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4. GENERAL SADDLEPOINT APPROXIMATIONS

4.1. INTRODUCTION

In this chapter, we use the approximations obtained for the mean to get approximations
for more complicated statistics. The first section considers one-dimensional M-estimates

n

i.e. Tn is the solution of J2ψ{x%\t) = 0. The estimate Tn is written locally as a mean
1

and the saddlepoint approximation for the mean is used. In section 4.3, we consider a
slightly different approach in that the moment generating function is approximated and a
saddlepoint approximation used. The technique is applied to approximating the density
of L-estimates in the next section. At this point, we turn to the problem for multivariate
M-estimates. Techniques are similar to those used for one-dimensional M-estimates. Finally
we modify the results to handle the case of regression using M-estimates. Throughout the
chapter, there are numerical results illustrating the accuracy of these approximations even
for small sample sizes.

In the cases considered in this chapter, our interest is to be able to say something
about the density of an estimate. Although asymptotic results are available in most cases,
we usually do not know whether these asymptotic distributions are good approximations
for small or moderate sample sizes. For instance there are several proposals for using ut-
statistics" based on robust location/scale estimates as a means for computing confidence
intervals. We then need to know whether this t-approximation works reasonably and if it
does, what are appropriate degrees of freedom. Some results in this direction are given in
section 4.5.b.

4.2. ONE-DIMENSIONAL M-ESTIMATORS

To begin, consider the problem of finding a saddlepoint approximation for the density
of a one-dimensional M-estimate. As developed by Huber (1964, 1967) M-estimates are
defined as the solution Tn of

£>(*••,*) = 0 (4.1)
tsl

for observations £1,22,"-,£n If the x, 's are independent observations from a density
/(x,0), then by setting φ(xyθ) = sylog/(*,0), Tn becomes the maximum likelihood es-
timate of θ. In much of the work on robustness, M-estimates play a central role. However
the derivation of the exact density of such an estimate is usually intractable mathematically
and it becomes essential to have a good approximation in order to carry out inference.

Denote the density of Tn when the x, 's are independent observations from a density /
as fn(i)> To approximate /n(*)> w e proceed by writing Tn as a mean up to a certain order
and then using the saddlepoint approximation to the mean as derived in section 3.2. The
approach follows closely that developed in Field (1982) for multivariate M-estimates which in
turn uses critically results on multivariate Edgeworth expansions in Bhattacharya and Ghosh
(1978). Field and Hampel (1982) give an alternate derivation for univariate M-estimates
based on the log-derivative density. In this section, the approximation is developed for a
one-dimensional M-estimate. The development for multivariate M-estimates is presented in
section 4.5 .

In the development of the approximation, the conjugate density (cf. (3.22)) will play
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a central role. For the case of an M-estimate the conjugate density for a fixed value of t is
defined as

M M ) = c(ί)exp{α(W(*, *)}/(*>*) (4.2)

By an appropriate choice of <*(*), we will use the conjugate density to center Tn at t in the
sense that Eht(Tn) = t up to first order. This enables us to use a low order Edge worth
expansion to approximate /„ at t. a(t) will be chosen so that

(x, I) exp{a(t)i>(x, t)}f(x, θ)dy = 0. (4.3)

The following assumptions on φ and /(x, 0) will be required in the development of the
approximation. Dv denotes the vih derivative of φ(x, 0) with respect to θ.

A4.1 The equation (4.1) has a unique solution Tn and equation (4.2) has a unique
solution a(t).
A4.2 There is an open subset U of R such that

(i) for each θ € θ, F$(U) = 1
(ii) Dφ(x,0), D2φ(x, 0), D3φ(x,θ) exist.

A4.3 For each compact K C θ
(i) sup E0o\D2φ(X,θo)\*<oo

(ii) there is an e > 0 such that

sup £ ί o ( m a x

A4.4 For each θ0 € θ, Eφ0φ(X,θo) = 0 and

A4.5 The functions A(θ) and E9{[D2φ(X,θ))2} are continuous on θ.
The approach is to now fix a point t0 at which to approximate fn and construct the

conjugate density for t0 as in (4.2) and (4.3). The next step is to approximate the density of
Tn under the conjugate density. As we will show, it wϋl suffice to use a normal approximation
at this point. To complete the process, we need a result linking the density of Tn evaluated
under the conjugate hto with that under the density /. The following centering result
provides that link. In order to simplify the proof of the theorem, we add the following
assumption

A4.6 \Dφ(x, 0)| is bounded by k.

A proof of the theorem which does not require the assumption is given in Field (1982,
p. 673). In the following we suppress the dependence of the density / on θ.

Theorem 4.1

If assumptions A4.1 and A4.6 hold, then

fn(t0) = c-n(t0)htφ,n(t0) (4.4)

where λ t ( > n(t) is the density of Tn under the conjugate density ht.(x.θ) and
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Proof: To illustrate the ideas, we first give a proof for the discrete case

,<o)=0}

= e-n(t0)Ph,o[Tn = f0] = c-n(io)Λ<0,n(*o)-

In the continuous case, let

n

A(Δt) = {x| Σ ^(«<.«) = 0. *o < « < <o + Δi}

Now

•ΛSJL/ΠΛ..)*

Now

tsl isl tsl

where
<o < ti(<o) < tι < to + Δt.

Hence

lim

Urn exp{α(*o)(*o - «)*} Jim -L / ... / f [ Λ<0(x, )dx

Similarly /n(<o) > c~n(*o)Λt0,π(to) giving the required result. Q
Using this result, the approximation to /n(*o) can be obtained directly from an ap-

proximation to λt0,n(ίo) It is important to note that for each point to, we use a different
conjugate density. In the proof of the theorem, the property of a(t) specified in (4.3) has
not been used, so that in fact the centering result (4.4) holds for arbitrary α.

In order to approximate htθtfl(t0)y it is necessary to express Tn as an approximate mean
and evaluate its cumulants. The development follows that of Field (1982) and Tingley (1987,
p. 49-52). The first part is very similar to expansions used to demonstrate properties of
maximum likelihood estimates. The result will be stated in terms of do, the true value of θ
and then will be modified for the case of the conjugate density Λto which is centered at to.
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Theorem 4.2 (Bhattacharya and Ghosh, 1978)

Assume that A4.2-A4.5 hold. Then there is a sequence of statistics {Tn} such that for
every compact K C θ

inf P$MTn-θ0\<d0n-ι'2(\ogn)ι'2,Tn solves (4.1))

= 1 - 0(l/>/n)

where dQ may depend on k.

Corollary

With the above assumptions |Γn - 0 o | m is 0 p (n~ β ) on every compact set K c θ provided
that m/2 - α > 0.

The following construction enables us to write Tn as an approximate mean. Consider
the second order Taylor expansion of (4.1) about θ0:

(4.5)

where Rn(Tn) = 0 p |T n - 0 O | 3 = 0 p (l/n).
Looking at the first three terms, let Z = φ(X, θ0), Z\ = Dφ(Xy ΘQ) and Z 2 = D 2 ^(X, θ0)

and let £# 0Zi = μx, E0QZ7 = /i2. Note that E0OZ = 0.
Define

and let g : Λ4 —• i2 be defined as

g(z,0 = z + (* - βo)^i + (* -

Note that since ?(a,0o) = 0,we can apply the implicit function theorem to prove that there
is a unique three times differentiable function H : Λ3 —• R such that H(a) = θ0 and
q(z, H(z)) = 0 for z in a neighbourhood of a. We now have, setting z = (z, zuz2):

Lemma

Proof: cf. expression 2.39 and 2.40 of Bhattacharya and Ghosh (1978).

The next step is to expand H in a Taylor series expansion about a. The result is the
following expression

H(z) - θ0 = -z/A(θo) + A(θo)μ2z
2/2 + z(zx - μι)/A2(θ0) + 0p(l/n).
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Putting this equation together with the lemma, if A4.1-A4.5 hold, then for every ΘQ in a
compact subset of θ

Tn - 0o = Z/A(θ0) + A(θΌ)μiZ2/2 + 2(2 - μι)/A2(θQ) + Op(l/n). (4.6)

In expression (4.6), all expectations are with respect to do and are computed with the
original density. If we now replace 0Q by to and compute all expectations with respect to
the conjugate density htof we have that EtoZ = Et0ψ(X,to) = 0 by the choice α in (4.3).
Hence

Tn - to = -Z/A(to) + A(to)μ,Z2/2 + Z(ZX - μι)/A2{tQ) + 0,(l/n). (4.7)

In order to apply the Edgeworth expansion, we need to evaluate the cumulants of
the left hand side of (4.7). For this purpose the results of James and Mayne (1962) are
appropriate. Denote the cumulant of order r of nχ/2(Tn — to) by λ r and of Z and Z\ by Kr

and K[. Since we are working with means it follows that Kr and K[ are of order n~Γ + 1.
The cumulants of nιl2(Tn - U) can be expressed in terms of K as follows: (cf. James and
Mayne, 1962, p. 51).

A1 = nι/a{i4(ίo)|iaff a /2

= rf1/n1/2 + 0(n-3/2) (say)

X2 = σ2(t0)/A2(t0) + 0(n-1) where σ2(t0) = EtQ[φ2(X, t0))

All higher order cumulants are of order (Kn""1) or higher .
The characteristic function of nχl2(Tn - to) can be written as

Using the above results we have

φ(u) = e x p / ^ ( Π O / H 1 ' 2 - <r2(t0)u2/A2(tQ)

We use the result that

where τrΓ is a polynomial of order r, D represents differentiation and φto is the normal
density with mean 0 and variance σ2(to)/A2(to). From this it follows that the density of
nι/2(Tn - to) under Λ*o at x is given by

*(«) = Φtoi*) [l + dD(φi0(x))/n1'2 + dzD^(φto(x))/n1'2 + 0(l/n)l.

For x = 0, the terms of order n""1/2 drop out giving the density of Tn at *0 under Λto as
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Using the results of Theorem 4.1, it follows that

/n(*o) = (n/2π) 1/V n(<o)μ(^o)M<o) + 0(l/n)].

To summarize:

Theorem 4.3

If Tn represents the solution of ]>^= 1 Ψ{x%>t) = 0 and A4.1-A4.5 hold, then an asymp-
totic expansion for the density of Tn is

/n(*o) = (n/2π)1/2c-n(<oμ(<o)/σ(<o)[l

where α(<o) is the solution of f ψ(x,to)exp{crψ(x,to)}f(x)dx — 0,
c-^to).= Jfexp{α^(j;,ίo)}/(x)dx, σ2(<0) = Etoψ

2(x,tQ), A(t0) = Etl

is expectation with respect to the conjugate density

*!.(*) = c(to)exp{a(to)ψ{x,to)}f(x).

(4.8)

where Eto

From a practical point of view, the error bound on the density in the theorem above is
not of direct use. What is usually needed is an error on the integral of the density over a
region of interest. For example in testing, we need to compute tail areas for the calculation
of P-values. In order to begin, a slightly stronger version of theorem 4.3 is needed. Following
the argument on p. 677 of Field (1982) it can be seen that the error bound in (4.8) is uniform
for all < in a compact set. We now use an argument very similar to that in Durbin (1980a,
310-316).

From the results on the cumulants of nι/2(Tn — #o) we have that the fourth cumulant of
Tn — #o is 0(n~3) and the variance is 0(n~1). This implies that the fourth moment is 0(n~2).
We can now find a constant Ci, so that for n sufficiently large,i^dΓn—flol4) < C\n~2. Letting
A be the region \t — θ0 \ < d, then

Cm-*> f(t-θo)
4fn(t)dt+ I (t-θoγfn(t)dt

JA JAC

>δ4 ί fn(t)dt = 64P(\Tn - 0O| > «2)
JA

This implies P(\Tn - 0O| > δ2) = 0(n~2). Theorem 4.3 implies that

1 - C2/n < fn(t)/gn(t) < 1 + C2/n for \t - θo\ < δ2

where gn(t) = (n/2'κ)ιl2c-n{t)A(i)lσ(t) and C2 does not depend, on n or t.
Let {Bn} be a sequence of Borel sets such that P(Tn £ Bn) converges to a positive

limit.
Then

J(fn(t)~9n(t))dt < J fn(t)dt- j 9n(t)dt + J fn(t) (l - gj j j )*
AnBn

AnBn
A cnB n

< 0(l/π2)-h Jgn(t)dt + C2/n.
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We will verify in section 6.2,

h+'o

Conditional on this last result, we can then conclude

J /„(«)* = JgnWdt + Oin-1) (4.9)

This result shows that gn(t) can be integrated with an error which is at most 0(n~1). In
many inference problems, it is an approximation to the tail area which is of interest. From
this point of view (4.9) is a much more useful result than (4.8).

In actually using (4.8) for computational purposes, it is recommended that the constant
of integration be determined numerically. Some further discussion of this point is given in
section 5.2. This technique gives an important increase in the accuracy of the approximation.
In fact, Durbin (1980a) p. 317 gives a heuristic argument that the re normalization reduces
the magnitude of the error from n*"1 to n~3 '2. Since we are using these approximations
for very small n, often n < 10, any order terms on the error have to be keep in context.
The usefulness of (4.8) and (4.9) is really determined by how well, they perform for small
to moderate values of n. By the time, we have n of 20 in many situations, the normal
approximation may suffice.

We turn now to questions of computation of £ n ( i ) To evaluate gn(t) at a specific point,
the main computational effort is in computing a(t) from (4.3). This is a non-linear equation
which involves a numerical integration for each function evaluation. For any cases where we
have done computations, secant methods have proven very satisfactory. As an example, we
computed α(<), c(<), <r7(t) over a grid of 90 points for the mean with an underlying uniform
distribution. The computations took 5.6 seconds of CPU time on a VAX 785 running 4.3
BSC Unix. In order to compute probabilities a simple way is to evaluate gn over a grid of
points and then do numerical integration. If we are specifically interested in evaluating tail
areas, very accurate integral approximations (uniform asymptotic expansions) are available
which reduce the computational effort substantially. The basic reference is Lugannani and
Rice (1980). In chapter 6, these ideas are developed more fully and the approximations to
the tail area provided.

A useful feature of the computation is that once α(t), c(t) and σ(t) have been computed,
we can evaluate gn(t) for any π. To give an indication of the accuracy of the approximation
we consider the following situation.

The exact density for the Huber estimate with φ(x) = x if |x| < fc, = k sgn x if
|z| > k has been calculated by P. Huber for two contaminated normal distributions and by
A. Marazzi for the Cauchy distribution (unpublished). For the contaminated normal, the
results are obtained by direct convolution and have been checked in double precision by D.
Zwiers. The exact results for the Cauchy were calculated with fast Fourier transforms via
characteristic functions. The effort in obtaining the exact results is substantially more than
that required for the approximation and must be recomputed for each new value of n.

To measure, the accuracy of our approximation, the relative percent errors of tail areas
are computed for selected values of t for both the the contaminated normal and Cauchy.
Note that the relative percent error for upper tails is computed as:

100 (approximate - exact cumulative)/(l- exact cumulative). The values are as given
in Exhibit 4.1 and 4.2.
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t n

0.1
0.5
1.0
1.5
2.0
2.5
3.0

-0.05
-0.70
-5.40

-23.20
-60.80
-99.60

-116.70

0.12
0.90
3.70

13.50
30.50
41.60
45.40

0.05
0.40
0.40

-3.60
-24.00
-64.60
-90.20

0.04
0.40
1.00

-0.05
19.80
37.80

0.04
0.30
0.70
1.50

-10.20
-46.70

0.03
0.30
0.70
1.50

12.50

0.03
0.30
0.70
1.10

-4.00

0.03
0.20
0.60
1.10

0.03
0.20
0.70
0.90

0.2
-12.8

1.0
4.0

0.6
0.7

-10.2

0.5
0.8
3.2

0.4
0.7
1.1

-6.5

0.4
0.6
1.0
2.8

0.3
0.7
0.9
1.4

Exhibit 4.1a
Percent relative errors of the Huber estimate (Jfc = 1.4) for

contaminated normal (e = .05) versus t.

100 (1 - Gn) n 1 2 3 4 5 6 7 8 9

5 -60.8 13.5
1

0.1
0.01

Exhibit 4.1b
Percent relative errors of the Huber estimate (Jb = 1.4) for

contaminated normal (c = .05) versus approximate percentage
points determined by G n , the cumulative of gn.

A glance at the relative errors for the contaminated normal shows that for t values of
1 or less, the relative errors are all 1% or less even down to π = 3 and all remain under 10%
(most under 3%) for t = 1.5. In terms of percentage points, the estimate is very accurate at
the 1% level down to n = 4 with c = 0.5 and at the .1% level down to n = 6 with e = .05.
It is only with small n and large t that the relative errors become larger and even here the
estimate is fairly good. For instance with π = 3 and t = 3.0 (a relative error of 90%), the
actual difference is .002(.99795 - .99610). The results when e = .10 are similar to those
above.

t n 1 2 3 4 5 6 7 8 9

1
3
5
7
9

-12.3
-21.0
-33.6
-43.5
-51.2

8.0
23.3
33.6
40.3
44.8

-4.4
-12.6
-24.9
-37.2
-47.8

0.8
14.1
24.9
33.1
38.6

-1.5
-7.0

-16.2
-28.0
-37.5

0.6
8.5

18.6
27.8
35.7

-0.7
-4.0

•12.2
-16.7
-29.8

-.03
4.7

13.0
22.5
31.0

-0.5
-2.6
-7.3

-16.7
-16.7

Exhibit 4.2
Percent relative errors of the Huber estimate (k = 1.4)

for the Cauchy.

For the Cauchy, the relative errors remain well under control even well out into the
extreme tails. For instance with n = 7 and t = 9 (relative error of 30%), the actual
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difference is .00001 (.99995 - .99994) so that the estimate would be very usable even at the
.005% level. A graphical display of the results is given in Exhibit 4.3 and 4.4. The value of
log(F/l - F) is plotted against t for the 5% contaminated normal and the Cauchy. Prom
the graphs it can be seen that in terms of critical values the results for the contaiminated
normal with € = .05 are very accurate to n = 3 for the 5% level, to n = 5 at the 1%
level, to n = 7 at the .1% level and to n = 9 (or even n = 7) at the .01% level. Similar
results hold for the Cauchy. These results imply that the approximations accurately reflect
the distributional behaviour of the estimates and provide a very useful tool for determining
small sample properties of interest.

.99999

.9999

999

Exhibit 4.3
log(Fn /( l - Fn)) versus t of Huber estimate (k = 1.5) for

contaminated normal with (e = .05)
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99999

.9999

.999

Exhibit 4.4
log(Fn/(l/Fn)) versus t of Huber estimate (k = 1.5) for Cauchy

Some calculations with the mean suggest that any accuracy obtained by including the
first neglected term is of the order of round off errors and so the first term in the expansion
is all that is needed for good accuracy.

As another example, consider the M-estimate version of /3-quantiles with ψ(x) = β - 1
for x < 0, φ(x) s 0 for x = 0 and φ(x) = β for x > 0. For those π where the defining
equation Σψ(x{ — Tn) = 0 has a unique solution, the exact density of the M-quantile
is the density of the appropriate order statistic and is proportional to (F(<))( n "" 1 ^(l —

( ) ( ^ l ) tf w e n o w compute the approximation given in (4.8), we find that
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σ\t) = β(l-β) and A(t) = c(t)f(t)

and that in this case, the approximation is exact up to a normalizing constant. It should be
noted that if we approximate f'n/fn instead of fn as discussed in section 5.2, the approxi-
mation is exact.

As a final example, we could consider the example of logistic regression through the
origin. This example will be developed in the next chapter where we compare several related
approaches to obtaining an approximation.

4.3. GENERAL ONE-DIMENSIONAL SADDLEPOINT APPROXIMATIONS

In this section we consider a slightly different approach to derive saddlepoint approxi-
mations for general one-dimensional statistics. Basically, the moment generating function is
approximated and a saddlepoint approximation is used by applying the techniques developed
in section 3.3. We follow here Easton and Ronchetti (1986).

Suppose that xχ, , x n are n iid real valued random variables with density / and
T n(xi, - , xm) is a real valued statistic with density fn. Let Mn(a) = / eatfn(t)dt be the
moment-generating function, Kn(a) = log M n (α) be the cumulant-generating function, and
pn(a) = Mn{iά) be the characteristic function of Γn. Further suppose that the moment-
generating function M n (α) exists for real a in some nonvanishing interval that contains the
origin. By Fourier inversion (as in section 3.3),

+oo

± J
—oo

(n/2πi) / Mn(nz)c-nxidz

I

r+too

- zt\}dz, (4.10)

where X is the imaginary axis in the complex plane and r is any real number in the interval
where the moment generating function exists, and

Rn(z) = Kn(nz)/n . (4.11)

Note that if Tn is the arithmetic mean, then Rn(z) = K(z), the cumulant generating
function of the underlying density /, and in this case (4.10) equals formula (3.6). The
problem in (4.10) is that in general Rn is unknown. The basic idea of the general saddlepoint
approximation is to approximate iZn(z) and then apply the saddlepoint technique to the
integral in (4.10).

For a given problem, one can find sometimes special approximations to the cumulant
generating function and to Rn. In very special situations these functions are even known
exactly. However, since the goal of this approach is to derive a saddlepoint approximation
for a general model, we do not want to assume any special structure in the problem. In
this framework, classical Edgeworth expansions provide a very important source of general
approximations to log/>ra(α) and therefore to Rn(z). Moreover, they have the advantage
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of being good local approximations around the center of the distribution. This property is
exploited by the saddlepoint approximation which can be viewed as a low order Edgeworth
approximation locally at each point (see section 3.4 and Remark 4.4 below). For these
reasons we will use the Edgeworth approximation as a basic construction tool and will show
that whenever an Edgeworth expansion for the density fn of Tn is available, a saddlepoint
approximation can be carrried out that will generally improve it.

Let us now work out the Edgeworth approximation for Rn(*)- Denote by fn the Edge-
worth expansion for fn up to and including the term of order n""1. Let Mn and Kn be
the moment generating function and the cumulant generating function of / n , respectively.
(Technically, Mn and Kn may not be moment generating and cumulant generating func-
tions, since /„ may not be a density. We will continue to use this terminology, however.)
Let Rn(z) = Kn(nz)/n. Then, from the Edgeworth approximation (up to the term of order
n~ ι) one can obtain an approximation for logpn(a) and, therefore, iίn(z) in terms of the
first four cumulants. That is, Λn(*) can be approximated by

where μn is the mean, σ* the variance of Tn and Kjn are the cumulants of Tn/σn. Note
that μn = 0(1), σn = 0(n - 1 / 2 ) , and κjn = 0(n^/2^x) for j = 3,4, since we have assumed
that the Edgeworth expansion up to and including the term of order n~ι for fn exists.
In general, μ n , σn and Kjn are not known exactly, but expansions up to the appropriate
order will suffice to keep the same order in the approximation. Applying the saddlepoint
technique to the integral in (4.21) gives the saddlepoint approximation of /„ with uniform
error of order n"1:

9n(t) = [ 2 χ ^ ( α o ) ] exp{n[^(a0) - aot]}, (4.13)

where ao is the saddlepoint determined as a root of the equation

Λ;(αo) = *, (4.14)

Λn(α) = Kn(na)/n is given by (4.12) and R^ and R£ denote the first two derivatives of

Rn.
As usual the approximation gn(t) given by (4.13) can be improved by renormalization,

+?°
that is by computing numerically Cn = J gn(t)dt to obtain gn(t)/Cn which integrates to

—oo

1. Tail areas can be obtained from (4.13) by numerical integration. However, sometimes it
is convenient to have a direct saddlepoint approximation for the tail area P[Tn > a]. By
the same argument as in Daniels (1983) (see section 6.2), the saddlepoint equation (4.14)
can be used as a change of variables to obtain the approximation

P(Tn >α]2ί j φ f e s l j exp{n[^,(a0)-aoK("o)]}doo, (4.15)

where Rn{on) = a.

Remark 4.1
In the case where the cumulant generating function Kn is known exactly, one can apply
directly the saddlepoint method to (4.10). In this case, the saddlepoint approximation is
given by (4.13) and (4.14), with Rn replaced by the exact Λn(α) = Kn(na)/n.
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In order to show a connection with a result by Chaganty and Sethuraman (1985), we
now compute the approximation (4.13) for the statistic Tn/n and in the case where Kn is
known exactly. Let us denote by / n , gn, Kni Rn the functions for Tn and by /*, <7*, # * ,
Λ* the corresponding functions for Tn/n. Then we have

and the saddlepoint approximation for Tn/n evaluated at a point tn

] (4.16)

where α n is determined by the equation

Equation (4.16) is exactly equation (2.1) of Theorem 2.1 in Chaganty and Sethuraman
(1985). The same authors generalize the approximation (4.16) to an arbitrary multidimen-
sional statistics under the condition that the cumulant generating function is known; see
Chaganty and Sethuraman (1986).

Remark 4.2
Since R^(ot) is a third degree polynomial, the solution of equation (4.14) does not pose any
computational problems. However, this equation can have multiple real solutions and only
the solution c*o with Λ(((αo) > 0 can be used for the saddlepoint approximation. A simple
example in which this happens is the approximation to the density of
s2 ss (n - I ) " 1 22Γ=i(x« - x ) 2 where xi, , x n are n iid observations from a N(0,1).

Remark 4 3

Another possible approximation for Λn(z) can be obtained using p n (α) as given by the Edge-
worth approximation instead of the expansion of logp n (α). This amounts to approximating
Rn(z) by

6 ^ 72

We have no numerical experience with this approach.

Remark 4.4

One can use the same kind of computations as in section 4.2 to express fn by means of its
conjugate density, namely,

where Λr,n(0 is the density of Tn with the underlying conjugate density. The choice r = <*o
and an Edgeworth expansion of ΛTfΠ(<) leads to the saddlepoint approximation of fn. This
approach also requires knowledge of the exact cumulant-generating function. The general



Section 4.3 55

saddlepoint approximation described earlier corresponds to using the Edgeworth expansion
to obtain an approximation to the conjugate density. Thus,

fn(t) = e^^'^K^t) + Dn(t)

where Rn(z) is given by (4.12), hr,n(v) is the conjugate density of/n, and Dn(i) = fn(t) -
/n(0 Note that the term of order n"1^2 disappears because fn is recentered at t through
Ar,n; that is,

if r = αo, the saddlepoint.
From the conjugate density point of view, the development of this approach is similar

in spirit to that of Durbin (1980a) and Barndorff-Nielsen (1983), (see section 5.3), but we
do not restrict ourselves to sufficient statistics or to maximum likelihood estimators nor
do we assume any underlying parametric model. It should be noted, however, that when a
special structure exists, saddlepoint approximations that have been developed to exploit this
structure should be used, as they will generally perform better than this general approach.

Remark 4-5
As was pointed out by J. W. Tukey and B. Efron, this technique could be applied iteratively
as follows. Start with an approximation Λ ^ for Rn (given for instance by an Edgeworth
approximation) and apply the saddlepoint technique to (4.10) to get the saddlepoint ap-
proximation gn in (4.13). Now, by numerical integration, compute a new approximation for

/$*>(*) = (l/n) log M<2>(nz),

where M$?\a) = /e a t g n (t)dt, then compute a new saddlepoint approximation for the
density. This can be repeated until convergence is reached. This iteration process may
improve the original approximation but its performance is an open question.

Remark 4.6
An alternative way of approximating the density of a general statistic by means of saddle-
point techniques is the following (see Field 1982 and section 4.5). Suppose Tn can be written
as a functional T of the empirical distribution function F<n); that is, Tn = T(F^). First,
linearize Tn using the first term of a von Mises expansion (see von Mises 1947),

F), (4.17)

where F is the underlying distribution of the observations,

±J]T,F), (4.18)

and IF{x\T,F) is the influence function of T at F (cf. Hampel 1968, 1974 and section 2.5).
Then apply the classical saddlepoint approximation to Ln(T,F), which is just an average
of iid random variables. For instance, Tingley and Field (1988) apply the Lugannani and
Rice approximation for the tail areas to (4.18); see section 6.3.
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4.4. L-ESTIMATORS

In this section we apply the general saddlepoint technique to derive approximations to
the density of linear combinations of order statistics.

We consider statistics of the form

»*«). (419)
ni=ι

where X(i) < a?(2) < < X(n) are the order statistics and cin, , cnn are weights generated

by a function J : (0,1) -• Λ,

Cin = J[i/(n + 1)], i = 1, , π.

Typically the conditions imposed on J are those that guarantee the existence of an Edge-
worth expansion.

The distribution properties of L-statistics have been investigated by many authors. Ex-
act distributions under special underlying distributions can be found in Weisberg (1971), Ci-
cchitelli (1976), and David (1981). Asymptotic normality of these statistics has been shown
under different sets of conditions (e.g., see Chernoff, Gastwirth and Johns, 1967; Shorack
1969, 1972; Stigler, 1969, 1974; David, 1981). Parr and Schucany (1982) investigated the
small sample behavior of L-estimators via jackknifing. Finally, Helmers (1979, 1980) and
van Zwet (1979) derived Edgeworth expansions for L-statistics with remainder 0(n~3/2).
These will be the basic elements of our approximation, which we use in conjunction with
the saddlepoint technique. In this section we summarize the numerical results obtained via
saddlepoint approximation by Easton and Ronchetti (1986) for two L-estimators. These
results show the great accuracy of this approximation down to very small sample sizes.
These techniques can be used to approximate the distribution of more general L-statistics.
One possible application is to so-called broadened letter values or "bletter values" (means of
blocks of order statistics) suggested by Tukey (1977) as an improvement of the usual letter
values in exploratory data analysis.

4.4.a The Asymptotically Most Efficient L-Estimator Under The Logistic
Distribution

In this example we consider the asymptotically first-order efficient L-estimator for the
center θ of the logistic distribution

F ( * - ί ) = l / [ l + « p ( - ( * - * ) ) ] .

This L-estimator is of the form (4.19) with the weight function J{s) = 6s(l - s) and weights
Cin = 6i(l — i/(n -f l))/(n + 1). We apply the technique presented in 4.3 to compute an
approximation to the distribution of the statistic nιl2{Tn - /i)/σ, where μ(= 0) and σ are
the asymptotic mean and variance of Tn under the logistic F. The Edgeworth expansion
required in our formula is taken from Helmers (1980). It should be noted that the third
moment equals 0 because of symmetry, so the term of order n" 1/ 2 disappears in the Edge-
worth expansion. Thus the latter is of order n " 1 and should be very competitive with the
saddlepoint approximation.

Numerical results for the cumulative distribution for sample sizes 3,4,10 are given in
Exhibits 4.5, 4.6, 4.7 for the right half of the distribution, since the density is symmetric.
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The exact values are taken from Helmers (1980) who computed them by numerical inte-
gration for sample sizes 3 and 4, and by Monte Carlo simulation for sample size 10. The
saddlepoint approximation for the cumulative is obtained by numerical integration from
the saddlepoint approximation for the density computed using (4.13) and (4.14) for about
500 t values. Exhibit 4.8 shows the residuals from the exact density for the rescaled saddle-
point, Edge worth, and normal approximations. This plot clearly indicates that the rescaled
saddlepoint approximation overall improves the Edge worth approximation.

X

2
.4
.6
.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0

Exact
.5640
.6262
.6850
.7391
.7875
.8248
.8658
.8958
.9202
.9397
.9550
.9669
.9758
.9825
.9875

Rescaled
Saddlepoint

.5617

.6217

.6787

.7314

.7790

.8210

.8572

.8877

.9130

.9335

.9499

.9628

.9727

.9802

.9858

Unsealed
Saddlepoint

.5735

.6320

.6874

.7387

.7850

.8259

.8610

.8908

.9154

.9353

.9513

.9638

.9734

.9807

.9862

Edgeworth
.5536
.6069
.6592
.7099
.7582
.8032
.8439
.8796
.9100
.9348
.9543
.9691
.9798
.9873
.9923

Normal
.5793
.6554
.7257
.7881
.8413
.8849
.9192
.9452
.9641
.9772
.9861
.9918
.9953
.9974
.9987

Exhibit 4.5
Exact cumulative distribution and approximations for sample size 3 for the asymptotically

best L-estimator under logistic distribution.

X
.2
.4
.6
.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0

Exact
.5663
.6307
.6919
.7469
.7963
.8391
.8752
.9049
.9287
.9474
.9618
.9726
.9807
.9865
.9907

Rescaled
Saddlepoint

.5650

.6281

.6877

.7424

.7914

.8341

.8703

.9003

.9247

.9440

.9591

.9705

.9791

.9854

.9899

Unsealed
Saddlepoint

.5750

.6366

.6949

.7484

.7962

.8379

.8732

.9026

.9264

.9453

.9600

.9712

.9796

.9857

.9902

Edgeworth
.5601
.6190
.6758
.7295
.7790
.8236
.8627
.8960
.9235
.9454
.9622
.9748
.9837
.9898
.9939

Normal
.5793
.6554
.7257
.7881
.8413
.8849
.9192
.9452
.9641
,9772
.9861
.9918
.9953
.9974
.9987

Exhibit 4.6
Exact cumulative distribution and approximations for sample size 4 for the

asymptotically best L-estimator under the logistic distribution.
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X

.2

.4

.6

.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0

Exact

.5734

.6445

.7089

.7680

.8196

.8629

.8985

.9275

.9486

.9646

.9764

.9845

.9905

.9937

.9959

Rescaled
Saddlepoint

.5725

.6426

.7080

.7670

.8186

.8622

.8978

.9260

.9477

.9639

.9757

.9840

.9897

.9935

.9960

Unsealed
Saddlepoint

.5776

.6468

.7115

.7698

.8208

.8638

.8990

.9269

.9483

.9644

.9760

.9842

.9898

.9936

.9961

Edgeworth

.5716

.6409

.7058

.7647

.8164

.8604

.8966

.9255

.9478

.9645

.9766

.9850

.9907

.9944

.9968

Norma

.5793

.6554

.7257

.7881

.8413

.8849

.9192

.9452

.9641

.9772

.9861

.9918

.9953

.9974

.9987

ω

Exhibit 4.7
Exact cumulative distribution and approximations for
sample size 10 for the asymptotically best L-estimator

under logistic distribution.

CM
CD

C9

C9

M

CD

CD

CD

• « Normal

s Reseated Saddlepoint

* Edgeuforth

-2 -I

Exhibit 4.8
Error of the approximations of the density for sample size 3

for the asymptotically best L-estimator under
logistic distribution.
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In addition, unlike the Edgeworth and normal approximations, the Exhibits show that the
rescaled saddlepoint approximation is wider tailed than the exact distribution, so its error
is in the direction of giving conservative tests and confidence intervals. The same pattern
can be seen for sample size 4 (not shown).

Although we are not approximating the distribution function directly, in practice these
approximations may be used for calculating tail areas. Thus it is of interest to see how the
saddlepoint approximation performs in the tails. Exhibit 4.9 shows the right-tail probability
error for the right half of the distribution (for sample size 3) for the unsealed saddlepoint,
rescaled saddlepoint, Edgeworth and normal approximation. The same pattern can be seen
for sample size 10 (not shown).

ω
C9

CD

•
I

O

V s Edgeuior th

• * Rescaled Saddlepoint

+ * Normal

Unsealed Saddlepoint

Q.Q Q.S l . β 1.5 2.9 2.S 3 . 0

Exhibit 4.9
Error for the tail area for sample size 3 (cf. Exhibit 4.5).

Overall it appears that the rescaled saddlepoint technique generally improves on the Edge-
worth approximation with respect to tail area and tends to err in the direction which produce
conservative tests and confidence intervals.

4.4.b Trimmed Means of Exponential Observations

This example considers approximations to the distribution of trimmed means of expo-
nential observations. Let α* and α u be the fraction of the observations trimmed from the
upper and lower tails, respectively. We consider statistics of the form (4.19), where

c t n ss 0 for i < nat or t > n(l — α u )

= π/Jb otherwise,

where k is the number of nonzero weights. Note that i c, n = 1.
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Helmers (1979) derived the Edgeworth expansion for the distribution of (Γn - μn)/σn,
for trimmed linear combinations of order statistics with general weights on the observa-
tions between the α* and 1 — α u sample quantiles and with zero weights on the remaining
observations. This expansion forms the basis for our general saddlepoint approximation.

The density of certain linear combinations of exponential order statistics can be written
explicitly (see David, 1981). In our case the exact density of Tn is

(4.20)

where

and α t n =
1

n i + l

for i = 1, , n, provided α, n φ α j n for f φ j .

Note that, given the relative numerical instability of (4.20) for moderate sample sizes, a
simple and accurate approximation like the saddlepoint approximation can be a good alter-
native even in this case where fn is known exactly .

High Order Edge orth

Sαddltpo int

Low Order Edft orfh

Homo I

Exhibit 4.10
Error from the exact density in the right tail for 20% trimmed

mean of 5 exponential observations. High (low) Edgeworth
includes terms to order n~ι(n~χt2). + marks denote .90,

.95, .975, .99, .995 quantiles of exact distribution.

The figure shows that the saddlepoint approximation tends to be fairly stable and
generally slightly wide throughout the tail. Both of the Edgeworth approximations show
polynomial-like waves (and also become negative). The low order Edgeworth crosses the ex-
act distribution a couple of times in the tail switching from being too wide to too narrow and
back. The low-order Edgeworth approximation performs much better than the high-order
Edgeworth approximation throughout this region and is competitive with the saddlepoint
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approximation in the 5% tail. It is sometimes too narrow, however. In the 5% tail, the error
in the normal approximation is only slightly larger in absolute value than the error in the
saddlepoint approximation, but the normal approximation is uniformly narrow.

Exhibit 4.11 plots the error in the approximate tail areas for the right 10% tail. As in
the density case, the error in the Edgeworth approximations shows wavy behavior whereas
the saddlepont approximation is uniformly wide.

Hiςh Order edςt orth

Sodd Itpo int

Lo« Order Edgcworth

Nor αl

s

Exhibit 4.11
Error from the exact distribution in the right tail for the

20% trimmed mean of 5 exponential observations.

This example shows once more that the saddlepoint approximation exhibits some desir-
able properties that the Edgeworth approximations do not have. First, the saddlepoint
approximation is unimodal and does not show the polynomial-like waves exhibited by the
Edgeworth approximations. Thus the error in the saddlepoint approximation tends to be
stable locally. Finally, the saddlepoint approximation tends to be wide in the tails so that
error is in the direction of giving conservative tests and confidence intervals.

4 5. MULTΓVARIATE M-ESTIMATORS

4 5.a Approximation

We return to the case of M-estimates as in section 4.2 but consider now the multipa-
rameter problem. The M-estimate T n for θ = (0i,02> >0p) » the solution of the system
of equations:
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^ ( x , ,t) = 0 for j = l , ,p. (4.21)

The problem, as before, is to approximate the density / n ( t ) of T n . The development is
similar to that presented in section 4.2 in that T n is expanded as a multivariate mean,
the density is centered and a multivariate lower order Edgeworth expansion is used. The
centering parameter α(t) (cf. (4.3)) is replaced by a p-dimensional vector α(t) which is
obtained as the solution of

ί φ j ( x y t ) e x P ί f ^ a j φ j ( x 1 t ) \ f ( x ) d x = O j - l , . , p . (4.22)

Although we write x as univariate, the results hold for x multivariate. The following as-
sumptions are multivariate versions of A4.1 to A4.5 of section 4.2. Note that Dj denotes
differentiation with respect to θj.

A4.1M The system of equations (4.21) has a unique solution.
A4.2M There is an open subset U of Rm such that

(i) for each θ G θ one has FΘ(U) = 1 and
(ii) the derivatives Djφr(x,θ), DkDjφr(x,θ), DιDkDjφr(xyθ) exist for

1 < r, h k,l<p.
A4.3M For each compact / ( C θ ,

(i) for 0 < i, k < p, 1 < r < p,

sup E9o\DkDjφr(X,θo)\A < oo.
θotK

(ii) there is an e > 0 such that for 1 < r, j , k, I < p,

sup E$o( max \DιDkDjφr(X,θ)\)3 < oo.
Boeκ | ^ ^ o | < f

A4.4M For each θ0 e θ

and the matrices

= Eβo[φ(X,θ0)φτ(X,θQ)]

are non singular.

A4.5M The functions Λ(0) and Eθ[{DkιDhφrχ)(Dk2DJ2φr2)),0 < j λ , j 2 , kuk2<p,
k\ + j \ > 1, k2 + j 2 > 1, 1 < Γx, r2 < p, are continuous on θ .
At this point, a multivariate centering result is required. For a fixed t, the conjugate

density is

MM) =
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Theorem 4.4

n n
Assume that the joint density of £ ψχ(Xi, t) £ Ψp(Xi, t) exists and has Fourier trans-

•si t=l

forms that are absolutely integrable both under / and λ t. If we let htn be the density of
T n with underlying density λ t, then

/ B (t ) = c- n (t)Λ t f f l (t). (4.23)

Proof: Let Z = \T!Lι Φi(Xk* *o), , Σ L i Φp(x*> t 0 ) J and denote the density of

(Z,T n ) by $(z,t) under / and 0i(z,t) under Ato. Writing T Λ = (Γι(x), ••• ,T p(x)) with
x = (χlt...,xn), the moment generating function of (Z,T n ) can be written as

u,v)= / /expfέ^ti^iίΛί(

Chooβeu = (α x -h t y i , α 2 + iya, ••• , α P + *'Vp) = a + t y , v = (tu i,- •• ,tu;p) = iw. Now

iy,iw)= / ί^

{ n P N n

ΣΣαiV>;(**,t0) f Πisl sl ^ irsl

where Mi is the moment generating function of ( Z , T n ) under /uo Since both M and Aί\
are absolutely integrable, we can apply the Fourier inversion formula to give

ΣΣ
where components of u and v are integrated along the path from c - ioo to c-h too for some
c. Choosing u = (a + iy) and v = iw, we have

g(z> *) = (2*)2P / JeXp{ Σ ( α i + iyi)zi •" Σ i^^lAf (a + iy, i
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Now

n

Tn(x) = to <=> Σ Φi(*J,tθ) =0, j = 1, ,P *=> Z = 0.

Hence, $(z,to) = c" n(t o)^i(z,to) and from this the result follows. G

We now go through the same steps as in section 4.2 modified for the multivariate case
(details given in Field, 1982, p. 675-6). As a result we can write

(Tfl - to),' = y.3biJ^3 "" 2-J1 2^b^jl[T) ("j*l

+ Σ Σ**Λi^j(^ι - /^) + OpίW (4-24)

where B = - ^ o ) " 1 , i4(t0) = EhJ§^(Xtt0)\

• i a

All expected values are with respect to Λt0 Of course the result also holds for to = ^o with
density /.

Again using the results of James and Mayne (1962) on cumulants, the cumulants behave
as in the unvariate case. It then can be shown that the density of n 1^ 2(T n — to) under hto

at x is

where dj and djki are constants determined by the cumulants; φ(x) is the multivariate
p-dimensional normal density with mean 0 and covariance matrix

Λ ( t o r 1 Σ ( t o ) ( Λ ( t o Γ 1 ) τ and Σ(to) = {ΓΛ.(Jr f to)Λ(Jr f to)} ι S i i | i &

and all expectations are with respect to Λto. The density of (T n - to) under hto at 0 is
At0,n(to) = npf2h(0). From the centering lemma it follows that

A(to) = (c(to)Γnn>'*h(Q).

Putting the results together gives the multivariate version of Theorem 4.3.

Theorem 4.5
n

If Tn represents the solution of Σ ψr(x%, t) = 0, r = 1, . ,p, and Assumptions A4.1M-

A4.5M are satisfied, then an asymptotic expansion for the density of T n , say /n, is

/n(t0) = (n/2π)^Vn(to)|det>l||detΣp1/2{l + 0(l/n)} (4.25)
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where α(to) is the solution of

=:0 for Γ =

A = \Edφ(x,t)/dir\tΛ , Σ =
i<» ,i<p

and all expectations are with respect to the conjugate density

Λt OO =

The error term holds uniformly for all to in a compact set .
Approximation (4.25) is usually an intermediate step. More often we are interested

in tail areas for a marginal distribution of one of the estimates or for some function of the
estimates (eg. in tests of hypothesis). In order to do this sort of computations, it is necessary
to compute fn(t) over a grid in R? and then do a numerical integration to compute the
density of λ(T) (say). If p > 3, it is not computationally feasible to proceed in this fashion
and even with p = 3, the computational effort required may be large.

As in the univariate case, it would be useful to have (4.25) hold for an arbitrary set
so that integrals would still be correct to 0(l/n). Although it is probably possible to
obtain such results using sophisticated integral approximations, a different approach has
been taken in recent work by Tingley and Field (1990) . The details are provided in chapter
β. The techniques there provide a computationally feasible technique for handling higher
dimensional problems. The starting point of this approach is the approximation above.

4.5.b Calculations

We now turn to the case of location and scale where direct calculations have been carried out
with a view of computing percentiles of a studentized version of the location estimate. Given
the percentiles, we can then construct approximate confidence intervals for the location
parameter. We let θ = (/i,σ), f$(x) = /((z—μ)/σ)/σ and φι(x,θ) = φi((x—μ)/σ), i = 1,2.
In particular, we set φ\(x) = min{i,max(—i,x)}, φi(x) = φχ(x) — β with

This corresponds to "Proposal T of Huber(1964) and gives translation and scale equivariant
estimates.

For k < oo, we have robust M-estimates with a choice of β suitable for a model in some
neighborhood of the normal. The joint density of (7\,T2) was computed giving values in
the following table with underlying densities: normal, *3, slash (ratio of normal and uniform
on [0,1]) and Cauchy.
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h

0.00
0.05
1.00
1.50
2.00
3.00
4.00

0.00
0.50
1.00
1.50
2.00
3.00
4.00
5.00

0.00
0.50
1.00
1.50
2.00
3.00
4.00
5.00

0.00
0.50
1.00
1.50
2.00
3.00
4.00
5.00

0.00
0.50
1.00
1.50
2.00
3.00
4.00
5.00

.05

.05

.05

.05

.05

.05

.05

.50

.50

.50

.50

.50

.50

.50

.50

1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00

2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00

3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00

n :
normal <3

.012856 .009371

.007407 .004776

.001431 .000839

.000096 .000187
0 0
0 0
0 0

.788738 .536291

.436232 .284199

.074330 .052233

.003990 .005354

.000070 .000472
0 .000005
0 0
0 0

.941091 .651625

.510072 .416783

.081463 .114013

.003873 .016072

.000056 .001607
0 .000017
0 0
0 0

.017740 .092733

.009514 .080232

.001468 .049090

.000065 .018907

.000001 .004405
0 .000080
0 .000002
0 0

= 5
slash Cauchy

.007691 .005387

.004672 .002197

.001082 .003335

.000107 .000048

.000006 .000009
0 .000001
0 0

.438449 .273190

.286543 .134394

.062209 .023784

.005707 .003332

.000294 .000564
0 .000033
0 .000004
0 .000001

.693093 .693093

.427590 .231780

.107231 .077477

.013034 .014750

.000977 .002492
- .000127

.000005 .000014
0 .000002

.076215 .110021

.967794 .102566

.043112 .078223

.016886 .041991

.003957 .014694

.000074 .000900

.000001 .000069
0 .000010

.000003 .008352.0078537 .033976

.000002 .008156
0 .007339
0 .005824
0 .002925
0 .000241
0 .000007
0 0

.008281 .033681

.009137 .032197

.008654 .027821

.005405 .019309

.000489 .003687

.000016 .000359

.000001 .000037

normal

.00003

.00001
0
0
0
0
0

.504604

.156203

.004716

.000015
0
0
0
0

1.882181
.558563
.014700
.000035
0
0
0
0

.001786

.000516

.000012
0
0
0
0
0

0
0
0
0
0
0
0
0

n = 10
<3 slash

.000002 .000001
0 0
0 0
0 0
0 0
0 0
0 0

.258916 .208629

.074583 .075231

.002719 .003850

.000032 .000037
0 0
0 0
0 0
0 0

1.1993001.263642
.488809 .502669
.036937 .035675
.000778 .000614
.000009 .000004

0 0
0 0
0 0

.098294 .081975

.071258 .064659

.024586 .025895

.003333 .003854

.000172 .000198
0 .000004
0 0
0 0

.002132 .002132

.001962 .003645

.001446 .003787

.000701 .002738

.000172 .00086

.000001 .000005
0 0
0 0

Cauchy

.000001
0
0
0
0
0
0

.078980

.019391

.000663

.000015
0
0
0
0

.425929

.199933

.021036

.000799

.000026
0
0
0

.218988

.180062

.090319

.021953

.002430

.000010
0
0

.055246

.052255

.042583

.026525

.010439

.000303

.000003
0



0.00
0.50
1.00
2.00
3.00
4.00
5.00

0.00
1.00
3.00
5.00
10.00

0.00
1.00
3.00
5.00
10.00

0.00
1.00
3.00
5.00
10.00

0.00
1.00
3.00
5.00
10.00
15.00

h

4.00
4.00
4.00
4.00
4.00
4.00
4.00

5.00
5.00
5.00
5.00
5.00

10.00
10.00
10.00
10.00
10.00

15.00
15.00
15.00
15.00
15.00

20.00
20.00
20.00
20.00
20.00
20.00

normal

0
0
0
0
0
0
0

0
0
0
0
0

0
0
0
0
0

0
0
0
0
0

0
0
0
0
0
0

n

.000985

.001001

.111034

.000913

.000274

.000021

.000001

.000162

.000179

.000168

.000005
0

0
0
0
0
0

0
0
0
0
0

0
0
0
0
0
0

Section 4.5

= 5
slash

.001927

.001927

.002205

.002960

.001183

.000010

.000005

.000645

.000743

.001259

.000028
0

.000031

.000032

.000048

.000114

.000001

.000006

.000006

.000007

.000010

.000017

0
0
0
0
0
0

Cauchy

.012927

.012679

.012830

.011952

.006007

.001190

.000160

.005495

.005692

.005229

.000460
0

.000346

.000355

.000431

.000597

.000018

.000065

.000066

.000074

.000094

.000116

.000019

.000020

.000022

.000025

.000056

.000016

normal

.012603
0
0
0
0
0
0

0
0
0
0
0

0
0
0
0
0

0
0
0
0
0

0
0
0
0
0
0

*3

0
.000063
.000055
.000032
.000002
0
0

.000003

.000003

.000002
0
0

0
0
0
0
0

0
0
0
0
0

0
0
0
0
0
0

= 10
slash

.000063

.000475

.000647

.000604

.000058
0
0

.000101

.000122

.000125
0
0

.000001

.000001

.000001

.000003
0

0
0
0
0
0

0
0
0
0
0
0

Cauchy

.015383

.015168

.012404

.008956

.001541

.000052

.000001

.005064

.005040

.002213

.000012
0

.000109

.000113

.000137

.000151
0

.000010

.000010

.000012

.000016

.000007

.000002

.000002

.000002

.000003

.000006
0
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Exhibit 4.12
Approximation to the joint density of robust estimates

of location and scale using Huber's proposal 2 with it = 1.5.

To check the accuracy of the results is difficult since there is no obvious method for
computing the exact joint density. The approximation can be checked for the marginal
density of T\ using Monte Carlo results from the Princeton Robustness Study, reported in
part by Andrews et al (1971). The complete results have been provided most kindly by F.
Hampel. The values of the pseudovariances and n times the variance are reported both for
the approximation (obtained by integrating numerically the joint density) and the Monte
Carlo results in Exhibit 4.13. The pseudovariance is defined as n(t ιtι-Q/zι-a)2 where t\tι-Q

and zχ-Q represent the (1-αr) quantile of the distribution of the estimator T\ and a standard
normal variate respectively.
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Normal
Pseudo- variances:

25%
10%
2.5%
1%
.5%
.1%

nxvar
Slash
Pseudo-variances:

25%
10%
2.5%
1%
.5%
.1%

nxvar
Cauchy
Pseudo-variances:

25%

10%

2.5%

1%

.5%

.1%

nxvar

Pseudo-variances:
25%
10%
2.5%
1%
5%
1%

nxvar

n
A

1.0345
1.0353
1.0367
1.0449
1.0385
1.0398
1.0360

1.7610
1.9548
2.8046
4.5851
7.3134
18.4117
3.549

4.607

7.256

17.405

30.747

44.252

72.847

16.525

1.6275
1.7670
2.0690
2.3447
2.5572
3.2904
1.9953

= 5
MC

1.0412
1.0411
1.0432
1.0462
1.0462
1.0496
1.0427

1.8597
2.0715
2.8036
4.2350
6.7839
19.7112
3.8752

3.75

5.4060

11.590

19.2729

26.6878

43.9043

10.9373

n
A

1.0357
1.0360
1.0366
1.0371
1.0374
1.0384
1.0364

1.6856
1.7624
1.9878
2.2613
2.5974
4.3116
2.0776

4.590

5.834

9.392

13.434

17.897

35.365

9.592

= 10
MC

1.0312
1.0303
1.0306
1.0310
1.0313
1.0321
1.0308

1.6599
1.7265
1.8941
2.0682
2.2829
4.5852
3.5681

4.5731
4.7400*
5.8120
6.1554*
9.2350
9.3463*
14.6001
12.1464*
21.2734
14.9575*
47.2187
39.2633*
10.2658

'replication

1.6569
1.7226
1.8442
1.9611
2.0478
2.2680
1.8097

n
A

1.0368
1.0366
1.0368
1.0370
1.0372
1.0376
1.0369

1.6457
1.6758
1.7529
1.8283
1.8880
2.1149
1.7419

4.907

5.094

6.429

7.634

8.752

12.45

6.172

1.6556
1.6870
1.7488
1.7948
1.8323
1.9245
1.7273

= 20
MC

1.036
1.0356
1.0357
1.0359
1.0361
1.0366
1.0360

1.6559
1.6902
1.7679
1.8234
1.8876
2.0288
1.7986

4.648

4.8625

5.8338

6.8401

7.7168

10.1046

5.6630

1.655
1.6858
1.7348
1.7652
1.7873
1.8370
1.7132

n =
A

1.0380
1.0373
1.0372
1.0372
1.0372
1.0373
1.0375

1.6284
1.6392
1.6711
1.6962
1.7166
1.7755
1.6629

4.4852

4.7554

5.3361

5.8013

6.1902

7.2629

5.161

1.6522
1.6671
1.6968
1.7158
1.7360
1.7789
1.6870

= 40
MC

1.0392
1.0380
1.0380
1.0382
1.0383
1.0386
1.0384

1.5953
1.6076
1.6341
1.6535
1.6686
1.7040
1.6246

4.0

4.2781

6.6673

4.9629

5.2147

6.1221

4.5469

Exhibit 4.13
Pseudovariances and asymptotic variances of T\ as computed by

approximation (A) and Monte Carlo (MC)

In order to determine whether the difference between the Monte Carlo result and the
approximation are to within the sampling errors in the Monte Carlo experiment, we can
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look at two bits of evidence. In Exhibit 5.13, Andrews et al. (1971) give differences between
exact and Monte Carlo results for the pseudo variance of the median, with n = 5. With
the normal, the differences are in the range of .02 to .03. The differences in Exhibit 4.13
between the approximate and Monte Carlo pseudovariances for the normal, n = 5, all are
less than .01 indicating differences are well within the errors inherent in the Monte Carlo
results. For the Cauchy, the differences observed in Exhibit 4.13 are larger by a factor of
up to 10 than those reported for the median (cf. Table 5, Field (1982)). To shed light on
whether we can place any faith in the asymptotic results for the Cauchy, it is worth looking
at the Monte Carlo results for n = 10. For this situation, there were two simulations carried
out in the Princeton study and the replication gives an indication of the Monte Carlo errors.
From Exhibit 4.13, with the Cauchy and n = 10, the asymptotic results lie between the two
Monte Carlo replications except for 0.1% and nx variance. This gives a strong indication
of the reliability of the asymptotic results for n = 10. Until the exact marginal densities
are computed in some fashion, or until additional Monte Carlo studies are done, further
comparisons are difficult. To see that the large discrepancies for the Cauchy at π = 5 may
be due to Monte Carlo variation, it is instructive to look at Exhibit 4.14.

Tail Area

IS 20

Exhibit 4.14
Plot of percentiles of y/nT\ on normal probability paper

for Huber's Proposal 2, k = 1.5.

From the graph, we note that the Monte Carlo results for n = 5 do not follow the
pattern exhibited by the other values of n. In particular, it appears that the extreme
percentiles for the Monte Carlo with n = 5 are not large enough. This would lead to the
large differences observed in Exhibit 4.13. While this is not a proof that the asymptotic
results are accurate, it suggests that the precision of the asymptotic results may be very
good even in the extreme case of the Cauchy with n = 5.

Given the approximation to the joint density, it is possible to examine in detail interest-
ing characteristics of the robust estimates of location and scale. We illustrate the potential
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with two different computations.
To continue with this example, we consider the percentiles of a "studentized" version

of 7\. Since the asymptotic variance T\ is

an appropriate "studentized" version of Ti would be n1 / 2Γi/(Γ27) with

7 = EφΦι(X)/< Eφφ\ > . This assumes that the estimate has been chosen as though the

i iunderlying density is normal. This was implicit in the definition of φ2

 a t the beginning of
the example. In practice, we could replace 7 by its estimated form where Φ is replaced by
the empirical distribution. However the problem of working out the percentiles of this more
complicated expression introduces some computational difficulties.

The percentiles have been evaluated by numerical integration of the joint density of TΊ
and T2 over the appropriate region of the plane. The results are tabulated in Exhibit 4.15.

n = 1 0

n = 20

Tail area

.25

.10

.05
.025
.01

.005

.001

.25

.10

.05
.025
.01

.005

.001
.0001

.25

.10

.05
.025
.01
.005
.001

.0001

normal

.808
1.729
2.491
3.382
4.860
6.297

11.269

.732
1.461
1.965
2.460
3.143
3.689
5.124
7.749

.701
1.361
1.783
2.173
2.665
3.027
3.866
5.118

.831
1.657
2.288
3.020
4.249
5.456
9.667

.759
1.467
1.923
2.358
2.937
3.393
4.597
6.823

.728
1.393
1.802
2.168
2.613
2.937
3.664
4.726

slash

.837
1.647
2.297
3.075
4.389
5.673

10.139

.759
1.468
1.925
2.369
2.975
3.464
4.759
7.147

.724
1.388
1.797
2.166
2.620
2.953
3.714
4.845

Cauchy

.871
1.547
1.999
2.514
3.387
4.271
7.450

.807
1.482
1.863
2.197
2.626
2.959
3.828
5.472

.775
1.448
1.835
2.162
2.536
2.795
3.395
4.139

Exhibit 4.15a
Percentiles ofnι/2Tι/yT2 using Huber's Proposal 2 with



Tail area

.25

.10

.05
= 40 .025

.01
.005
.001

.0001

.25

.10

.05
= 100 .025

.01
.005
.001

.0001

Percentiles of n1'3'.

Section

normal

.686
1.318
1.709
2.060
1.477
2.781
3.433
4.307

.679
1.296
1.668
1.993
2.383
2.649
3.213
3.922

Exhibit

4.5

tz

.713
1.359
1.750
2.095
2.500
2.785
3.388
4.174

.705
1.341
1.722
2.055
2.445
2.710
3.266
3.953

4.15b
Γ1/7Γ2 using Huber's

slash 1

.707
1.250
1.741
2.086
2.492
2.781
3.394
4.205

.698
1.329
1.708
2.039
2.428
1.693
3.250
3.941

Proposal

Cauch

.759
1.430
1.824
2.156
2.540
2.794
3.317
3.959

.750
1.419
1.817
2.158
2.550
2.917
3.355
4.005

2 with
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The first thing to check in Exhibit 4.15 is the agreement of the percentiles under the
normal with the percentiles of a t-density. There is a good, but not perfect, agreement with
the t-density for degrees of freedom about 0.6n. This seems to hold over the whole range of
n values from 5 to 100. This result confirms some speculation that the "studentized" ratios
behave like a t-density with reduced degrees of freedom, but the reduction may be larger
than expected.

The important question of the stability of the percentiles as the underlying density
varies can be examined using these results. As is to be expected, the largest variation
occurs with small n and a Cauchy density. For n = 5, if we computed a 99% confidence
interval, based on the normal figures, the interval would be 1.43 times longer than the
correct interval for a Cauchy density while a 99.99% confidence interval would be 1.51 times
longer than necessary. These results, as they are, are an order of magnitude improvement
over results using a classical t-interval.

As a second computation we consider the question of the degree of dependence between
T\ and T?. For the normal with estimates x and 5, we have independence and it is interesting
to compare the behavior of T\ and T2 with this. There is no standard measure of dependence
between two random variables. Renyi (1959) has proposed several measures which satisfy
most of the properties he feels are natural. We compute two of these measures for the joint
distribution of (Γ^Γj). The first of these ηn is a normalized version of the mean square
contingency,

Cn = (J f(k(x,y) - ir2dPnΛ(x)dPnt2(yή

with Jb(x,y) = Pn(*,y)/Pnα(*)Pn,2(y)> given as Γn = Cn/{1+ C*)1'2. The second measure
Ln is based on information theoretical considerations and can be written as

Ln(TltT3) = (1 - exp(-2/(T,,T2))1/2
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where /(TΊ,Γ2) = //*(a?,y)logib(x,y)flίPn,i(«)d^nt2(y) is the amount of information Γi
contains about TV

The calculations have been done for (7\,T2) giving the following results in Exhibit 4.16.

normal *3 Cauchy

n
5
10
15
20
25
30
35
40
45
50

Γ
n

.021

.015

.010

.008

.007

.007

.006

.006

.005

.005

Ln
.017
.016
.010
.008
.007
.007
.006
.006
.005
.005

Γ«
.101
.071
.056
.048
.043
.039
.036
.033
.031
.030

In
.090
.067
.054
.047
.042
.038
.035
.032
.031
.029

Γ
n

.351

.283

.241

.212

.192

.176

.163

.152

.143

.135

L
n

.326

.271

.233

.207

.187

.171

.158

.147

.137

.129

Exhibit 4.16
Dependence measures for (7\,T2)

There are several interesting features of these results including the considerable varia-
tion in the dependence structure for different underlying densities. It is perhaps surprising
to note such differences for rather similar underlying densities. Looking at the results as
n increases, the dependence measures seem to be approaching 0 at a rather slow rate. For
the case of the normal, it appears that Γn is decreasing at a rate of 1/π and in fact the
relationship Γn = l/(10n) gives a good fit to the data.

The purpose in this example has not been to carry out an extensive study of all in-
teresting properties of the robust location/scale but rather to illustrate the potential of the
approximation for examining these types of questions.

It is worth noting that if we set it = oo, we obtain the classical estimates of location
and scale. If the underlying density is iV(0,1), then the equation of Theorem 4.5 can be
solved explicitly giving oi(t) = tfa and <*2(t) = (*j - l)/2. The conjugate density ht(y)
is normal with mean t\ and variance t\. It is easy to show that the approximating formula
(4.25) becomes

fn(tut2) = (n/2τr)*r2exp(-n*!/2 - nt\/ϊ +

This agrees with the exact formula except for the constant terms which are in the ratio
/ 2 i / 2 3 / / /

from the constant term is relatively large, emphasizing the need for a numerical rescaling of
the approximation.

4.5.c Regression

We now consider modifying the approximation developed in the previous section to the
regression case. Let y, = 77,(0) + ti, be π iid random variables with scale parameter σ. The
estimates T = (Γi, ,ΓP + 1) of (θ,σ) are the values which minimize (Huber, 1981, Ch.14)
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n
Q{θ,σ) = Σ P((y "" th(^))/σ)σ + ασ; <r > 0 or equivalently solve

n

*((« - ikifi))l*)toHld8i = 0 , j = 1, ,p (4.26)

where ψ = pf and χ(x) = xV>(s) - />(*)• Since the observations y, are not identically
distributed, the results of the previous section cannot be applied directly but must be
modified. Note that p(x) = x 2 /2 gives the standard least squares estimates. To begin
the modifications required, let t be the point at which the density is to be evaluated,
Δ« = y,- — J? (t), fi the density of y, , where /, depends on the underlying value of (θ}σ),
say (flio, , θpo,σo), ZJ, j = 1, ,p + 1, the left hand side of the equations in (4.26). To
proceed with the centering result (cf. 4.23), let the conjugate density for the ith observation
be

where c*(t) is the appropriate normalizing constant so that f h[(y)dy = 1. Then it follows
that φ(a + iy,iv) = ΠΓsi ^(^Λ^iί'y*1^) where Λf(ΛΓi) is the moment generating func-
tion of (z\,- ;*p+i,Tιrm;Tp+ι) under density Λ(At)> i = l, ,n. From this it follows
that /n(t) = (ΠΓsi c ' (*) )" *t,n(*) where λ t |n is the density under the conjugate density
(tft >'# >^?) The vector α solves the following set of p+ 1 equations in p + 1 unknowns.

= 0, i = 1,- .p

= 0 (4.27)

The arguments expressing T n as a mean and obtaining the multivariate expansion given in
the previous section go through with minor notational changes. This leads to the following
approximating density for (7\, , T p,T p+i) where T\, ,Tp are the estimates of θ and Tp+χ
estimates σ:

/n(to) = (n/2*γ/1(f[cio J |det^||detΣ|"1/2

where
(4 28)

and J2 = {EZιZr}ι<ιtr<p+ι with the expectations E^zr to be interpreted as

£ & Σ ^Λ; [^((y - fi(t))/*p+ι)dfi/dtr] if r < p and with χ in the square brackets for

r = p + 1. Similar interpretations hold for EZιZr*
As a special case, assume /?(x) = x 2/2, α = n - 2, %(ί) = 0i + θ^{x% — x), tι, 's are

independent iV(0, cr2). The solution of the equations (4.26) yields the least squares estimates
for straight line regression. Equations (4.27) become
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= 0

t = l

— x))2 ft\ — (n — 2)] h\{yi)dyi = 0.

It can be seen that these equations will be satisfied if h\(y) is N(tι+t2(xi-x), (n-ΐ)t\/n).
By choosing ax(t) = (*i - 0i)W<Λ «a(t) = («a - θΊ)tz/σ2, o 3(t) = (t§/2σ2 - n/2(n - 2),
ftj(y) is N(tχ + <2(x, - x), (n - 2)<l/π) when fi(y) is ΛΓ(flχ + β2(xf - x),σ2). Evaluating
c (t), we obtain

• s i

2 - (t2 - θ2)
2 £ ( z , - x)2/2σ2 - (n - 2)*!/2σ0

2 + n 2 } .
=1 •*

It can be shown that detΛ = (n - 2) έ ( x t - x)2/2*|, (detΣ) 1 / 2 α(έ(^ - *)2) •
=1 i=l

The approximating density (4.28) evaluated at t = (fi,*2,*3) with underlying observations
Yij' - , Yn where Y> is iV(^i -h β2(x< - x), σ2) is:

A(t) = {tzl*Y

- (ί, - tf2)
2 f^(x, - x)2/2σ2 - (n - 2)ίi/2<r2}

up to a constant of integration. This agrees with the exact density up to the constant of
integration.

For other choices of p, it is not possible to find explicit solutions. Even for the case of
linear regression, we have to evaluate fn over a three-dimensional grid. In many situations
we are interested in the marginal density of one of the parameters. It's not usually feasible to
evaluate / n ( t ) over a grid and then numerically integrate to obtain the marginal density. In
section 6.3 we discuss a procedure which provides a one-dimensional technique to construct
confidence intervals for a function of the parameters in multiparameter problem.

Spady (1987) computes the saddlepoint approximation to the density of a symmetrically
trimmed least squares estimator for the censored regression model with an intercept and
one regressor.




