Lecture Xili, AN APPLICATION TO THE THEORY OF RANDOM GRAPHS

Consider a random graph $G(n)$ on n vertices in which each possible edge is present with probability p, independently of all others. Let $W_{n, k}$ (also abbreviated W_{n}) be the number of isolated trees of order k in $G(n)$. Conditions are given for W_{n} to have approximately a Poisson distribution. This lecture is based on a paper of Barbour (1982), who also gave conditions for a normal approximation to be valid.

I shall use essentially the same notation as Barbour. Denoting the set of vertices by $\{1, \ldots, n\}$, I shall think of the random graph $G(n)$ as a random subset of the set of all two-element subsets $\{\mathbf{i}, \mathrm{j}\}$ of $\{1, \ldots, \mathrm{n}\}$. If $\{i, j\} \in G(n) I$ shall say that $\{i, j\}$ is an edge of the random graph $G(n)$, which will be constructed by having the events $\{\{i, j\} \in G(n)\}$ occur independently with common probability p. Let D_{n} be the set of all k-tuples $i=$ $\left(i_{1}, i_{2}, \ldots, i_{k}\right.$) of natural numbers with $1 \leq i_{1}<i_{2}<\ldots<i_{k} \leq n$. For each $i \in D_{n}$ let $X_{i}=1$ if there is in $G(n)$ an isolated tree spanning the vertices i_{η}, \ldots, i_{k}, and otherwise let $X_{i}=0$. A tree $i s$, by definition, a connected graph containing no cycles, and it is isolated if $G(n)$ has no edge with one vertex in the tree and one not in the tree. Then W_{n}, the number of isolated trees of order k in $G(n)$ is given by

$$
\begin{equation*}
W_{n}=\sum_{i \in D_{n}} X_{i} \tag{1}
\end{equation*}
$$

The expectation λ of W_{n} is given by

$$
\begin{align*}
\lambda & =E W_{n}=\binom{n}{k} P\left\{X_{i}=1\right\} \tag{2}\\
& =\binom{n}{k} k^{k-2} p^{k-1}(1-p)^{k(n-k)+\binom{k}{2}-k+1} .
\end{align*}
$$

The argument for this is as follows. By a theorem of Cayley (see, for example, Graver and Watkins (1977), p. 322) there are k^{k-2} different trees on k specified vertices. In order that a given isolated tree on these k vertices be realized by the process indicated it is necessary and sufficient that the $k-1$ connections of the specified tree be made, but none of the $\binom{k}{2}-k+1$ other connections among these k vertices, and that none of the $k(n-k)$ possible connections of these k vertices to vertices outside this set be made. Let us also compute the variance of W_{n}. If i and i^{\prime} are disjoint elements of D_{n}, then, by essentially the same argument as in (2),

$$
\begin{equation*}
E X_{i} X_{i}=k^{2(k-2)} p^{2(k-1)}(1-p)^{2 k(n-2 k)+\binom{2 k}{2}-2(k-1)}, \tag{3}
\end{equation*}
$$

but if i and i^{\prime} are neither identical nor disjoint, $E X_{i} X_{i}=0$. It follows that

$$
\begin{align*}
\operatorname{Var} & W_{n}-E W_{n}=E W_{n}^{2}-E W_{n}-\left(E W_{n}\right)^{2} \tag{4}\\
= & \binom{n}{k}\binom{n-k}{k} k^{2(k-2)} p^{2(k-1)}(1-p)^{2 k n-2 k^{2}-3 k+2} \\
& -\binom{n}{k}^{2} k^{2(k-2)} p^{2(k-1)}(1-p)^{2 k n-k^{2}-3 k+2} \\
= & \left\{\left[\begin{array}{l}
k-1 \\
i=0
\end{array}\left(1-\frac{k}{n-i}\right)\right](1-p)^{-k^{2}}-1\right\} \lambda^{2}
\end{align*}
$$

Later we shall have to make a careful study of the dependence of the mean and variance of W_{n} on n, p, and k.

Now let us look at the Poisson approximation for the distribution of W_{n}. For arbitrary $f: Z^{+} \rightarrow R$ and $i \in D_{n}$ we have

$$
\begin{equation*}
E X_{i} f\left(W_{n}\right)=P\left\{X_{i}=1\right\} E f\left(W_{n-k}^{*}+1\right) \tag{5}
\end{equation*}
$$

where W_{n-k}^{*} is the number of isolated trees of order k in the graph G^{*} obtained from $G(n)$ by dropping the vertices i_{1}, \ldots, i_{k} and all edges containing any of these vertices. Summing (5) over i, using the fact that W_{n-k}^{*} has the same distribution as W_{n-k}, we obtain

$$
\begin{equation*}
E W_{n} f\left(W_{n}\right)=\lambda E f\left(W_{n-k}+1\right) . \tag{6}
\end{equation*}
$$

Consequently

$$
\begin{equation*}
E\left[\lambda f\left(W_{n}+1\right)-W_{n} f\left(W_{n}\right)\right]=\lambda E\left[f\left(W_{n}+1\right)-f\left(W_{n-k}+1\right)\right] . \tag{7}
\end{equation*}
$$

Substituting for f the function $U_{\lambda} h$, defined by (VIII.18), we obtain, for arbitrary $h: Z^{+} \rightarrow R$,

$$
\begin{align*}
& E h\left(W_{n}\right)-p_{\lambda} h=E\left[\lambda U_{\lambda} h\left(W_{n}+1\right)-W_{n} U_{\lambda} h\left(W_{n}\right)\right] \tag{8}\\
& =\lambda E\left[U_{\lambda} h\left(W_{n}+1\right)-U_{\lambda} h\left(W_{n-k}+1\right)\right] .
\end{align*}
$$

In particular, for $h=h_{A}$ defined by

$$
n_{A}(w)=\left\{\begin{array}{l}
1 \text { if } w \in A \tag{9}\\
0 \text { if } w \notin A,
\end{array}\right.
$$

we obtain

$$
\begin{align*}
& P\left\{W_{n} \in A\right\}-e^{-\lambda} \sum_{W \in A} \frac{\lambda^{W}}{W!} \tag{10}\\
& =\lambda E\left[U_{\lambda} h_{A}\left(W_{n}+1\right)-U_{\lambda} h_{A}\left(W_{n-k}+1\right)\right] .
\end{align*}
$$

But we have seen in (VIII.42) that, for all λ, w, and A,

$$
\begin{equation*}
\left|U_{\lambda} h_{A}(w+1)-U_{\lambda} h_{A}(w)\right| \leq 1 \wedge \lambda^{-1} . \tag{11}
\end{equation*}
$$

It follows from (10) and (11) that

$$
\begin{equation*}
\left|P\left\{W_{n} \in A\right\}-e^{-\lambda} \sum_{W \in A} \frac{\lambda^{W}}{w!}\right| \leq(1 \wedge \lambda) E\left|W_{n}-W_{n-k}\right| . \tag{12}
\end{equation*}
$$

In order to bound $E\left|W_{n}-W_{n-k}\right|$ we first observe that

$$
\begin{equation*}
\left(W_{n}-W_{n-k}\right)_{+} \leq \sum_{j=n-k+1}^{n} Y_{j} \tag{13}
\end{equation*}
$$

where Y_{j} equals one if j belongs to an isolated tree of order k in $G(n)$, but otherwise zero. Consequently

$$
\begin{align*}
& E\left(W_{n}-W_{n-k}\right)_{+} \leq k\binom{n-1}{k-1} k^{k-2} p^{k-1}(1-p)^{k(n-k)+\binom{k-1}{2}} \tag{14}\\
& =\frac{k\binom{n-1}{k-1}}{\binom{n}{k}} \lambda=\frac{k^{2}}{n} \lambda .
\end{align*}
$$

Of course the argument for the inequality (14) is that there are k terms on the right-hand side of (13), that each point j can form a tree of order k with any of the $\binom{n-1}{k-1}(k-1)$-element subsets of the remaining points and that there are k^{k-2} trees on these k points. The remaining factor is the probability that a particular such tree will be realized. Furthermore, an upper bound for $W_{n-k}-W_{n}$ is the number of isolated trees of order k in $G(n-k)$ that are destroyed by being connected to vertices in $\{n-k+1, \ldots, n\}$. Consequently, writing $\lambda(n)$ and $\lambda(n-k)$ for $E W_{n}$ and $E W_{n-k}$, we have

$$
\begin{equation*}
E\left(W_{n-k}-W_{n}\right)_{+} \leq\left[1-(1-p)^{k^{2}}\right] \lambda(n-k) . \tag{15}
\end{equation*}
$$

Finally, (12), (14), and (15) yield

$$
\begin{align*}
& \left|P\left\{W_{n} \in A\right\}-e^{-\lambda} \sum_{W \in A} \frac{\lambda^{W}}{W!}\right| \tag{16}\\
& \leq\left\{\frac{k^{2}}{n}+\left[1-(1-p)^{k^{2}}\right] \frac{\lambda(n-k)}{\lambda(n)}\right\}\left[\lambda(n) \wedge \lambda^{2}(n)\right] .
\end{align*}
$$

Now we must study the behavior of $\lambda(n, k, p)$ (which was abbreviated as λ
or $\lambda(n)$ in the above) as a function of n, k, and p, in part as an aid in the study of the bound given in (16) for the error in the Poisson approximation to the distribution of W_{n}. It will be convenient to write

$$
\begin{equation*}
\rho=-\log (1-p) \tag{17}
\end{equation*}
$$

and

$$
\begin{equation*}
c=n \rho . \tag{18}
\end{equation*}
$$

Then, by (2)

$$
\begin{equation*}
\lambda(n, k, p)=\alpha(k)_{\beta}(k, p)_{\gamma}(n, k, p), \tag{19}
\end{equation*}
$$

where

$$
\begin{equation*}
\alpha(k)=\frac{k^{k+\frac{1}{2}} e^{-k}}{k!} \tag{20}
\end{equation*}
$$

$$
\begin{align*}
\beta(k, p) & =\frac{k^{k-2} p^{k-1}(1-p)^{-k^{2}+\binom{k-1}{2}}}{k^{k+\frac{1}{2}} e^{-k}} \tag{21}\\
& =k^{-5 / 2} e^{k} p^{k-1}(1-p)^{-\frac{k^{2}+3 k}{2}+1}
\end{align*}
$$

and

$$
\begin{align*}
r(n, k, p) & =n_{(k)}(1-p)^{n k}=\left[\prod_{j=1}^{k-1}\left(1-\frac{j}{n}\right)\right] n^{k} e^{-k c} \tag{22}\\
& =\exp \left[-\frac{k(k-1)}{2 n}-\frac{\theta k^{3}}{3 n^{2}}\right] n^{k} e^{-k c}
\end{align*}
$$

for $k<\frac{n}{2}$, with $0<\theta<1$. It follows that
(23) $\frac{\lambda(n, k, p)}{\alpha(k)}$

$$
=n c^{k-1} e^{k(1-c)} \exp \left[\left(\frac{k^{2}+3 k}{2}-1\right) \rho-\frac{k(k-1)}{2 c} \rho-\frac{\theta k^{3}}{3 n^{2}}\right] k^{-5 / 2}\left(\frac{p}{\rho}\right)^{k-1} .
$$

We shall also need to evaluate the second term in braces in (16). We have

$$
\begin{align*}
\frac{\lambda(n-k)}{\lambda(n)} & =\prod_{j=0}^{k-1}\left(1-\frac{k}{n-j}\right)(1-p)^{-k^{2}} \tag{24}\\
& <\exp \left[k^{2}\left(\rho-\frac{1}{n}\right)\right] .
\end{align*}
$$

Thus (16) yields

$$
\begin{align*}
& \left|P\left\{W_{n, k} \in A\right\}-e^{-\lambda(n)} \sum_{W \in A} \frac{(\lambda(n))^{W}}{W!}\right| \tag{25}\\
& \leq\left[\frac{k^{2}}{n}+\left(e^{k^{2} \rho}-1\right) e^{-\frac{k^{2}}{n}}\right] \lambda(n) .
\end{align*}
$$

Let us first try to get some idea of the behavior of λ and then return to the bound in (25). If n, k, p are varied in such a way that $k^{2} / n \rightarrow 0$ and $k^{2} p \rightarrow 0$ then, by (23),

$$
\begin{equation*}
\lambda(n, k, p) \sim n k^{-5 / 2}\left(c e^{1-c}\right)^{k-1} e^{1-c} \alpha(k) \tag{26}
\end{equation*}
$$

where $c=n \rho \sim n p$, and $\alpha(k)$ is bounded away from 0 and ∞ by Stirling's formula. Since $c e^{1-c}$ attains a maximum value of 1 at $c=1$, (26) shows that the expected number of isolated k-trees with k much larger than $\log n$ is small unless $n p$ is close to 1 . When $n p$ is sufficiently close to 1 the expected number of isolated k-trees approaches 0 only for k appreciably larger than $n^{2 / 5}$. Of course all of these remarks are subject to the condition imposed earlier that $k^{2} / n \rightarrow 0$ and $k^{2} p \rightarrow 0$.

Now let us return to the evaluation of the bound in (25) subject only to the condition that $k^{2} p$ remain bounded. Then (26) still gives the correct order of magnitude of λ so that, for some constant B, (25) yields

$$
\begin{align*}
& \left|P\left\{W_{n, k} \in A\right\}-e^{-\lambda(n)} \sum_{W \in A} \frac{(\lambda(n))^{W}}{w!}\right| \tag{27}\\
& \leq B k^{-\frac{1}{2}}(1+c) e^{1-c}\left(c e^{1-c}\right)^{k-1}
\end{align*}
$$

The bound on the r.h.s. of (27) approaches 0 if $k \rightarrow \infty$ or $c \rightarrow \infty$ or $k \geq 2$ and $c \rightarrow 0$.

Barbour went on to show that for fixed k, the error in the approximation to the distribution of $W_{n, k}$ by a normal distribution with mean $\lambda(n, k, p)$ and variance

$$
\begin{equation*}
\sigma^{2}(n, k, p)=\lambda\left[1+\lambda\left\{\exp \left(k^{2}\left(\rho-\frac{1}{n}\right)-\theta k^{3} / n^{2}\right)-1\right\}\right] \tag{28}
\end{equation*}
$$

is of the order of $\sigma^{-1}(n, k, p)$, uniformly in n and p. This suggests that the bound (27) is not sharp in order of magnitude in the neighborhood of $c=1$.

