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We transform a class of optimal stopping problems
to problems of finding fixed points of certain
transformations, and show that the classical iterative
solutions to the latter yield approximations to the
value of the corresponding optimal stopping problem. We
give upper and lower bounds on the value as functions of
the number of iterations, and numerically treat two
examples: the well known S

n
/n problem, and the coupon

collector problem, which is solved exactly and
numerically compared to the iterative approximations

1 Iterative solutions to fixed point problems.

If Q is an operator which sends a space B into itself, a point x is

called a fixed point if Qx - x. Many problems, both theoretical and applied,

are those of finding the fixed points of certain transformations. For example,

the extinction probability and the characteristic functions of some limiting

distributions in branching theory, the limiting renewal function in renewal

theory, certain optimizing strategies, and the equilibrium states of certain

evolving phenomena are fixed points.

The iterative method of finding fixed points consists of taking an

initial value XQ, arrived at in some manner, and determining sequentially x
n
 by

setting x
n +
i = Qκ

n
> n = 0,1,... . If, in some fashion, x

R
 "converges" to a

limit x, it is generally possible to show that x is a fixed point for Q. The

main questions here are: 1) Does a fixed point exist, and if so is it unique?
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2) With a suitable metric, does the iterative method converge, and if the fixed

point is not unique, does it converge to the required one? 3) What is the

"optimal" choice of the initial value XQ? 4) How many iterations are needed to

approximate x to a given degree of accuracy? Of course there are other

questions, such as the feasibility of computations, which must also be answered.

Historically, iterative methods for fixed point problems were used in

the fundamental existence proofs for differential equations (Picard-Lindelof)

and integral equations (Liouvilie-Neumann), but when high speed computers were

introduced forty years ago it was quickly realized that these purely existential

proofs provided a way to obtain numerical results, and with the advent of the

microprocessor a few years ago such procedures are now available for the

individual do-it-yourself home programmer.

In this paper we shall transform a class of optimal stopping problems

to fixed point problems, answering the questions raised above, and in particular

study the rate of convergence of the iterates We shall give some numerical

examples and illustrate the accuracy of our bounds.

2. Optimal Stopping as a Fixed Point Problem.

We shall quote extensively the results obtained in Darling (1985), but

modulo the proofs; this paper should be largely self contained. The setting is

a Markov process X(n), n « 0,1,... with stationary increments, taking values in

an arbitrary measurable space (A,A) . A payoff function f(n,x) gives the reward

for stopping the observations at "time" n when X(n) = x The main goal is to

estimate the value v = v(n,x) defined as

(2.1) v(n,x) = sup E[f(n+T,X(n+T))|x(n) = x)]
T>0

where the sup is taken over all finite valued stopping times T = T(n,x) such

that the corresponding expectation in (2.1) does not have the indeterminate form

(oo-oo) # we shall have little to say concerning the existence or properties of

stopping times per se.
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It is convenient, mainly for notational purposes, to work with the

"space-time" process (n,X(n)), which has the state space B = {(n,x)|n=0,1,2,...,

x ε A} . We define the "shift" operator P acting on a function g = g(n,x),

(n,x) ε B, by

(2.2) Pg(n,x) = E[g(n+l,X(n+l))|X(n)=x]

Set P° - I, the identity, and for n - 1,2,... define P
n + 1

 - PP
n
, so that

P
k
g(n,x) - E[g(n+k,X(n+k))|x(n)=x] , k=0,l,... . The "potential" operator R is

defined as

(2.3) R = I + P + P
2
 + P

3
 + ...

We shall define an operator Q acting on functions defined over B and show that

the problem of determining the value (2.1) is essentially one of finding a fixed

"point" - i.e. a fixed function - for this operator.

It is somewhat easier to work not with the functions f and v, defined

above, but with the two functions

(2.4) d =* Pf - f

(2.5) h - v - f

and it is clear that the determination of v is equivalent to that of h in

(2.5). The functions d and h have obvious interpretations in terms of the

stopping problem. We now define the operator Q acting on a function g defined

over B as follows

(2.6) Qg = (p
g
 + d )

+

where we use the standard notation Y
+
 - max(0,y), y" - max(0,-y). The function
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h in (2.5) will be a fixed point of the operator Q.

Let the function u be defined by

(2.7) u(n,x) - E[sup
k>0
f(n+k,X(nHO)~|x(n)=x]

We quote the following Theorem from Darling (1985)

THEOREM 1. a) The equation g = Qg has the solution g = h, where h is given by

(2.5). b) The equation has a minimal solution - i.e., a solution gQ nowhere

exceeding any other solution, c) If u < », where u is given by (2.7), then

h = g
Q
. d) If Rd

+
 < °°, then gQ < °°, and g

Q
 is the unique solution to g = Qg

satisfying inf
 > 0

P
m
g " 0. Combining these statements, if u < « and Rd

+
 < °°,

then h = gQ, the minimal solution, and moreover h is the unique solution

satisfying inf .^P™!! = 0.
m^U

3. The Iterative Solution.

We assume henceforth that Rd < °°, u < °°, so that the conclusions of

d) in Theorem 1 hold. We shall determine functions IΊQ < h, and h > h so that

Q tiQ converges to h from below, and Q h± converges to h from above, and we shall

find bounds on the deviations from h of these iterates in terms of the

transition operator P and the payoff f. We quote from Darling (1985) the

following Theorem

THEOREM 2. Let

(3.1) h
Q
 = sup

m > 0
(P

m
f - f ) .

Then h
Q
 < h and Q

m
h

0
 converges to h from below,

(3.2) h, - Rd
+
 = d

+
 + Pd

+
 + P

2
d

+
 + ...

Let
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Then h^ > h and Q^h^ converges to h from above, m •> °°. Moreover

(3.3) 0 < h - Q
m
h

Q
 < Σ P

k
d

+
 - { Σ P

k
d}

 +
 .

k=m

The series on the right side of (3.3) converge and so we have a

measure of the rate of convergence of the iterates Q
m
hQ as well as a bound on

their deviation from h. It is possible to improve the estimates for the

convergence rate in (3.3) and also the initial values IIQ and h^ in (3.1) and

(3.2), at the cost of more complex and less easily computed expressions. In

fact if we choose any functions hg < h and hj > h such that lim ^P™!* =0 their

Q iterates will converge respectively from below and above to h. However, it

may not be easy to estimate their deviations from h.

In closing this section we should say that in Theorem 1 the assertion

that h is a fixed point of Q is a somewhat disguised restatement of the well

known fact that the value v is the least superharmonic majorant of the payoff f,

and in Theorem 2 the statement that iterates Q
m
hQ converge to h is an amplified

version of the method of "backward induction" to which it reduces in effect if

we take initially IIQ » 0; the choice of IΊQ as in (3.1) is in general

considerably better than choosing IΊQ • 0.

4. Examples.

a) The S
n
/n problem.

Let Xj, X2, be i i d random variables having a mean μ, and set

SQ = 0,
 s

n

 = x
i
 + X

2
 +
 •••

 +
 \>

 n > ι L e t χ
(

n
)
 = s

n

 a n d s e t f
(0>x) - 0,

f(n,x) = x/n, n > 1. This optimal stopping problem has been fairly extensively

studied - Chow and Robbins (1962), (1965), (1967); Dvoretsky (1967); Davis

(1971), (1973); McCabe and Shepp (1970); Klass (1973); Taylor (1968) among many

others - but numerical values do not seem available for any examples prior to

Darling (1985).

It is not difficult to calculate the functions d, hp, h
χ
 introduced

above, and again we cite the results from Darling (1985). Since f(n,x) vanishes
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for n = 0, we have h(0,0) = v(0,0) and we denote this common value by V

(4.1) V - v(0,0) = h(0,0)

For n M we have

(4.2) d(n,x) = ~ [ y - ̂  ] , h
Q
(n,x) = [ y - ±

(4.3) h
l (
n,x) = Σ

 l
 E [(my - S

m +
 ny - x)

+
].

m—U

With some loss in precision we can find a simple upper bound for h^ as

follows. If the X. have a mean of order b > 1, there will exist an inequality

of the form

(4.4) E[(my - S )
m

for 1 < a < b and a suitable constant C (von Bahr and Esseen (1965)). If the

are in the domain of normal attraction of a stable law of exponent a,

1 < a < 2, (4.4) will hold for a suitable C. From (4.3) we can deduce

(4.5) h^n.x) < h
Q
(n,x) + Ct(n)

with

(4.6) t(n)
a sin(π/a) l-(l/a)

n

where a and C are as in (4.4). This result in conjunction with (3.3) leads to

the following simple bound for the deviation between the m
t
 iterate Q

m
HQ and V

(4.7) 0 < V - Q
n
h

o
(O,O) < Ct(n)
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where h
n
(n,x) is given by (4.2),

As an illustration, suppose the X^ are normal with mean μ and variance

σ
2
. Then E[(mμ-S )

+
] - — ° .

 / o
 HI

 2
. With n - 50 and a - 2 we have t(50)

( 2 π )
50

 ( 2 π )

.222.. so that V-Q^h <̂  ( .0860)σ.

Let us consider the case of coin tossing where the X
i
 are Bernoulli

2
variables PίX^l) • p, PCX^O) » q » 1-p, so that μ - p and σ = pq. Even this

simple case has apparently previously defied numerical evaluation - cf. Chow,

et. al. (1971).

The Q operation is especially simple here

(4.8) Qg(n-l,x) = [pg(n,x+l) + qg(n,x) + ^ P ~ ̂ f > ]
 +

for n > 2, x = 0,l,...,n-l , and

Qg(O,O) = pg(l,D + qg(l,O) + p

Then from (4.2) and (4.5)

h
n
(n,x) = (p - ^ )

+

(4.9) h
r
(n,x) < (

P
 -

x
- )

+

+
^ [2jL]1/2

The following table shows the result of applying the Q operator n - 50

times to the two functions h^ and h^ yielding the lower bound V
L
 - Q

5
^h

0
(0,0)

and the upper bound V
y
 - Q

5 O
h

1
(O,O) on V for various values of p. Table 1 also

compares the difference Vy - V
L
 with the error bound given by (4.7), which in

this case is simply the second term on the right hand side of (4.9)
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Table 1

Upper and lower bounds for V, n=50

25

2
3
4
5
6
7
8

P V
L

.44901

.58203

.69632

.78943

.86571

.92449

.96617

V
U

.46575

.59745

.71357

.80512

.87887

.93428

.97258

V
V
L

.01674

.01542

.01725

.01569

.01316

.00979

.00641

error bound

.0444

.0509

.0544

.0555

.0544

.0509

.0444

when p

Table 2 shows how the approximants V^ and Vy behave as functions of n,

.5

Table 2

Bounds as functions of n, p » .5

10

15

20

25

30

50

78119
78523
78636

78744

78797

78943

.83119

.82661

.81658

.81334

.81053

.80512

b) The coupon collector problem.

We have chosen this problem as one for which the value V can be

explicitly calculated and compared with the approximations we have developed

X(n), n = 0,1, is the following pure birth process. Let numbers be drawn

independently and uniformly with replacement from the finite set [1,2,...,N] -

after n of them have been drawn let X(n) be the number of distinct numbers

obtained. Let the payoff be f(n,x) - α x, where 0 < α < 1 is a discount

factor. It is comparatively simple to solve the corresponding optimal stopping

problem, which we leave to the reader, as it is a "monotone case" problem - cf.

Chow, et. al. (1971). Let
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(4.10)
N(l-α) + α

(4.11) k = least integer not less than a.

Then T = {least n such that X(n) - k} is the optimal stopping time and

(4.12) V = kE(α
T
) =

 ( s
.

k ) ! N ( N
_ :

) (
; _

2 α )
. . .

( N
.

[ k
.

1 ] α )

is the value.

The Q operation is

Qg(n,x) =

With

,+ n+1,, x
h

Q
 = d = α (1 - -

we obtain,

00 00

(4.13) V - V < Σ Î d"*" - Σ
•Li

-αΣ (l-lκ
n
) Σ

- [αξ/N]

with the last expression following from well known results -cf. Feller (1967),

Ch. 4.

Table 3 compares the value V with our approximation Vγ = Q ^ Q for

various values of m, and for several values of α and N. We denote by D the

difference V - VL
 aiχ
d by B the upper bound on D calculated in (4.13). The

number k is, as above, the optimal stopping number.
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Table 3

Error bounds on V.

N - 50 α = .95 V - 6.1103 k - 14

m

5
10
15
20
25

N - 100

m

5

10

V
L

4.1958
5.6672
6.0851
6.1101
6.1103

α - .9

V
L

3.1100

3.3564

D

1.9145
.4431
.0252
.0002
.0000

V = 3.3566

D

.2466

.0002

B

2.3874
.6341
.0534
.0006
.0000

k = 9

B

.4626

.0009

m

15
20
25
30

V
L

9.5342
10.6794

11.3467
11.6935

2
1

D

.4245

.2793

.6128

.2652

2
1

B

.7267

.4647

.7151

.3158

It appears that in this problem excellent results can be obtained with very few

iterations of the Q operator, and (4.13) offers a very good upper bound on the

error D.
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