to construct empirical Bayes

estimators not knowing Λ, which do as well as d^ in the (n+l)st problem as the

number n of problems increases to
 α
 In this empirical Bayes approach, one

constructs estimators of the form d ({(δ ,Z.)}. .; (δ ,Z ,.)) to

n i i i=l n+l n+l
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estimate λ
 Λ

 . The risk R (d , Λ) of using ά
n
 to estimate λ is at least as

n+1 n n
 n

 n+i

large as R(Λ). This leads to the following definition (see Robbins (1964)).

Definition 2.1 D = {d } is said to be asymptotically optimal (abbreviated by

a.o. hereafter) relative to Λ if R (d ,Λ) - R(λ) + 0.

n n

There has been a great deal of work on empirical Bayes problems in the

case when there is no censoring, that is, situations in which censoring

distribution G assigns all its mass to +
00
. In particular, empirical Bayes

procedures have been constructed which satisfy Definition 2.1 with and without

rates of convergence to zero of R (d ,Λ) - R(Λ) with several variations of the

n n

component problem involved. Here we consider the empirical Bayes squared error

loss problem in the presence of random censoring when f(x,λ) has the form either

given by Case 1 or Case II noted above. Let Ω be the natural parameter space of

the exponential family involved, that is, Ω = {λ|/ h(x)exρ(λχ)dx < °°} in Case

a
I. Until otherwise stated, it is assumed that

(Al) Support of Λ is contained in the finite closed interval [α,$],

where α and 3 are known. Additional conditions on h will be needed and they

will be introduced later. We assume that

(A2) sup{x:x is in the support of G} > a.

The implication of (A2) is that P(δ = 1) > 0. That is, we will observe

infinitely many uncensored observations among {(6 ,Z )} , . Also, if (A2) is
n n n==l

not satisfied, the Bayes estimator (2.1) reduces to d.(0,z) = E[Y] and

P(δ = 0) = 1. This makes the empirical Bayes problem meaningless.

Let

(2.2) τ = sup{x:l - G(x) < 1}.

Then τ > a, P(Z
±
 < τ) = 1. We take τ - ~ if the l.h.s. of (A2) is infinite. If

we need to estimate F.(z) for all z, we need τ = °° (see Gill (1983)).
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Since the support of Λ ci [α,3], the inequality α < d. < 3 leads us to

consider empirical Bayes estimates {d ({(δ.,Z, )}? ., (δ ^. ,Z _
Ll
))}°°

 Ί
 taking

n l i i=l n+l n+1 n=l

values in [α,$] . Under the assumptions, we have

(2.3) 0 < R
n
(d

n
,Λ) - R(A) = E[(d

n
-

For {d } to be a.o., by (2 3) it is enough to show that

(2.4)
 d

n
( { ( < S

i'
Z
i

) }
i=l'

x ) ? d
Λ

( x )

almost everywhere w.r.t the distribution of (δ,Z), where * denotes convergence

in probability as n •*• °°.

In Section 3, we provide {d } satisfying (2.4) and hence a.o for Case

I. In Section 5, we consider some examples to which the results of Section 3

can be applied. Section 4 describes an empirical Bayes linear loss 2-action

problem in which we need only assume that E[|λ|] < « . We use without further

comment that if the r-th derivative h^
r
' of h exists and is continuous on

(a,
00
), then flj exists and is continuous on (a,

00
), where f»(x) - /f(x,λ)dA(λ) .

See Theorem 2.9 of Lehmann (1959).

3. An Empirical Bayes Estimator and its Asymptotic Optimality.

Throughout we deal with Case I where f(x,λ) = c(λ)h(x)exρ(λ,x) In

this case, d. given by (2,1) can be shown to be

' f.(
Z
) Γf.ddog h>

(3.1) d.(δ,z) + δh
(1)
(z)/h(z) = A s + (1 - δ)j ̂

Λ
 V

Z )
 F

Λ
(z)Λ-' V

z )

if h' ' exists. By our assumption on Λ, it follows that α < d. < 3. In view of

(2.2) and (3.1), we need estimators of f f'*' J and the
Λ' Λ A

integral /°°f.d(log h) using the data {(δ ,Z )}. These are constructed below.

Throughout (δ,z) will denote a generic vector with δ » 0 or 1 and -°° < z < τ.
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Let N (x) be the number of Z. > x. Then the product-limit estimator

of F. is defined by

(3.2) F
Λ
(x)

By the results of Gill (1983), it follows that

(3.3)
 F

Λ ^ "
 F
Λ ^ * °

 a l m o s t
 surely

for each z < τ. We now construct estimators for the density and its

derivative f. based on the observed data {(δ.,Z,)}._,• There are several

estimators for f. based on censored data such as those in Blum and Susarla

Λ

(1980) or Liu and Van Ryzin (1985). Since Blum and Susarla (1980) use the

kernel method of estimation of f. which can easily be extended to estimation of

the derivatives of f., we use their method applied to the kernels introduced in

the uncensored problem given by Johns and Van Ryzin (1972).

Let KQ and K^ be two real valued functions satisfying

(3.4) Ko>
κ
i vanish off (0,1), are bounded on (0,1), have their

derivatives bounded, and /K - /uK (u)du = 1 and JK= 0.

(I)
We now estimate the derivatives f^ , I = 0 or 1, by

(3.5) fj
£ )
 (x)

where ε Ψ 0 and F. is defined by (3.2). Using f. and F
A
, we define our

n Λ
 J

 Λ Λ'

empirical Bayes estimator for use in the (n+l)st problem as
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(3 .6)

where R ,

R [ct,3]

f (Z ) / z ( n )
f A ( Z n - H } Zn+1

h ( Z n + l >

F Λ < W

α [ c < α] + c [ α < c < β] + 3 [ c > 3 ] . I f > Z ( - ε n i n

the integral, the integral is taken to be zero. With d
n
 so defined, we have the

following asymptotic result for {d }.

THEOREM 3.1. Let (Al) and (A2) hold; KQ,!^ satisfy (3.4) and ε Ψ 0 such

2 (2)

that nε •> °°. Let τ = °°. Let h
v
 ' exist and be continuous. Additionally

for T ε (-
00
,
00
), assume

(A3) F
A
(t)

for a 0 < 2γ < 1, and for a η > 0,

(A4) p{|f
Λ
(t + η

χ
) - f

Λ
(t)||0 < η

χ
 < v}|h

(1}
(t)|/h(t)dt <

Then, {d } is a.o. in the sense of Definition 2.1.
n

REMARK 3.1 The interpretation that τ = » (see 2.2)) is that the supremum of the

points in the support of G = °°. This appears to be a reasonable assumption

since, for d to be a good estimator of d., we need to estimate f. over the

entire line. To do this, as has been observed in almost every paper on random

censoring models, we need that the supremum of the support of 1 - F^ (which is

infinite in our case) to be at most τ. Hence τ = °°.
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REMARK 3.2 The γ in condition in (A3) could depend on T, but is always less

than 1/2.

The proof of the theorem follows from the lemma given below, which is

proved under the conditions of Theorem 3.1.

LEMMA 3.1

(i) F
Λ
(z) £* F

Λ
(z)

(ii) V '(z) ^
 f
Λ <

z
>
 f o r

(iii) / ^
( n )

~
£ n
i

A
 d log h ^ /" f

Λ
 d log h is |/^f

Λ
h

( 1 )
/h| < ».

Proof. (i) follows from Theorem 1.1 of Gill (1983) which implies that the

random process {/n (F. - F.)/ F^ : - °° < x < τ*} converges in distribution to a

continuous Gaussian process with mean = 0 and covariance function

c(s,t) = c(min(s,t) = - / u £
n ( s > t )

 (1/ G)d(l/ F
Λ
), s,t < τ* < - .

To prove (ii), we write f^ '(z) - f^ (z) as

(3.7) !<*>(,) - £<*>(,) = [e-^ j K
4
((t-z)/ε

n
)d(F

Λ
 - F

Λ
)]

1 + 1 1 (say).

The non-stochastic term II is easy to deal with. Rewrite II as

n

K
£
(u)[f

A
(z + ε

n
u)]du - f£

£

For I = 0, write II as / K^(u)[f
Λ
(z + ε

n
u) - f^(z)]du which converges to zero

since h is assumed to be continuous. For I = 1, use a first order Taylor
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expansion to obtain |ll| < sup {f£*'(z + ε^t) - f
A
 (z)|: 0 < t < 1} x

/u|κ.(u)|du —• 0 since h^ ' is assumed to be continuous. Therefore,

(3.8) IIXI -+ 0 for I = 0,1.

We now deal with I. Since 1 - F. , 1 - F. are probability measures, and K has a

bounded derivative, ε I = ε / (F. - F.)d K
β
((x - γ)ε ) which, after a change of

ϊi n /v i\ JC Tx

variables, value can be bounded in absolute value by a constant multiple

of sup ίlί^U) - ΊF
A
(t)|: z < t < z + ε }. This, in turn, is 0 (l//n") by the

2
results of Gill (1983). Since nε —* 0 by assumption, we thus have I = o (1).

This together with (3.8) implies (ii).

To prove (iii), recall that by assumption \J f h /h| < °° for each

z. Since Z, .—* τ = » with probability one, (iii) follows if we show that

(3.9) fan)
 n

(f
A
 - f

Λ
)d(log h) = o

p
(l).

To obtain (3.9), write f
A
 - f

A
 « I + II as in (3.7). Now by condition (A4) of

the theorem, we obtain that / II d (log h) = 0. Hence it suffices to show

that J
00
 I d(log h) = o (1). First, one obtains that

(3.10) I(t) = -/ (?
A
(t + ε

n
u) - ?

A
(t + ε

n
u))dK

Q
(u).

Now let Q
2
(t) = (t(l - t ) )

1 - 2 Y
 for 0 < t < 1, and 0 < 2γ < 1 with γ as in

condition (A3) and M(t) - c(t) (1 + c(t))"
1
 with C(T) - -/__̂  (1/G)d(l/?

A
) .

Using Q and M, one can bound the integrand of (3.10) by

F
Λ

(3.11)

' (t)
Λ
 J

 1 - M(t + ε u) ' 0
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But the random variable inside the square brackets in (3.11) is 0(1) by Theorem

3.4 of Gill (1983) since Q is a symmetric function on [0,1], / Q (t)dt < «, and

Q is nondecreasing on [0,V2 J Moreover,

as t + °°, for 0 < u < 1, Q(M(t + ε u))/l - M(t + ε u)) is bounded by a constant

n n

multiple of

This bound together with condition (A3) and (3.9) through (3.11) imply that

/n /°° I d(log h) = 0 (1) showing that /°° I d(log h) « o (1). This completes the
z p z p

proof of the lemma.

Proof of Theorem 3.1. Theorem 3.1 follows from realizing that both d. and d
n

are bounded and that for each (ό,z), ^ ( ί ^ ^ i ^ i ^ l '
 ( δ
»

z
)) ^ d

A
(δ,z).

A result similar to Theorem 3.1 holds also for Case II for

which f(x,λ) = c(λ) λ h(x) . Here, the Bayes estimator is of the form

f (z + l)h(z)
 (

 .

(3.12) d
Λ
(6,z) = 6{

 Λ

f ( z ) h ( 2 + 1 )
 ) * (1 - OίJ,f

A
(t)( i ^ % )dt> ±

Λ F
Λ
(z)

One advantage in this empirical Bayes formulation is that one need not

estimate f^ as in Case 1. This fact and details analogous to those that lead

to Theorem 3.1 give the following result concerning the empirical Bayes

estimator given below. As in (3.6), define the empirical Bayes estimator as

}
i=l' <

δ
n
+
l W >

f
A
(Z

 A l
 +1) h (Z

A n+1 π

Z -ε
 Λ
 2.

/
 W n

 f
A
(t)(h(t)/h(t+l))dt) )(F

Λ
(Z

n +
l

} ) }

Z
n+1
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THEOREM 3.2. Let (Al) hold, 1C satisfies (3.4) and ε —*• 0 such

u n

2
that nε + » . Let τ = «. Let h be continuous. Also, let (A3) and (A4) hold

n

with Yr (x) there replaced by h(x + 1). Then, {d }, with d
n
 defined by (3.13),

is a o

4. Empirical Bayes Linear Loss k-Action Problems.

Here we consider the statistical decision problem involving k-actions

as in Johns and Van Ryzin (1972). In the notation of the previous sections,

this statistical decision problem when k - 2 can be given as testing the

hypothesis H : λ < c against the hypothesis H-: λ > c, with c known. The loss

is measured by L(a.,λ) = (λ - c) and L(a«,X) = (λ - c) , where a. is the action

of deciding in favor of H., j = 1,2. In this problem, the Bayes rule is given

by a probability distribution γ on {a , a } for each observable data

point (δ,Z) with γ(δ,Z) representing the probability of taking action a^ .

Explicitly,

(4.1) γ(δ,z) - δ[α
χ
(z) < 0] + (1 - 6)[α

2
(z) < 0]

where

α
χ
(z) = Jλ f(z,λ)dΛ(λ) - c f

Λ
(z) and

(4.2)

α
2
(z) - Jλ 7 (z,λ)dΛ(λ) - c F"

Λ
(z).

The corresponding minimum Bayes risk is given by

(
4 3

) R(Λ) = J [α (z) < 0]G(z) α
χ
(z)dz

+ J [o
2
(z) < 0] α

2
(z)dG(z) + E[(c - λ)

+
].

If E{|λ|] < oo (assumed throughout this section), then R(Λ) is finite. In view

of (4.1) and (4.2), the empirical Bayes procedure to be used in the (n + 1) set
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problem i s given by

( 4 4> V W W " Wαl<Zn+l> < °] + ( 1 " W [α2(Zn+l> < 0 ]

where α and α are estimators of α and α based on (^ί
2
.*)* *

 <
 *

 < n
 Using

the estimators given in the previous section for Case I, we choose α and α to

be

;
i (
z) - f

Λ

( 1
\z) - ( ̂ f i ) r

Λ
(z) - cf

Λ
(z) and

(4.5)

α
2
(z) = f

A
(z) - /

z

( n ) n
f

A
 d log h - cF

Λ
(z),

Λ
 (1) —

where f., f. \ F^ and ε are as defined in Theorem 3.1. The asymptotic

optimality of the procedure defined by (4.4) and (4.5) follows from Theorem 3.1

and the following inequality which is a generalization of the fundamental

inequality in Johns and Van Ryzin (1972).

0 < R(γ
n
,Λ) - R(A)

(4.6) < /Pίlα^z) - α ^ z ) ! > | α
χ
(z) | ) |G(z) |α

χ
(z) |dz

+/P(|α
2
(z) - α

2
( z ) | > |α

2
(z)|)|α

2
(z)|dG(z).

As a consequence of this inequality, the dominated convergence theorem, and

Theorem 3.1, we have

THEOREM 4.1. If

(A5) E[|λ|] < oo
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and the other conditions in Theorem 3.1 (excluding Al) are satisfied, then the

empirical Bayes testing procedure defined by (4,4) and (4.5) is a.o.

A Theorem 4.2, say, similar to the Theorem 4.1 can be stated for Case

II with the obvious modifications in the definitions of α and α. Now α and

α
2
 will correspond to those in Theorem 3.2; and as was noted earlier, we need

not estimate f
A

Λ

An extension of the above empirical Bayes results in the 2-action case

to k-action cases is possible in the following way. Let the action a.

correspond to deciding that the hypothesis H. : [λ. ^ < λ < λ.] is true for

j=l,...,k+l in the statistical decision problem where XQ < λ^ <...< λ^ As a

loss function, we take L(λ,a.) to be such that for j = l,. .,k,

L(λ,a.) - L(λ,a.
 χ
) - (λ.

 χ
 - λ) and L(λ,a

χ
) = 0 if λ < λ

Q
 and = £

J
 (λ - λ

£
) if

λ. , < λ < λ. . Here the Bayes decision rule is given by the probability vector

γ(δ,Z) = (γ/δjZ), . ..,γ (δ,Z)), where γ.(ό,Z) represents the probability of

deciding in favor of action a. given that the observed data point is (δ,Z). It

can then be shown that for 1 < j <k,

Yj(6,Z) = δlλ^fjt
5 0
 < /λf(z,λ)dΛ(λ) < λjf^z)]

(4.7)

+ (1 - δ)[λ
j
_

1
F

Λ
(z) < JλF(z,λ)dΛ(λ) < λ ^ z ) ]

To get a natural empirical Bayes procedure for use in the (n + l)th problem, we

replace in (4.7) the argument (δ,Z) by (
δ

n
+i>

z

n
+i)

 a n d
 replace

f
Λ
, /λf(x,λ)dΛ(λ), T

Λ
 and /λ"F(x,λ)dΛ(λ) by their estimators given in Section

3. The resulting empirical Bayes testing procedure can be shown to be a .o.

if E[|λ|] < °° and the other conditions of Theorems 4.1 or 4.2 are satisfied.

The extension of the above results to any multiple decision problem

can be carried out as in Section 2 of Susarla and Van Ryzin (1977).

5. Examples: In this section, we present several examples in which the

conditions of Theorems 3.1 or 3.2 are satisfied. Obviously, the same examples

can be used to illustrate Theorems 4.1 and 4.2.
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Example 5a (Case I). Let /2πf(x,λ) = exp(-(x-λ) /2). Then a = -«,

h(x) - exp(-χ
2
/2), c(λ) = (2π)"

1/
2

e
χp(-λ

2
/2), Ω = (-«,«), and

h (x)/h(x) = -x. By an obvious weakening, (A3) is implied by

ϊϊm Γ F
A
(t)(G(t + ε )?

A
(t + ε ))"

( 1 + 2 γ ) / 2
dt < « with Tϊm taken as η + . This

' T Λ n Λ n

condition is satisfied if for η > 2, ϊϊm {exp(-t
2
/η)/G(t)} < » with ϊϊm taken

as t + . For such an η, 2γ < (η - 2)/(η + 2). This condition on G amounts to

assuming that G has a heavier right tail than that of the standard normal

distribution. Since Λ has compact support, it can also be verified that (A4)

holds here.

Example 5b (Case I). f(x,λ) = λ exp(-λx) if x > a = 0. h = 1.

c(λ) = -λ, and Ω = (-°°,0) . Here we estimate -λ instead of λ. Since

h /h = 0 on (0,°°), (A3) and (A4) are automatically satisfied.

Example 5c (Case I). f(x,λ) = λ x exρ(-λx) with x > a = 0 and

with α > 1 a known positive constant, h (x)/h(x) = (α - l)/x. As in example

(5a), condition (A4) is implied by the condition lim U/(exp(ηt) (5(t)} < «>

for a η in (0, α ) The interpretation of this condition is that G has a

heavier tail than exρ(-αt) where α(> 0) is a lower bound on the support of

prior Λ.

Example 5d (Case II). /2ΪΓ f(x,θ) - exp(-(x - θ)
2
/2).

Now λ - exp(θ), c(λ) = (2ττ)~ ^expC-Cln λ)
2
/2), h(x) = ex

P
(-χ

2
/2).

Then f(x,λ) = λ c(λ)h(x). The same condition as derived as Example 5a will

suffice here. Examples 5b and 5c can similarly be put in the form for

application of Theorem 3.2.

6 Concluding Remarks: In this paper we have introduced the empirical Bayes

problem with censored data and obtained empirical Bayes estimators or multiple

decision procedures which are a.o. In the latter case, we need only assume

that Λ has first absolute moment finite. In all the problems considered here,

we can obtain rates of convergence for R
n
(t

n
,Λ) - R(Λ) -• 0. However, the

techniques involved in obtaining such rate results are markedly different from

the weak convergence approach of Gill (1983) used here. We believe that the
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approach of Gill will not give any moment convergence results for the product-

limit process. Consequently, Gill's results can not be used to obtain the

needed (for empirical Bayes results rates) moment convergence results for the

product-limit process
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