
L E C T U R E X I I I . AN APPLICATION TO THE THEORY OF RANDOM GRAPHS

Consider a random graph G(n) on n vertices in which each possible edge is

present with probability p, independently of al l others. Let W . (also
n $ K

abbreviated W ) be the number of isolated trees of order k in G(n). Conditions

are given for W to have approximately a Poisson distribution. This lecture

is based on a paper of Barbour (1982), who also gave conditions for a normal

approximation to be valid.

I shall use essentially the same notation as Barbour. Denoting the set

of vertices by {l,...,n}, I shall think of the random graph G(n) as a random

subset of the set of all two-element subsets {i,j} of {l,...,n}. If

{i.j} € G(n) I shall say that {i,j} is an edge of the random graph G(n), which

will be constructed by having the events {{i,j} € G(n)} occur independently

with common probability p. Let D be the set of all k-tuples i =

(i 1»i 2» »ΐ i/) °"f natural numbers with 1 <_ i, < ip <...< i • < n. For each

i € D n let X. = 1 if there is in G(n) an isolated tree spanning the vertices

i,,...,i. , and otherwise let X. = 0. A tree is, by definition, a connected

graph containing no cycles, and it is isolated if G(n) has no edge with one

vertex in the tree and one not in the tree. Then W , the number of isolated

trees of order k in G(n) is given by

"' v t|on "••

The expectation λ of W
n
 is given by
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(2) λ = EW
n
 = (jJ)P{X. = 1}

n k ? k 1 k(n-k)+φ-k+l

The argument for this is as follows. By a theorem of Cayley (see, for example,

Graver and Watkins (1977), p. 322) there are k
k
"

2
 different trees on k

specified vertices. In order that a given isolated tree on these k vertices

be realized by the process indicated it is necessary and sufficient that the

k-1 connections of the specified tree be made, but none of the (
2
)-k+l other

connections among these k vertices, and that none of the k(n-k) possible

connections of these k vertices to vertices outside this set be made. Let us

also compute the variance of W . If i and i
1
 are disjoint elements of D ,

then, by essentially the same argument as in (2),

2ίk ?) ?(k n 2k(n-2k)+(
2k
)-2(k-l)

(3) EX.X., = k*
( k
-

2 )
p

2 ( k
"

Ί )
(l-p)

 2

but if i and i
1
 are neither identical nor disjoint, EX̂ X.., = 0. It follows

that
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2
.

Later we shall have to make a careful study of ttie dependence of the mean

and variance of W on n, p, and k.

Now let us look at the Poisson approximation for the distribution of W .

For arbitrary f: Z -»- R and i € D we have
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(5) E X
i

f ( W
n

} = P{X

Ί

 =

where W* . is the number of isolated trees of order k in the graph G* obtained
Π"* K

from G(n) by dropping the vertices i-j,...,i
k
 and all edges containing any of

these vertices. Summing (5) over i, using the fact that W* . has the same
n~ K

distribution as W . , we obtainn~ K

(6)

Consequently

(7)

EW
n
f(W

n
) = XEf(W

n
.

k +
l).

E[λf(Wn+l) - Wnf(Wn)] = λE[f(Wn+Ί) - f ( W n . k + l ) 3 .

Substituting for f the function ILh, defined by (VIII.18), we obtain, for
λ

arbitrary h: Z -*• R,

(8) Eh(W
n
) - P

χ
h = E[λU

λ
h(W

n
+l) - W

n
U

χ
h(W

n
)]

= χE[u λ h(w n + i )-u λ h(w n . k + i )].

In particular, for h = h* defined by

1 if w € A

(9) hA(w)

0 i f w j£ A,

we obtain

(10) P{Wn € A} - e
-λ

w€A

=XE[U xh A(W n +l)-U xh A(W n. k +l)].

But we have seen in (VIII.42) that, for all λ, w, and A,

(11) |U
χ
h

A
(w+l) - U

χ
h

A
(w)| < lΛλ"

1
.

It follows from (10) and (11) that
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(12) |PίW € A} - e~λ
 J £\ < (lΛλ)E|W -W

n w€A W ί
 n n

In order to bound E|W
n
~W

n
_

k
| we first observe that

where Y. equals one if j belongs to an isolated tree of order k in G(n), but
J

otherwise zero. Consequently

(14) E(W
n
-W

n
_

k
)

+
< k(J:j)k

k
"

2
 p

k
-

]
(l-p)

Of course the argument for the inequality (14) is that there are k terms on

the right-hand side of (13), that each point j can form a tree of order k with

any of the ([!~-|) (k-1)-element subsets of the remaining points and that there

k-2
are k trees on these k points. The remaining factor is the probability that

a particular such tree will be realized. Furthermore, an upper bound for

W .-W is the number of isolated trees of order k in G(n-k) that are destroyed
Π"- K Π

by being connected to v e r t i c e s in { n - k + 1 , . . . , n } . Consequently, w r i t i n g λ(n)

and λ(n-k) f o r EW and EW . , we have
n n— K

(15) E ( W n _ k - W n ) + £ [1 - ( 1 - p Γ ] λ ( n - k ) .

F i n a l l y , ( 1 2 ) , ( 1 4 ) , and (15) y i e l d

(16) |P{W € A} - e"λ
 I £\

n w€A w

i Z 2 J

V + [1 - (1-P)k ] ̂ y 1 [λ(n)Λλ
2
(n)].

Now we must study the behavior of λ(n,k,p) (which was abbreviated as λ
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or λ(n) in the above) as a function of n, k, and p, in part as an aid in the

study of the bound given in (16) for the error in the Poisson approximation to

the distribution of W . It will be convenient to write

(17) P = - log(l-p)

and

(18) c = n
P
.

Then, by (2)

(19) λ(n,k,p) = α(k)e(k,p)γ(n,k,p),

where

(20)

.k-2 k-L
(21) β(k,p) = •* 2 _ i

k
2
+3k

and

k-1
(22) γ(n,k,p) = n

( k )
(l-p)

n k
 = [ π (1 - -J)]n

k
 e

= exp[- % ^ - - ̂ ] n
k
 e"

k c

for k < y, with 0 < θ < 1. It follows that

λ(n,k,p)
ά(k)

-kc

= n -DP - ̂  P -

We shall also need to evaluate the second term in braces in (16). We have
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(24)

< exP[k
2(p - I ) ] .

Thus (16) yields

(25) |P{Wn . € A} - e '
λ ( n )

n > k w€A

[ 2 2 1
V+(e k p-l)e nJx(n).

Let us first try to get some idea of the behavior of λ and then return to
p

the bound in (25). If n, k, p are varied in such a way that k /n -* 0 and

k
2
p -> 0 then, by (23),

(26) λ(n,k,p) Λ, n k ' ^ c e
1
"

0
) ^

1
 e

1
"

0
 α(k)

where c = np ^ np, and α(k) is bounded away from 0 and « by Stirling's formula.

Since ce "
c
 attains a maximum value of 1 at c = 1, (26) shows that the expected

number of isolated k-trees with k much larger than log n is small unless np is

close to 1. When np is sufficiently close to 1 the expected number of isolated

k-trees approaches 0 only for k appreciably larger than n H Of course all of

these remarks are subject to the condition imposed earlier that k /n •* 0 and

k
2
p + 0.

Now let us return to the evaluation of the bound in (25) subject only to

the condition that k p remain bounded. Then (26) still gives the correct order

of magnitude of λ so that, for some constant B, (25) yields

\W

(27)

±Bk"*(1+c)e
1
'

c
(ce

1
~

c
)

k
"

1
.

The bound on the r.h.s. of (27) approaches 0 if k •* » or c -»• °° or k >_ 2 and

c •* 0.
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Barbour went on to show that for fixed k, the error in the approximation

to the distribution of W
n
. by a normal distribution with mean λ(n,k,p) and

Π 5 IN

variance

(28) σ
2
(n,k,p) = λ[l + λ{exp(k

2
(

P
 - 1) - Θk

3
/n

2
) - 1}]

is of the order of σ" (n,k,p), uniformly in n and p. This suggests that the

bound (27) is not sharp in order of magnitude in the neighborhood of c = 1.






