
CHAPTER 3. PARAMETRIZATIONS

In regular exponential families maximum likelihood estimation is

closely related to the so-called mean value parametrization. This parametri-

zation will be described after some brief preliminaries. The relation to

maximum likelihood is pursued in Chapter 5.

3.1 Notation

For v ε R , α € R let H(v, α) denote the hyperplane

H(v, α) = {x € Rk : v x = α}

Let H (a, α) and H~(a, α) be the open half spaces

H
+
(v, α) = ίx ε R

k
 : v x > α}

H"(v, α) = {x ε R
k
 : v x < α}

When (v, α) are clear from the context they will be omitted from the notation

Note that the closure of H~ is written H" and, of course, satisfies

ΪΓ= H U H
1
.

STEEP FAMILIES

Most exponential families occurring in practice are regular (i.e.

W is open). However, for technical reasons which will become clear in

Chapter 6, it is \/ery useful to prove the parametrization Theorem 3.6 for

steep families as well.

70
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3.2 D e f i n i t i o n

Let φ: R + (-°°, « ] be convex. Let W = {θ € Rk: φ(θ) < °°}

Assume Φ i s c o n t i n u o u s l y d i f f e r e n t i a t e on N°. Let θ . e W - Λ/°f θ o e W ° ,

and l e t θ = ΘQ + ρ ( θ 1 - Θ Q ) , 0 < p < 1 , denote p o i n t s on the l i n e j o i n i n g

ΘQ t o Qy Then, φ i s c a l l e d steep i f f o r a l l θ j € N - W°, ΘQ € A/° ,

(1)

( I 1 )

Q

lim (θj - ΘQ) Vφ(θ ) = oo

Note that (1) is the same as

l i m f - φ ( θ ) =
Λ 1 dp p

Figure 3.2(1): An i l lustrat ion of the definition of steepness

A standard exponential family is called steep i f i ts cumulant

generating function, ψ, is steep. (A steep convex function is sometimes

referred to as an "essentially smooth" convex function.) Note that i f the

exponential family is regular then i t is a fortiori steep since N - W° = φ
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Here is a convenient necessary and sufficient condition for

steepness.

3.3 Proposition

A minimal standard exponential family is steep i f and only i f

(1) E J l l x l l ) = oo for al l θ € W - W°
o

Proof. Suppose the family is steep. Then

(θ
1
 - Θ

Q
) Vψ(θ

p
) = (θ

χ
 - Θ

Q
) ξ(θ

p
) + ° o as p t 1

This i m p l i e s EQ ( ( θ j - ΘQ) X) -* °° 9 which i m p l i e s ( 1 ) .

P

The converse seems not to be easy to prove without further prepara-

tion. We postpone the proof to Chapter 6. It appears after the proof of

Lemma 6.8. ||

3.4 Example

There is one classic example of a steep non-regular family which

occurs in a variety of applications. I t is the family of densities defined by

(1) ( π ) " 1 / 2 z " 3 / 2 e x p ( θ l Z + Θ 2 ( l/z) - ( - 2 l θ χ θ 2 ) 1 / 2 - ( l / 2 ) l n ( - 2 θ 2 ) ) )

relative to Lebesque measure on z € (0, «>). The canonical statistics are

(xi, X2) = (z, 1/z) and the natural parameter space is

(2) N = (-00, 0] x (-co, 0)

T h u s t h e f a m i l y i s n o t r e g u l a r b u t is s t e e p s i n c e E / n Q \ ( x
Ί
)
 =
 °° "for a l l

\U»y
2
) 1

$2 G (~°°> 0) These densities are referred to as inverse Gaussian. They

arise, for example, as the distribution of the f i r s t time (x,) that a standard

Brownian motion crosses the line &{t) = /-2Θ? - /-2Θ, t . Note that these

densities with θj = 0 are the scale family of stable densities on (0, «>) with

index h- See Feller (1966). For some other steep non-regular families see

Bar-Lev and Enis (1984).
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MEAN VALUE PARAMETRIZATION

We begin with a useful lemma which involves a natural relation

between parameter space (Θ) and sample space (X). Similar relations will

reoccur several times and we have found it useful to draw pictures to illus-

trate the geometric relationships involved. Figure 3.5.1, below, is a simple

example of such a picture which illustrates the hypotheses of Lemma 3.5.

JN

Figure 3.5.1: Illustrating the hypotheses of Lemma 3.5 when k = 2.

3.5 Lemma

Let v € Rk, α € R. Let K <= Rk be compact. Suppose

v(H (v, α)) > 0. Then there exists a constant c > 0 such that

(1)

( I 1 )

λ(θ + pv) > ce pα V θ € K, p > 0

(Note that (1) is equivalent to

ψ(θ + pv) >̂  pα + log c V θ € K, p _> 0

I f θ + pv I A/ then λ(θ + pv) = °° so that (1) is t r i v i a l . )
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Proof.

(2) λ(θ + pv) = / e ( θ + p v ) χv(dx) > e p α Γ eθ χv(dx) > cep α

H

where

(3) c = inf / eθ # xv(dx) > 0 .
Θ€K H

((2) shows that i f c = °° here then λ(θ + pv) = °° for a l l θ € K and al l

p > 0 . ) ||

Note that (3) provides an expl ici t formula for the constant c

appearing in formula (1). Exercise 3.5.1 contains a converse to this lemma.

Here is the main result.

3.6 Theorem

Let {p0} be a minimal steep standard exponential family. Then

ζ(θ) = E
Θ
(X) defines a homeomorphism of M° and K° (i.e., ξ: H° + K° is

continuous, 1-1, and onto. Of course, if {p
Q
} is regular then ξ: U -> K°

since M = M°).

Proof. ξ is continuous on W° by Theorem 2.2 and Corollary 2.3. It is

1-1 by Corollary 2.5. It remains to prove that ξ(W°) = K°, that is, to show

(1) x € K° => x e ξ(Λ/)

It suffices to prove (1) for x = 0, for then the desired result for arbitrary

x e K° follows upon translating the origin, which is justified by Proposition

1.6. So, assume 0 € K°.

Let Sj = ίv e Rk
: llvll = 1}. Since 0 € K° there is an

ε > 0 such that

(2) v(H
+
(v, ε)) > c > 0

for all v € S.. (If not, there would be sequences v. € S1 with
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v. -> v e Sι and ε^ -> 0 f o r which v(H + (v Ί ., ε . ) ) -> 0. This would imply

v ( f l + ( v , 0 ) ) = 0 which contradicts 0 € K° . ) Now apply Lemma 3.2 (with

v = θ / | | θ | I and p = I | θ | | ) including the expression 3 . 2 ( 3 ) f o r the constant

appearing in the lemma to get

(3) ψ(θ) > I I θ l l ε + log c

with c as i n ( 2 ) . Thus

(4) l im ψ(θ) = oo

l l θ l IHOO

(See Exercise 3 . 6 . 2 and Lemma 5 . 3 ( 3 ) f o r restatements of ( 3 ) , ( 4 ) . )

Any lower semi-continuous function (such as ψ) defined on a closed

set and which also s a t i s f i e s (4 ) must assume i t s minimum. To see t h i s , l e t

Ψ(ΘΊ.) = i n f ίψ(θ) : θ e R k } . I I Θ . M -> « i s impossible by ( 4 ) . So, there

is a convergent subsequence, θ . , -> θ * , and ψ ( θ * ) = i n f ίψ(θ) : θ € R } by

lower semi-cont inui ty . ) This minimum is assumed at a point θ * € W.

Suppose θ* € N - W°. Then, for some 0 < p1 < 1 ,

ψ(θ ,) < ψ ( θ * ) = l im ψ ( θ n + p ( θ * - θ n ) ) by v i r t u e of 3 . 2 ( 1 ' ) of the d e f i n i t i o n
p p+1 U U

of steepness. Hence no θ * G W - W° can be the minimum point f o r ψ. I t follows

that θ * € W°.

Hence

ξ ( θ * ) = Vψ(θ*) = 0

since ψ is differentiate on a neighborhood of θ*. (Here we use Theorem 2.2,

Corollary 2.3, and the fact that θ* € W° an open set.) This proves (1) for

x = 0 and, as noted, completes the proof of the theorem. ||

3.7 Interpretation

Theorem 3.6 shows that a minimal, steep family with parameter

space N° can be parametrized by ξ = ξ(θ), and the range of this parameter is

K°. This is the mean value yavametvization. In this parametrization the

resulting family is an exponential family, but of course is no longer a
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standard exponential family (except when ζ( ) is a f f i n e ) . Write

(1) θ(x) = ξ - 1 ( x ) = (θ : ξ(θ) = x)

The exponential family parametrized by ξ then has densit ies

Pr(x) = exp(θ(ξ) x - ψ ( θ ( ξ ) ) ) . For a number of applications th is parametri-

zation is more convenient than the "natural" parametrization described by the

canonical parameter θ. I f {p f i } is regular then W = N° and the mean value

parametrization reparametrizes the f u l l fami ly.

Minimality was used i n Theorem 3.6 only to guarantee that the map

is 1-1. Even without minimality the map ξ discriminates between d i f f e r e n t

d i s t r i b u t i o n s in {?'. θ C N]. Hence one can s t i l l use the mean-value

parametrization to conveniently index {P A : θ e N°}, and the range of the mean

u

value parameter is the relative interior of K. (Equivalently, one may reduce

to a minimal family by Theorem 1.9 and then apply Theorem 3.3.)

If the family is not steep then ξ(W°) c K°. We leave this fact —

relatively unimportant for statistical application -- as an exercise. In this

case it is even possible to have ξ(W°) not convex. See Exercise 3.7.1 for

an example due to Efron (1978).

3.8 Example (Fisher-VonMises Distribution)

For a number of common exponential families the mean value

parametrization is the familiar parametrization, or nearly so. For example,

for the Binomial (N, π) family the expectation parameter is Nπ, for the

Poisson (λ) family the expectation parameter is λ, and for the exponential

distributions (gamma distributions with index α = 1 and unknown scale, σ)

the expectation parameter is σ. For the multivariate normal (μ, I) family the

expectation parameters are μ and μμ
1
 + I (corresponding to the canonical

statistics of 1.14). The mean value parameters are not always so convenient.

Nevertheless it is necessary to consider this parametrization in order to

construct maximum likelihood estimators. See especially Theorem 5.5.
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Accordingly, we now discuss the mean value parametrizat ion f o r the Fisher-

VonMises d i s t r i b u t i o n .

Let v be uniform measure on the sphere of radius one i n R .

Consider the exponential family generated by v. When k = 2 t h i s is the

VonMises family. When k = 3 i t is the Fisher family of d i s t r i b u t i o n s . These

d i s t r i b u t i o n s appear o f t e n i n a p p l i c a t i o n s , wi th a v a r i e t y of parametr izat ions,

to model angular data i n R . Consult Mardia (1972) f o r an extended treatment

of these f a m i l i e s ; see also Beran (1979). (Frequently one considers a sample

of n observations from one of these d i s t r i b u t i o n s . The sample mean, X , is

then also said to have a VonMises or Fisher d i s t r i b u t i o n . The mean value

parametrization f o r the family of d i s t r i b u t i o n s of X i s , of course, i d e n t i c a l

to that below since E Q ( X j = EQ(X). See also 5 . 5 ( 3 ) . )u n u

The Laplace transform of v i s

where I (•) denotes the modified Bessel function of order s. When k is odd

these functions have a convenient representation in terms of hyperbolic

functions; for example

(2) I
1 / 2

(r) = (2/πr)
1 / 2
 sinh r

I
3 / 2

(r) = (2/πr)
1/2
(cosh r - (sinh r)/r)

(See, for example, Courant and H u b e r t (1953).) These functions also have

nice recurrence r e l a t i o n s ; in p a r t i c u l a r

(3) I ^ ( r ) = I $ + 1 ( r ) + s l s ( r ) / r , s >_ 0, r > 0

By symmetry, or by calculation, it follows that ξ(θ) lies in the

same direction as θ, that is

(4) ξ ( θ ) / | | ξ ( θ ) | | = θ/||θ|| , θ t 0, and ξ(0) = 0
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It remains therefore to give a formula for ||ξ(θ)||. For this purpose it

suffices to consider the case where θ = (r,0,...,0), and to calculate

—: In λ
v
(θ

r
). For the Fisher distribution (k = 3) one gets from (1) - (3)

that

(5) ||ξ(θ)|| = coth ||θ|| - M θ l Γ
1

For the Von Mises distribution (k = 2) one gets only the less convenient

expression

(6) l|ξ(θ)|| = i
χ
(I |Θ||)/i

o
(||θ|I) .

Although (6) is less convenient that (5), it can be used in conjunction with

series expansions or tables of the modified Bessel function to provide

numerical values for ||ξ(θ)||, and other information about ||ξ(θ)||.

MIXED PARAMETRIZATION

M
We refer to the type of situation discussed in 1.7. M = (

M
 ) is

M2
a partitioned kxk non-singular matrix with M,M* = 0. Write

M.x = z. i = 1, 2

(1)

(MT)'Θ = φ i i = 1, 2

Φi -i
(Thus (. ) = (M )'θ .) Where convenient we write φ. = φ. (θ) to emphasize the

dependence on θ, etc.)

Note that

(2) M.ξ(θ) = E ^ M ^ ) = E
Θ
(Z.) = ζ.(θ) (say) i = 1, 2 .

Recall also that one may without loss of generality visualize only

the case where M = I. In this case φ] = (θj. . .θ ), z' = (x
 + 1

, . . .
f
x

k
) ,

ζ
2 = ^nH-l- ^

 e t c
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The following result is valid for steep families but for

simplicity we state and prove it here only for regular families. See

Exercise 3.9.1.

3.9 Theorem

Let {p
Q
} be minimal and regular. Then the map

/
ζ
Ί

( θ )
\

(3) e - ( 1 )

is 1 - 1 and continuous on N° (=W) with range

(4) ζ^W0) x Φ2(W°) = K°{1) x φ2(W°) .

Proof. Fix φ
2
 € Φ

2
(W) and refer to Theorem 1.7. The distributions of

Zj given Φ
2
(θ) = Φ

2
 form the minimal regular standard exponential family

generated by v
 0
 . According to Theorem 3.6 this family can be parametrized

(in a 1 - 1 manner) by ζ
Ί
(θ) = E

Q
(Z

n
). The range of this map is

int (conhull (supp v
 0
)) = K° (say) .

*2 Φ
2

The formula for v is given in 1.7(5), but all that needs to be noted is that
Φ

2
K
l° =

 K
ll)

 T h e m a p in
 (

3
)
 is t h e r e f o r e ι

 - 1 with range as in (4).

Continuity of the map in (3) is immediate from continuity of ζ. ||

3.10 Interpretation

The above theorem has an interpretation like that of Theorem 3.6.

Any minimal regular exponential family can be parametrized by parameters of

the form 3.9(3), above. This parametrization is called the mixed

parametrization.

Consider a mixed parametrization with parameter (. ), as above.

ζj Q

Then the family of densities corresponding to the parameters {( ) : Φ
2
 = Φ

2
)
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forms a f u l l standard exponential family of order m. (See Theorem 1.7.)

However, i f one f ixes the expectation coordinate and looks at the family

ζ l 0

corresponding to the parameters { ( . ) : ζ = ζ-} then one gets in general

only some non-ful l standard family of dimension and order k, whose parameter

space is a (k - m) dimensional manifold in hi. Here is an example.

Consider the parametrization of the three dimensional multinomial

(N, π) family discussed fol lowing 1.8(6). A mixed parametrization for th is

family involves

ζ Z 2π

4 4 ' +

and

Φ3 = (h) log

Note that the range of (_ ) is
ζ2

h <
 2N}

independent of the value of φ~ € (-«>, °°), as claimed by Theorem 3.9. For fixed

0 Z l
Φo = Φo the distributions of ( 7 ) form a 2 dimensional exponential family

(of order 1) having expectation parameter ( r ). (In the genetic interpretation
ζ 2

for this parametrization the parameter Φ̂  measures the strength of selection

in favor of the heterozygote character Gg.)

On the other hand the family of distributions corresponding to

fixed ( ) is not so convenient. I t is the non-linear subfamily of the usual
ζ2

f u l l standard family described by

(1) Θ = {θ : 2eθ l + e 0 2 = (ζ^^Σe^h

( I f one reduces the usual standard exponential family to a minimal family of
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dimension 2, then the parameter set becomes a smooth one-dimensional curve
2

w i t h i n R . This provides an example c

defined below. See Exercise 3.11.2.)

2
w i t h i n R . This provides an example of a curved exponential f a m i l y , as

DIFFERENTIABLE SUBFAMILIES

3.11 Descript ion

A differentiate subfamily i s a standard exponential fami ly wi th

parameter space Θ an m-dimensional d i f f e r e n t i a t e manifold i n N. An

especia l ly convenient s i t u a t i o n occurs when Θ is a one-dimensional manifold --

i . e . a d i f f e r e n t i a t e curve. Such a family i s c a l l e d a curved exponential

family. (A technical p o i n t : i t i s of ten convenient to assume that the

parameter space is smoother than being merely d i f f e r e n t ! a b l e -- f o r example,

to assume i t possesses second d e r i v a t i v e s . Whenever convenient we consider

such an assumption implicit in the definit ion of a d i f f e r e n t i a t e subfamily,

writing formulae for relevant second or higher derivatives (as in (3) below)

carries with i t the assumption that these derivatives exist.)

In a d i f f e r e n t i a t e subfamily the parameter space can be written

locally as {θ(t) : t e N} where N is a neighborhood in Rm and θ( ) is

differentiable and one to one. Properties of such a family around some

ΘQ € Θ can often be most conveniently studied after invoking Proposition 1.6

to rewrite the family in a more convenient form. For example in a curved

exponential family m = 1 and the proper choice of ΦQ, zQ and M in that proposi-

tion transforms the problem into one in which

θQ = 0 = θ(t Q )

(1) ξ(θ0) = Eθo(X) = 0

Z(θn) = I
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Γ

• ϊ t θ ( V •

(2)

θ(t
Q
) =

a
2
b

a
2
/p

0

0

(The value p = «> is possible.) Furthermore, one can linearly reparametrize

the curve so that Θ
Q
 = θ(0) (i.e. so that t

Q
 = 0) and so that a = 1 and (2)

becomes

(3) θ(0) = 1/p

0

ό

In this form p is the radius of curvature of the curve θ(t) at

t = 0. The value of 1/p is sometimes referred to as the statistical

curvature of the family at Θ
Q
. Its magnitude is uniquely determined by the

above reduction process. Alternately, in an arbitrary curved exponential

family it has the formula

(4) = (Bit

where

A ' ΫfV

with θ = θ ( t Q ) , θ = θ ( t Q ) , % = 2 ( θ ( t Q ) ) . See Efron (1975).

Remark on Notation. The general functional notation θ( ) was introduced i n

3.7(1) as θ(x) = ξ" ( x ) . We w i l l continue to use th is general notation i n
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contexts not involv ing speci f ic d i f f e r e n t i a t e subfamil ies. In contexts

involv ing d i f f e r e n t ! a b l e subfamilies the notation θ( ) w i l l usually refer to

a ( l o c a l ) parametrization of the subfamily; i f so, th is f a c t w i l l be e x p l i c i t l y

noted. Although th is means that the \/ery convenient notation θ( ) can hence-

f o r t h have e i ther of two meanings we hope there w i l l be no confusion --

simply remember that θ( ) is defined by 3.7(1) except where e x p l i c i t l y stated

otherwise.

3.12 Example

Let Z have exponential density, " M
z
) = e"

 z
 χ/

Q
 ^ ( z h

relative to Lebesgue measure. Let T > 0 be a fixed constant. Let Y be the
p

truncated variable Y = min (Z, T) and X(y) € R be

(y, 0) if y < T

x(y) =

(y, l) if y = T

For λ € (0, o°) the distribution of X form a standard curved exponential

family. The dominating measure v is composed of linear Lebesgue measure on

the line ((0, T) x 0) plus a point mass on (T, 1). The parameter space for

this family is

(1) 0 = {θ € R2 : θ
χ
 = -λ, θ

2
 = -In λ, λ € (0, °°)}

and

(2) ψ(θ) = log [̂ - ( e
θ l T
 - 1) + e

θ l + θ z
]

(The natural parameter space is R , since v has bounded support.) Figure 1

displays both Θ and K on a single plot.
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Figure 3,12(1):

Θ and K for Example 3.12.

We return to this example in Chapter 5.
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EXERCISES

3.4.1

Let X ^ X
2
,...,X

n
 be a sample from a population with the inverse

Gaussian distribution 3.4(1). (i) Show that S = Σ X. also has an inverse
i = l Ί

2 tS
Gaussian d i s t r i b u t i o n w i t h p a r a m e t e r s θ , , n θ~ [Examine E(e ) . ]
( i i ) Show t h a t S and ( X T 1 - X " 1 ) a r e i n d e p e n d e n t , [ ( i ) shows t h a t

2
( S , ^ - ) *υ Expf ( θ j , θ 2 ) . Now use Theorem 2 . 1 4 . ]

3 . 5 . 1 (Converse t o Lemma 3 . 5 )

L e t v € R k , α € R. Le t K cz A/ be compact. I f v ( H " + ( v , a)) = 0

then

( 1 ) Ί im sup λ ( θ + p v ) / e p α = 0
θ€K

A l s o , i f v ( H + ( v , α ) ) = 0 t h e n

( 2 ) l i m sup λ ( θ + ρ v ) / e p α <
Θ€K

(Be c a r e f u l , these r e s u l t s may be f a l s e i f K £ A/.)

I n p a r t i c u l a r , f o r θ e N

( 3 ) ψ ( θ + pv) -> -~ as p

i f and o n l y i f v ( H + ( v , 0 ) ) = 0 .

3 . 5 . 2

Let Z e K°. Let ε
1
 = inf {| |x - Z| |: x ί K} > 0 . Show

(1) lim -
 Θ
'

Z
) =

[Translate to the case where Z = 0, using 1.6(3) with φ
Q
 = 0 , Z

Q
 = Z. Then

this result is a minor variation of 3.6(3), and could also have been used to

establish 3.6(4).]
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3.6.1

Is the fol lowing assertion a va l id converse to Theorem 3.6:

Let {p Q } be a minimal standard exponential family. Then ξ : A/° -> K° is a

homeomorphism i f and only i f {p Q } is steep. (?) [ I f k = 1 th is is easy to

prove.]

3 . 7 . 1

Define the measure v on { ( x , , Xo) -0 0 < Xi < °° » x 2 = 0 o r

xλ = 0 , x 2 > 0} by

e - | t |
v ( ( A , 0 ) ) = J c n ^ — r d t , A d i - , - ) , v ( ( R , 0 ) ) = 1 ,

A u l + t H

( 1 )

v((0, A)) = / e - t dt A c (0, co)

(i) Show the exponential family generated by v has N = {θ: -1 <_ θ- <_ 1, θ
2
 < 1}

and is not steep, (ii) Show that ξ(M°

that ξ(A/°) is not even convex. [Show

and is not steep, (ii) Show that ξ(M°)
 c
 K° = {x : x

2
 ̂  0} and furthermore

1 . _ J 2 2

for appropriate c, k.] See Efron (1978).

3.9.1

Prove the conclusion of Theorem 3.9 i f {p Λ } is minimal and steep.
u

of of Theorem 3.9 let Φ
2
 € N° and show (using Defini

v is steep. For ease of proof assume (w.l.o.g.) that M = I.]
Φ

[ I n the proof of Theorem 3.9 l e t Φ2 € N° and show (using Def in i t ion 3.2) that

3 . 1 1 . 1

Verify the formula 3.11(4) for the s t a t i s t i c a l curvature of a

curved exponential fami ly.
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3.11.2

( i ) Verify 3.10(1). ( i i ) Reduce the three-dimensional multi-

nomial family to a two-dimensional minimal family and show that 3.10(1) now

corresponds to a curved exponential family. ( i i i ) Fix ζ j and calculate the

stat ist ical curvature of the resulting family as a function of the remaining

parameter, φ~. (iv) For what value(s) of ζ,, <fu is the curvature zero?

Why?

3.11.3

Consider an m-dimensional d i f f e r e n t i a t e subfamily inside a k

parameter exponential family. Write a canonical form for this family analogous

to that in 4.14(1) - (3). [The case m = 1 required two canonical parameters --

b,p — in 4.14(3). The general case requires m + m(m + l)/2 parameters.]

3.12.1

Let {p } be a canonical k parameter exponential family.
Ό

Let inf ίψ(θ): θ e W} < C < sup ίψ(θ): θ £ W}

and l e t 0 = {θ € A/°: ψ(θ) = C}. { p Q : θ e 0} can be c a l l e d a stratum o f

{p θ e hi] . ( i ) Show t h a t { p Q : θ € 0} i s a (k - 1) dimensional d i f f e r e n -

t i a b l e sub fami ly o f {p : θ € N} . ( i i ) Le t θ 1 = ( θ n \ » Θ ( 2 ) ^ ' w n e r e θ ( χ )

i s (k - 1) x 1 and θ / 2 ) i s l x l . Let θ ( t ) be any ( l o c a l ) p a r a m e t r i z a t i o n o f

{ p Λ : Θ £ W w i t h t e ί c R k " 1 . Then

8 θ m ( t ) B θ ? ( t )

( i) ξ ( 1 ) ( θ ( t ) ) - i l l — + ξ ( 2 ) ( θ ( t ) ) -£- - o .
J

(iii) Let θ° e 0 be any point with ζ(2)(
θ
°) ^ °

 τ h e n o n a
 neighborhood of

θ° in 0 one may write θ/
2
\
 a
s a function of θ / ^ — i.e. Θ /

2
N =

 θ
(2)^

θ
(i)^ ""

and
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3.12.2

Show t h a t the d i s t r i b u t i o n s of X described below can be represented

as s t r a t a of canonical exponential f a m i l i e s (See 3.12.1 f o r d e f i n i t i o n . )

( 1 ) X ~ N ( Θ , I ) , | | θ | | 2 = C .

( i i ) The d i s t r i b u t i o n s of X - ( 0 , l ) with X defined in Example 3 . 1 2 .

( i i i ) Let Y.., Y p , . . . be i . i . d . from a canonical regular

exponential f a m i l y , { p . } . Let N be any Markov stopping time ( i . e .
n

{y: N(y) = n} is measurable with respect to Y 1 5 . . . , Y j . Let S n = Σ Y. .

Let X = (S*., N) = (X/i\» X/o\)» a n c* consider only values of φ such t h a t

P.(N < °°) = 1. [Let θ = ( Φ - ψ ( θ ) ) where ψ(φ) is the cumulant generating

function for the o r i g i n a l family { p ώ ) ]

3.12.3

In 3.12.2 ( i i i ) show that 3.12.1(2) is identical to the following

conclusion also derivable from the martingale stopping theorem:

(1) E(SN) = E(Y) E(N) .

((S
n
 - n E(Y) is a martingale and so (1) also follows from the stopping theorem

applied to this martingale.)

3.12.4

(i) For the family in 3.12.1(i) show the statistical curvature is

the constant l/fC. (ii) Calculate the statistical curvature for the families

described in Example 3.12 and Exercise 3.12.1(ii).

3.12.5

A Poisson process on [0, 1] with intensity function ρ(t) _> 0 may

be characterized by the property that the number of observations in any
b

interval (a, b) c [0, 1] has P( / ρ(t)dt) distribution, and the number of
a

observations in disjoint intervals are independent random variables. Let
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T, <...< T
γ
 denote the observations from a Poisson process on [0, 1], Suppose

m α.
(1) p(t) = Π p

 Ί
(t)

i = l
 Ί

where p. > 0 are known (measurable) functions on [0, 1] and α. are unknown

parameters. Show that the distributions of (T-,... ,T γ , Y) form a differen-

t i a t e subfamily of dimension m in an (m + 1) parameter exponential family.

Identify the canonical stat ist ics and observations for this family. Is this

family a stratum of the original family? [The conditional distribution of

T,,...Tγ given Y is that of an ordered sample of Y independent observations
m α*

from a distribution on [0, 1] with density proportional to Π p. ( t ) . ]
i = l Ί

3.12.6

Let Z.. be independent i d e n t i c a l l y d i s t r i b u t e d variables with a

power s e r i e s d i s t r i b u t i o n :

(1) P ( Z . j = z) = C(λ) h ( z ) λ Z , z = 0 , l , . . , λ > 0.

YΊ - 1
Let YQ = 1 and d e f i n e Y p . . . i n d u c t i v e l y as Y. = Σ Z^. . YQ, Y , , . . . i sYQ Ί

... inductively as Y. = Σ Z^. . Y
Q
, Y,,... i

J " ~ •!•

cal led the Galton-Watson process with generating d i s t r i b u t i o n ( 1 ) . Fix

2 <̂  n < °°. Show that the d i s t r i b u t i o n s of YQ, Y-,...,Y form a curved

n-1 n
exponential family with natural s t a t i s t i c s ( Σ Y. , Σ Y.) and th is curved

0
 J

 0
 J

exponential family is a stratum of the corresponding full exponential family.




