
LECTURE XIV. A THIRD ABSTRACT NORMAL APPROXIMATION THEOREM

In order to see the relation of the results of the tenth lecture to the

abstract formulation of the first lecture it will be necessary to introduce

fairly elaborate formalism. Roughly speaking, in order to obtain an exchange-

able pair as in the first lecture we introduce a new random point conditionally

independent of the original one given C and with the same conditional distribu-

tion given C. This requires a new sample space, big enough to carry the

original σ-algebra β and its copy β
1
 corresponding to the new random point.

The resulting structure seems quite formidable, but I believe it will be useful

in the long run, although the simpler treatment of the tenth lecture and the

even simpler treatment introduced at the end of the first lecture should

suffice for many problems.

Let (Ω^,β,^) be a probability space, let β, β
1
, and C be sub-σ-algebras of

β and suppose that, under P , β and β
1
 are conditionally independent given C.

Also let β be a sub-σ-algebra of ί ί and β
1
 a sub-σ-algebra of &', and let

γ: Z -> "Ω be an involution, that is

(1) Ύ
2
 " I* .

Ω
such that

(2) γ B € β for all B € β,

(3) B € β « "γB € β 1
,

-1
(4) B € β « γ B € β 1

,
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re "' «

(5) PoΎ = p,

and

-1
(6) γ C = C for all C € C.

Thus γ is a P-measure preserving involution of the measurable space (Ω,β) that

interchanges 3 and β
1
 and also interchanges β and β

1
 and leaves each

C-measurable set invariant. Also let G be a real-valued β-measurable random

variable with

(7)

and

(8)

For

(9)

defi ne

PS

any β-measurable random variable

Z

E|G|

W =

Z I

• =

E
β
G.

shall write

-1
Zo γ .

The conditions formulated in this paragraph will be referred to as the basic

assumption of this lecture.

Now I can develop a sequence of lemmas, a theorem, and a corollary that

are completely analogous to those of the tenth lecture. Only Lemma 1 will be

proved since the proofs of the other results are obtained from the corresponding

proofs of earlier lectures by obvious modification.

Lemma 1: In addition to the second basic assumption suppose f: R -> R is

a bounded, Borel-measurable function. Then

(10) EWf(W) = EG(f(W)-f(W)) + E(E
C
G)(E

C
f(W)).

Proof:

(11) EWf(W) = E(E
β
G)f(W) = EGf(W)

= EG(f(W)-f(W)) + EGf(W')

= EG(f(W)-f(W)) + E(E
C
G)(E

C
f(W)).
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The first equality uses (8) and the second uses the fact that, again by (8),

W is β-measurable. The third equality is trivial and the fourth uses the

conditional independence given C of the S-measurable random variable G and the

β'-measurable random variable W
1
.

Lemma 2: In addition to the second basic assumption, suppose h: R + R

is a Bore!-measurable function such that, for some positive constant C we have

(12) |h(w)| £C(l + |w|)

for all w € R. Let N and UN be defined as in (II.2) and (II.4) and for brevity

let

(13) f = UNh.

Then f is bounded and

(14) Eh(W) = Nh + E[f (W)-G(f(W)-f(W'))] - E(ECG)(ECf(W)).

The proof is analogous to that of Lemma 1.4.

Lemma 3: In addition to the second basic assumption suppose h: R -> R

is absolutely continuous and satisfies (12) and also that

(15) E|G|(W-W')2 < oo.

Then, with f as in Lemma 2,

(16) Eh(VI) = Nh - E(ECG)(ECf(W )) + Ef '(WJCl-GίW-W1
 )]

+ jEG(z-W')|Xz < W} - Λ z < W'^f'tzjdz.

The proof is analogous to that of Lemma III.I.

Theorem 1: In addition to the second basic assumption suppose h: R -> R

is bounded and absolutely continuous. Then

(17) |Eh(W) -Nh | < J\ sup|h-Nh|E|E
C
G|

+ 2 sup|h-Nh| / E [ 1 - E B
G ( W - W )f + ^ sup|h' |E|G|(W-W )

2
,

and, for all real WQ,
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(18) |P{W < w
o
> - Φ(w

o
)| l / f E|E

C
G|

+ 2 / E [ 1 - E
B
G ( W - W ) ]

2
 + A / E | G | ( W - W ' )

2
 .

The proof is analogous to that of Theorem III.I.

Now I shall try to indicate how this can be thought of as a special case

of the formalism of diagram (1.28). We start from the definition of

α: 3
Q
 -* 3 by

(19) (αf)(ω) = \ [G(ω)-G (ω)][f(W(ω))+f(l.(ω))].

Clearly αf is antisymmetric in the sense that

(20) (αf)oγ = - αf.

Then we have

(21) 0 = E 1 (G-G')[f(W)+f(W)]

= E l (G-G')[2f(W)-(f(W)-f(W))]

= E[(G-G')f(W) - j(G-

= EE
β
[(G-G')f(W) - l (

= E[Wf(W)-(E
C
G)f(W) - 1 E

β
(G-G')(f(W)-f(W))]

= E[Wf(W)-(E
C
G)f(W) - E

β
G(f(W)-f(W'))].

Now let us look at the separate steps of (21) and later at the way (21)

fits into the formalism of diagram (1.28). On the second and third lines I

have used trivial identities to rewrite the expression under the expectation

sign. The crucial step is the introduction of the conditional expectation

operator E
β
 on the fourth line, leading to the identity

(22) EE
β
[(G-G')f(W) - 1 (G-G )(f(W)-f(W))] = 0.

In going from this to the next line I have evaluated the conditional expecta-

tion of the first of the two terms in brackets. First,
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(23) E
β
Gf(W) = (E

β
G)f(W) = Wf(W),

since W is related to G by (8), and therefore is β-measurable. Second,

(24) E
β
G'f(W) = (E

β
G')f(W) = (E

C
G')f(W)

since β and β
1
 are conditionally independent given C, and G

1
 is β'-measurable.

Thus we obtain

(25) E[Wf(W)-(E
C
G)f(W) - 1 E

β
(G-G')(f(W)-f(W'))] = 0.

The last line of (21) is obtained by using the exchangeability of (G,W) with

(G',W):

(26) ElE
B
(G-G')(f(W)-f(W))

= l\ (G-G')(f(W)-f(W))

= EG(f(W)-f(W')) = EE
β
G(f(W)-f(W)).

Now let us see how (21)-(26) fit into the formalism of diagram (1.28).

The identity (22) fits the top line of this diagram exactly, asserting that

(27) EoT = 0,

with T: 3 -> % defined, apart from the difficulty of matching probabilistic

and algebraic notation, by

(28) T = E
β
.

Of course E is just the appropriate expectation mapping. Also (25) is

obtained from (22) by straightforward evaluation of the conditional expecta-

tions occurring in (22) so it too can be considered a realization of diagram

(1.28). The final form of (21), which is essentially the same as (10) in

Lemma 1 was included mainly in order to obtain a development closer to that of

the tenth lecture. I believe (25) will eventually prove to be more useful.

The basic idea of diagram (1.28) may become clearer if it is given an

even more abstract formulation. Let us look at the diagram
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(29)

where 5, χ
9
 y, 3

Q
, χ~, and y~ are linear spaces and all the arrows represent

linear mappings. It is assumed that

(30) EoT = 0

and

(31)

and

(32)

Then

(33)

= V
U
0

 +
 V

E
0

γ = E°β°i
0
.

0 = EoTo
α
oU

Γ

i^ -δ
o
°E

Q
)

Thus we have expressed E°$-γ<>E
0
, a measure of the departure from commutativity

of the right-hand square, in terms of T
o
α-β°T

Q
, a measure of the departure

from commutativity of the left-hand square.

We can imagine this as arising in the following way. We start with only

part of the diagram:
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(34)

We are given the linear mapping E: X + y and typically %
Q
 is a linear subspace

of X and 6 is the appropriate inclusion mapping. Our aim is to approximate

E°ρ: %
0
 +y

9
 and 3 and T, satisfying (30) have been constructed to further that

aim. Then the linear spaces 3
Q
 and y~ and the linear mappings T

Q
: 3L -> %

Q
 and

E
Q
: ^ Q -^VQ

 a r e
 constructed as a partial approximation to the top line of the

diagram, with the connections α and γ. As indicated earlier, when the structure

is completed by specifying IL: %
Q
 -*- 3L, and δ

Q
: y* -> %

0
 satisfying (31) and

(32), we are able to derive (33), which may provide a useful expression for

Let us look at the conditions (31) and (32). In the special case of

diagram (1.28), condition (32) holds because y = y^ = R, γ = I
R
, 3 and δ

Q
 are

inclusion mappings, and for constant c, Ec = E
Q
c = c when E and EQ are expecta-

tion mappings. In all the applications I have ever considered for this

formalism the condition

(35) E
Q
oT

0
 - 0

has been satisfied, which seems natural because the lower line of diagram (29)

is intended as a partial approximation to the upper line. When (35) holds,

(31) implies that

(36) T
Q
 - T

0
oU

0
oT

0
,

that is, U
Q
 is a pseudo-inverse of T

Q
. Actually in all the applications

considered in this set of notes (Lectures I-XV), U
Q
 is a right inverse of T

Q
,

that is
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<37> \ - Vuo

However in the multidimensional case this does not hold.

The first part of the lecture has been described adequately in the

introductory paragraph. In the second part of the lecture, starting with

diagram (29), I have tried to give a slightly more abstract version of the basic

idea of diagram (1.28). I do not know of any applications for the increased

generality but the study of conditional expectation seems to be a possibility.

It may also be suitable for application to linear functional equations outside

of probability theory.




