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For each m > 2 and for stopping rules, τ,
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if either the X̂
 f

s are i .i .d., uniform on (0,n); or

{X^ },...,{X^ } are m independent random permutations

of 1 to n and the τ
f
s are based only on relative

ranks. This equivalence fails when m=l.

1 Introduction.

Chow et al (1964) solved an optimal stopping problem which Lindley

(1961) had earlier considered. Lindley tried an approximation which (as he

himself noted) was not successful. This article presents an extension of that

problem, in which Lindley
f
s approximation does succeed, as well as an extreme

value problem for sampling without replacement which is a companion to the

optimal stopping problem.
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2. The Original Problem.

Here is a brief description of the problem considered by Lindley

(1961) and by Chow et al (1964):

For each n=l,2,3,..., there is a vector X = <X^,X2»...,X
n
> which is a

random permutation of the integers 1 to n One may think of X as the ranks of n

successive "applicants"; rank 1 = best and rank n = worst. X then determines a

vector Y = <Yj,Y
2
,.. >Y

n
> of relative ranks. (Y

±
 = k if X

i
 is the k-th smallest

among Xj to X ^ ) Only the Y^s are observed; i.e. each successive applicant can

be compared only with its predecessors. The object is to find a stopping rule,

τ, adapted to the Y.'s (i.e. based only on relative ranks) which minimizes

EX
τ
.

The Y^
!
s are independent, each Y^ is uniform on the integers 1 to i,

and E(X
j
,|Y

i
) = ((n+l)/(i+l))Y

i
. From these well-known facts it is almost

immediate that an equivalent formulation of the problem is: "For such Y^
f
s find

a stopping rule τ, to minimize E((n+l)/(τ+l))Y ."

For each n, it not hard to solve the problem by backward induction as

in Chow, Robbins and Siegmund (1971). If we let c^
n
' denote the minimum

expected rank achievable with stopping rules τ > i, and ŝ ^ be the integer part

of ((i+l)/(n+l))c
i
, then, as shown in Chow et al (1964),

(2.1)

(n) 1 n+1
 S
i

( s
i

+ 1 )
 , % (n)

i=l
 =
ΪITΓ 2

 + ( 1
"T"

} C
i i~n-l,n-2,...,l.

Then

c
( n )

 = min EX
o τ τ

which is attained for τ • the first i for which Y^ < ŝ .̂

However, it is not so easy to see what happens as n becomes



64 SAMUELS AND CHOTLOS

infinite. Lindley, in effect, used the approximations

i n+1 n
C » Q W — C * — — — » ——
si Si+1 n Ci' i+1 i

which transforms ( 2 . 1 ) t o

(2.2) Z™ -n/2

n } Ci

Rewriting this in "differential" form as

hZ
2Ui

suggests that

i/n * t => cj n ) ^ C(t)

with

so

C(t) - - j ^ ; C(0) = 2.

But

lim c^n) * 2.

Indeed, there's really no way that this approximation can work. (In Lindleyfs
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words "the approximation is suspect".) The correct answer, in Chow et al

(1964), is

(2.3)
 UΊr υ

 j-i J

= 3.8695

It is noteworthy that (2.2) is precisely the backward induction

algorithm for the problem: "For Y
 f
s which are independent and uniform on the

interval (0,n), find the stopping rule, τ, to minimize EY ". In other words,

Lindley's approximation is tantamount to replacing the independent sequence of

Y.
f
s uniform on the sets

by the i.i.d. sequence of Y ' s , all uniform on the interval (0,n).

3. A Two-Criteria Problem.

We now suppose that each of n applicants can be independently ranked

according to each of two criteria. We model this by having

<X^
1 )
,X2

1 )
,...,X

n

1 )
> and <X^

2)
,X^

2)
,...,X^

2)
> be two independent permutations

of the integers 1 to n; and < Y ^ lΐV'K >
γ

n
^>

 a n d
 ^^K^^

 9
 ' "

yY
^
> b e t h e

corresponding sequences of relative ranks. The object is to find a stopping

rule, τ, adapted to the Y's, to minimize E(X
( 1 )
 + X

(
 ' ) .

As in the original problem, this is equivalent to finding a stopping

rule, τ, to minimize E ^ Y J
0 + Y<

2)
), when Y ^ . Y ^ . ....Y^,

Y, ,Yo ,...,Y are independent, with Y^
J
 uniform on the integers 1 to i.

1 2 n i

Let us call this the Permutation Problem, and also introduce the

following Continuous Uniforms Problem: Let Y^
i y
, Y^

W
,...,Y^ ',

Y, ,Y^ ,...,Y be i.i.d., each uniform on the interval (0,n). Find a
1 2 n

stopping rule, τ, to minimize E(Y
V
 ' + Y

v J
) .
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Using the same definition of c ^
n
' and s^ as in the original problem,

the backward induction algorithms are

(3.1) <>} = n + 1

1 n+1 (S.-I)S.(S +1) 8 (8-1)
 (

l,n+l
v
 i i i ,

 ίΛ
 i i

 x
_(n) ^

=n
_i _o l

2

for the Permutation Problem, and

(3.2)

(
( n )

)
3
 (c

 ( n )
)

2

}

 + ( 1
 _

 (C
t
 }

 )~ (n)
+ (1

 _
3n

2 (
 2n

2

for the Continuous Uniforms Problems. Rewriting (3.2) in "differential" form as

2
±

(n)
/ΛΓ - c^/Zn" (S

±

( n )
//Ϊ)

3

Ϊ7ϊϊ

suggests that

1/n -• t => c^
n)
//n > D(t)

with

--i D
3
(t);

D(t) = /j^- D(0)
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These heuristics can be validated, for the Continuous Uniforms Problem, by

establishing the inequalities

1/2 c < n )

(3.3)

which are a special case of (8.8), to be proved later.

From (3.1) and (3.2), it can be shown that, for each n, the

Permutation Problem risk is greater than the Continuous Uniforms Problem risk,

i.e.,

(3.4) c 0

( n ) > c Q

( n )

Indeed

(3.4.1) c W = n + 1 = 5 i L ~ W
n—1 n n—1

and

CK L Ί\ (
n
) *

 n + 1
 ~(

n
) _v „(*) i

 n + 1
 ~(

n
> ,_„ i

 n
 , 1(3.4.2) c

i
 > —^- c

±
 *> c

i
_

1
 * ~^~

 c
ι-ι i=n-l,n-2, ...,1

as will be proved in Section 6

But, asymptotically, the difference seems to disappear, at least to

first order, according to the following numerical results:

500
1,000

2,500

10,000
100,000

/3 •

1.9215
1.8818
1.8397

1.7957
1.7574

- 1.7321
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The limit of cV
1
 //n is indeed /J, as a special case of Theorem 2 to follow.

Unlike the original problem, where the risk never exceeds four, in the

two-criteria problem the risk goes to infinity like /n. This is inevitable, by

the following extreme-value results:

(3.5)

which is a special case of (4.1.1) derived in Section 7; and

(3.6) E[mln
1 < 1 < n

(X
1

( 1 )
 + Z

±

W
)} - W/2 •Γϋ

which can be proved by first noting that the left side of (3.6) is equal to

(3.7) E[min
1 < i < n

(i + X
±

( 2 )
)] = 1 + ̂  Σ (

n
-j)

j
(n-j)!

Analysis of the right side of (3.7) shows that m i n ^ ^ X ^
1
* + X

i

( 2 )
)//n

converges in distribution and in mean to the square root of an exponential

random variable with parameter 1/2.

From (3.5) and (3.6) we see that, to first order at least, the

extreme-value means are asymptotically identical for both the Permutation

Problem and the Continuous Uniforms Problem.

4. An m-Criteria Problem.

For the extension to an arbitrary number of criteria, both the

Permutation Problem and the Continuous Uniforms Problem results agree

asymptotically,to the first order (i.e. Lindley's approximation is

successful). Here are the main results:

THEOREM 1. Extreme-value results for m > 2. As n -• °°
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if either

(4.1.1) X ^ ^ ' s are i.i.d., uniform on the interval (0,n)

or

(A 1
 2
) < X

( 1 )
 X

( 1 )
> θ c

( m )
 γ

( m

i n i n

are m independent random permutations of the integers 1 to n.

THEOREM 2. Stopping rule results for m > 2. As n

(4.2)

if either

(4.2.1) x Λ ^ ' s are i.i.d, uniform on the interval (0,n)

or

v 4.2.2/ \X, . .X s *
 9

NX. . .X /

In In

are m independent random permutations of the integers 1 to n, and τ
!
s are based

only on relative ranks

The proofs of these theorems are in sections 7 and 8.

5. The Prophet's Advantage.

It is interesting to compare the right sides of (4.1) and (4.2). The

latter represents the best that can be done, asymptotically, with stopping
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rules, while the former is the corresponding best for a "prophet": one who can

foresee all n applicants and choose the best one.

The ratio of the right sides of (4.2) to (4.1), after simplification,

becomes

(5.1)

If we define H(x) = Γ(l+x)/(l+x)
x
, then (5.1) is l/H(l/m). By a standard

integral formula, we have

1

(5.2) H(x) = (1+x) / u
X
(-log u )

X
 du,

0

from which it is not hard to verify that the derivative of H is negative, and,

by the dominated convergence theorem, H(x) •* 1 as x •*• 0. It follows that (5.1)

decreases to 1 as m increases to infinity. So, to first order, the prophet
f
s

advantage steadily disappears as the number of criteria increases

Here are some values of the ratio (5.1):

TABLE 1

RATIO OF ASYMPTOTIC OPTIMAL STOPPING RULE RISK

TO OPTIMAL SEE-ALL RISK

m

1
2
3
4
5
10
20
30
40
50
70
100

Value of (5.1)

3.8695
1.3820
1.2326

1.1666

1.1296
1.0612

1.0297

1.0196
1.0146
1.0117

1.0083

1.0058

6. Proof of (3.4): Perm. Prob. Risk > Cont. Uniforms Prob. Risk.

It is convenient to normalize by letting d. = c,//3(n+l) and
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ά
±
 = c //3n. Then d = d = 1//5" and, for i=n-l ,n-2, ..., 1,

Ί
 3
i

Now f(x) = Σ - T x is increasing in x for x < /2/3, and d < d , < /2/3 for
^ 1 n-1

all i, so it suffices to show that, for i=n-l,n-2, ..,1,

This is clearly true whenever s. is 0 or 1; for then d. i = d. Now s, < 1 if

and only if d. < 2//J(i+l). For the remainder of the proof, we rewrite (3.1) in

terms of

which yields

1 3 1 3 / 3 2 2 + 3 α

i (
1 - ° t

i ) « (1-α?)
(6.1) d. . - d. - I df - (i+,-) df + ~i (i+1) dZ 1 ±- d. + i ±

1 - 1 1 2 1 2 x 2 i 6 1 3
/ 3

( 1 + 1 )

After neglecting the last term on the right side, then minimizing the right side

with respect to α (which is constrained to be between 0 and 1), we have

(6.2) d w - (d±- I dj) > di[4(i+l)di - (iφdj - | i

The right side of (6.2) is positive for all i > 1 at the values ά
±
 = 2//J(i+l)

and d = 1//Ϊ; hence for all d^ between these limits

7. Proof of Theorem 1; Extreme-Value Results.

In the Continuous Uniforms case
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(7.1) P( min Σ x|
j ;
 > nx) = (1 - *j)

n
 0 < x < 1

m

P( min
Ki<n

m .
nx) = (1

m
- *y

m.

m
(1 - — )

n
 0 < x < m

m
m

l
 m

 (-\ 1 m m ,. v ./

E [ _ . min Σ X
U ;
] = ( / + / ) P( min Σ X>

J ;
 > nx)n

 / m
dx.

n
1 / m

 Ki<n j = l 0 1 Ki<n j-1

The first integral is

n

0

which converges to the right side of (4.1), while the second integral is less

than

00
 m, m / m

r -y /m , m -n/m
 ΛJ e

 ;
 dy = m e -• 0 as n -• ».

1/m
n

This proves (4.1.1).

The key to proving (4.1.2) is the Kolmogorov-Smirnov bound. Let

^1*^2'
#
**'^ ^

e
 i i d , uniform on the interval (0,n); let ^(π>^(2)»* »^(n)

the order of statistics, and X
±
 be the rank of Ŷ ^ (so the X^s are a random

permutation of 1 to n ) . Then

max K-Yj - max |Y
(k)
-k| = max |

Ki<n
 1
 * Kk<n

 U ;
 Kk<n

where F is the empirical distribution function of the Y
i
»

s #
 Hence

E[ max |X -Y | ] < /n~E(/n sup (F(t)-t/n)) = 0(n
1 / 2

) = o(n
L 1 / m

) if m > 3
Ki<n 0<t<l
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which follows from results of Dvoretzky, Kiefer, and Wolfowitz (1956). Applying

this to the Permutations Case establishes (4.1.2) for all m > 3.

Fortunately, the case of m = 2 was handled directly, in Section 3.

8. Proof of Theorem 2: Optimal Stopping Results.

In the Continuous Uniforms case, the backward induction algorithm can

be partially derived, using (7.1)

(8.1.2) c<
n
> < n =>

1 . 1
m!n

The goal of proving that cίl /n converges to the right side of

(4.2) can be motivated by rewriting (8.1.2) in "differential" form

~(n), 1-1/m ~(n). 1-1/m ,~(n) , 1-1/nκm+l
c^ /n - c^ j/ 1 1 \c^ / n )

Ϊ7ϊϊ = (m+ΪTί

which suggests the differential equation

D'(t) = D
m+1
(t)/(m+l)! on [0,1); D(l)

whose solution

gives the right side of (4.2) when evaluated at t
 s
 0.

If we divide the random variables of (4.2.1) by n, they become i.i.d.,

uniform on (0,1) for all n. It follows that

<••»
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So the double sequence is in reality a single sequence, (8.1.2) becomes

(n+l) (n) (

and our goal can be restated as: Is

(8-4) ^ ~
/(m+l)Λ

\ "
n
 /

First we need values k(m) for which

(8.5) n > k(m) -> - c^
n )
 < 1,

n U

Let

(8.6) k(m) = 1 + 2
m
m! In (m-1)

To show that (8.5) holds, it suffices to exhibit stopping rules with risks less

than n whenever n > k(m). Let

1
 m
 m

τ - first i < n such that •=- Σ x; ' < 1/2
n
 j = 1

 i

• n if no such i.

Then

(8.7) E[i Σ X^
j)
] < 4 P(τ<n) + £ P(τ-n)

j-1

where, from (7.1), p - l/m!2
m
. The right side of (8.7) is less than one if and

only if n-1 > [Jln(m-l) ]/ [-&n( 1-p) ] hence less than one if n is at least the
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right side of (8.6).

(Note: Although the bound given by (8.6) is a crude one for large m,

k(2) = 1 is best possible for m » 2.)

Now we are ready to validate (8.4) by deriving the inequalities

(n)
/o ON / (m+1)! vl/m . 0 .(m+1)* 1/m .

 Ί 1
 ^ .,

 N

(8.8) (— ) < < (-^7——r) for all n > k(m)
m(n+3/n)

if k(m) - ^
ΠH
"

1
^

!
 < α < k(m) and β - 3(m) sufficiently large.

First we note that the two inequalities hold for n » k(m) since the right side

is at least one. Next we proceed by induction, using (8.3) which reduces the

problem to showing that

(8.9)
 A

-l/« _
 B
-l/« + I

is

(a) Positive if A - n - α and B = n + 1 - α;

(b) Negative if A • n + 3/n and B = n + 1 + 3/n.

Multiplying (8.9) through by the positive quantity

A
l/m

B
l/m

k=0

transforms it to

(8.10) A - B + i Σ (B/A)
k / m

m
 k-1

for which (a) becomes trivial. To establish (b), write B/A as 1 + δ, and use

the familiar inequality

(1 + δ )
Γ
 < 1 + rδ if 0 < r < 1
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to bound (8.10) above by

1
 •

δ A +
 ^

 δ

which, in case (b), is easily seen to be negative for all r > 2 if 3 is at least

2.

(Note: Taking (8.2) into acount, the inequalities (3.3) are the

special case of (8.8) with m = 2, α * -2, and 3 * 2 . )

As in the proof of Theorem 1, The Permutation Problem case, (4.2.2),

will be handled indirectly by showing that

and invoking (4.2.1). We do this in two steps:

(1)

If the optimal stopping rule for the Permutation Problem is used in

the Continuous Uniforms Problem, the expected loss is not more than

^ v m m

cj: + E [max | Σ (i-th ranks) - Σ (i-th uniforms) |]

The latter term is 0(/n) by the Kolomogorov-Smirnov bound; hence for m > 3 it is

0(c£
n )
) since c£

n )
 = 0(n

1
""

1/m
) as shown earlier in the proof. Thus

The above argument doesn't work for m = 2. But, fortunately, we had

another argument, namely (3.4).

(2) lim β«p
n + -
 4

n )
/c£

n )
 < 1

Consider the following randomized rule for the Permutation Problem:
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If the i-th relative rank in the j-th criterion is R.^', observe an

independent random variable, U ^ ' , conditionally uniform on the interval

R l

(
J > - i R < J >

( - n, — n) and use the optimal Continuous Uniforms Problem stopping

rule, τ, on these randomized values.

The expected loss for this rule is then

(8.11) c<
n )
 + E Σ ( a ± i

R
(

j )
 - l/

J )
)

~(n)
The goal is to show that the second term is o(c~ ). The terms in the sum are

at most

n+1 R-l x
 <
 n

so the expectation can be bounded above by

(8.12) mn P(τ < n
1 / m + f

) + m n ^ ^ ^ P d > n 1 / m + €)

Now, from our solution to the Continuous Uniforms Problem, we can see that

{τ<n
1 / m + t

} c
 { m i n

i<n1/mh€j = l X

for some B which doesn't depend on n. (Here we denote continuous uniform r.v.'s

by X.) Hence, from (7.1),

nP(τ < n
1 / m + C

) < n[l-(l-B

which is oCn
1
"

1
/

111
) for small C if m > 3. Thus both terms of (8.12) are of small

enough order when m > 3

For m * 2 we need a sharper bound, so we replace (8.12) by
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(8.13) 2nP(τ < 6n1/2)+2^1n1/2H6nl/2<τ < n 1 / 2 + e ) + 2 n 1 / 2 - < P ( τ

an upper bound for which is of the form

(8.14)

with B and D not depending on n or θ (D can be taken to be about 2.) Thus, by

choosing δ small enough, (8.13) can be made asymptotically smaller than any

multiple of n ' , hence small with respect to c
n

9 Conclusion.

The approximation which consists of replacing the discrete uniform

random variables by continuous uniforms—herein referred to as "Lindley^

approximation"—has been shown to be valid (to first order) for all m > 2. When

m = 2 direct calculation is possible. This is indeed fortunate because some of

the methods used here for m > 3 (where the problem is too intractable to permit

direct calculation) break down when m = 2.
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