
LECTURE XII. RANDOM ALLOCATIONS

I shall derive three of the simpler results given by Kolchin, Sevastyanov,

and Chistyakov in their book Random allocations, using the methods introduced

in the first lecture. One is the exact joint distribution of the numbers of

urns containing 0,1,2,... balls when v balls are distributed at random

(uniformly) among k urns. The second is the analogous problem for cycle

lengths of random permutations. The third is the Poisson approximation to the

distribution of the number of empty urns in the first problem, when the

expected proportion of empty urns is small.

In the urn problem, let N be the number of urns containing α balls for

α € {0,...,v}. We want to compute the

(1) p(n) = P{N = n}

for n: {0,...,v} ->• Z satisfying

(2) Σn
α
 = k

and

(3) Σαn = v.

Of course, for n that do not satisfy (2) and (3), p(n) = 0. We shall see that

(4) P(n)= \ * M .

π[(α!) \ l ]
 k

In order to study the distribution of N we define a new random vector N
1
,

obtained by removing a randomly selected ball (uniformly distributed over the
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126 APPROXIMATE COMPUTATION OF EXPECTATIONS

set of all balls, independent of N) and replacing it in a randomly selected urn

(uniformly distributed over the set of all urns, independent of previous

choices). Let I be the original number of balls in the urn from which this

ball was selected and J the number of balls that are in the urn in which it is

replaced after this replacement. Then

(5)
NP
IN
{I = i and J = j} = i

The reason for the second factor is that we put the ball into an urn which then

had j-1 balls and there was one urn that had j-1 balls but now has j. Also

(6) N
1
 = N - δj + ό

I
_

1
 + όj - ό

J β l

where, for i € Z , δ. is the function on Z defined by

(7) δ. =

1 if α = i

0 otherwise.

As the first step in proving (4) we observe that it holds in the very

special case where one urn contains all the balls, that is

(8)

In this case,

(9)

1 if α = v

k-1 if α = 0

0 if α ί {0,v}.

P(n) = 1 1 k!vi
• v-1 (k-l)!v! .v *

In addition I shall verify that the p(n), now thought of as defined by (4),

satisfy the identity

(10) p(n)P{N'=n |N=n} = p(n*)P{N
l
=n|N=n

1
}.

Since the sample space is connected in the sense of Lemma 1.2, this will imply
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that the desired probabilities are given by (4). In view of (4), (5), and (6),

the identity (10) is equivalent to the condition that, for all n, i, and j,

(11) J in
i(
n'._

1+
l)

[() \]

(.1) V!]

where

(12) n
1
 = n - δ. + δ . ^ + 6. - δ

j - r

It is convenient to introduce n", defined by

(13) n" = n - δ
Ί
 + δ

Ί
._-| = n

1
 - δ. + δ. -j.

Then, inserting a factor on both sides analogous to the products over α, but

with n or n
1
 replaced by n" we see that (11) is equivalent to

Γ δ. , -δ. n
M
! 1 in.

π (
fl
ι) l-'»

α Ί
>α « . _ J _

11 U-; (n"+δ. -δ. , )! n. ,+1

[ δ.
 Ί
 -δ. n"! Ί jn'.

α J,α J-l ,α
7
 J J-l

which is true, since both sides are equal to 1.

Now let us look at an analogous problem for cycle lengths of random per-

mutations. We recall that any permutation π of {!,...,v} can be represented

as a product of disjoint cycles, and this representation is unique apart from

the order in which the cycles are multiplied. A cycle, denoted by a finite

sequence (3-,...β ) with i _> 2 of distinct elements of {l. .v} enclosed in

parentheses, is defined as a permutation by

(15) (3
Γ
..3

£
)β

1
 = 3

i + 1
 if i £ {1...A-1}

(16) (*Γ * A
β
 *1

and
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(17) (3
r
..β

£
)β = β if β ί {β

r
...,β

£
h

Two such sequences determine the same cycle if and only if one is a cyclic

permutation of the other. In the representation of a permutation as a product

of cycles, we count each element of {l,...,n} that is transformed into itself

by the permutation as a cycle of length 1. Now for a random permutation π of

{l,...,v}, uniformly distributed over the set of all v! such permutations, let

N be the number of cycles of length α in its decomposition as a product of

cycles, for α € {l,...,v}. We shall see that, for any n: {l,...,v} -> Z such

that

(18) £αn
α
 = v

we have

(19) p(n) = P{N = n} =
 ]

π[α\l]

As in several earlier lectures, we construct another random permutation

π
1
 such that (π,iΓ) is an exchangeable pair by choosing a random transposition

(IJ) (cycle of length two), uniformly distributed over all («) possible

choices, independent of π, and defining

(20) π
1
 = Πo(U).

It is not difficult to see how the cycle structure of π
1
 is related to that of

π. With

(21) π
1
 =

let us first look at the case where i and j belong to the same cycle of IT.

There is no essential loss of generality in supposing this cycle to be (l. .λ)

and choosing i = 1. Then, with 2 <_ j < ί,,

(22) (Ί...A)(lj) = (1 j+1...0(j 2...J-1).

Thus, in this case, the effect of multiplying by a transposition (ij) is to

separate the cycle of length i into two cycles, whose lengths are one more than
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the numbers of elements between i and j in the original cycle of length i. By

interchanging the roles of π and π
1
 we see that, if i and j fall into different

cycles of π, the effect of multiplying π by (ij) is to join the two cycles into

one, whose length is, of course the sum of the lengths of the original cycles.

Now we can write down the transition probabilities for multiplication by

a random transposition as in (20). For distinct positive integers a and b,

(23) P Π {N; + b = N a + b -l & N; = Na+1 & N' = Nb+1 & other IT = y

• v(v-υ

and

(24) P
Π
{N;

+ b
 = N

a + b +
l & N; = N

a
-1 & N = N

b
-1 & other

2 a b N
a

N
b

Also

(25) P
Π
{N' = N

9
 -1 & N = N +2 & other N

1
 = N }

N
 ' 2a 2a a a α α

and

2 a N
2a

(26) P
Π
{N' = N

9
 +1 & N' = N -2 & other N

1
 = N }

άa άa a a Ot Ot

v(v-l) *

The arguments in the four cases are as follows:

(i) For (IJ) to break a cycle of length a+b into two cycles of different

lengths a and b, I must fall into one of the (a+b)N
a+b
 places available in

cycles of length a+b, and then there remain two positions for j.

(ii) For (IJ) to join two cycles of different lengths a and b, one of I



130 APPROXIMATE COMPUTATION OF EXPECTATIONS

and J must fall into one of the aN
a
 places available in cycles of length a
a

and the other into one of the bN. places available in cycles of length b.

(iii) For (IJ) to break a cycle of length 2a into two cycles of length a,

I must fall into one of the 2aN
2 a
 places available in cycles of length 2a and

then the position of J is determined.

(iv) For (IJ) to join two cycles of length a, I must fall into one of
the aN

a
 places available in cycles of length a and then J must fall into onea

of the a(N -1) places available in other cycles of length a.a

Now we are prepared to prove that the probabilities p(n) = P{N = n} are

given by (19). First we observe that this is obviously true when all cycle

lengths are 1:

(27) P{N
]
 = v & other N^ = 0} = lj- .

Then it will suffice to verify that the p(n), thought of as defined by the

final expression in (19), satisfy the identity (10) with the present inter-

pretation. Because of (23) - (26), these identities are equivalent to the

two identities:

b
 l

 2 a b n
;

n
b

n v(v-l) n
1
 \>(v-l

Π[α
 α
n

α
!] Π[α V i ]

where

( 2 9 ) n
;

+
b
 = n

a
+
b-

Ί
'
 n

a
= n

a
+ 1

'
 n

t,
 = n

b
+ 1

and other n
1
 = n , and
α α

(30) n v(v-l) n
1
 v ( v - l ) '

π[α
 α
n !] π[α

 α
n'l]

where

(31) "έa-' za-
1
'
 n
a
 =
 V

2
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and other n' = n . Of course (28) is required to hold only for a t b. Now

(28) is equivalent to

ab(nab(n +1 )(n. +1) /n'-n n'!v
(32) . a

L 9 = π ί α α α - Λ - 1
(a+b)n .. u \ n ! / '

a+u ^ ΌL '

which is readily verified subject to (29), and (30) is equivalent to

a 2 (n a +2)(n a +1)

πία α α α )I ] \ α n α ! / »n
α
!

which is also true, subject to (31). This completes the proof of (19).

Next let us look at the Poisson approximation to the distribution of N
Q

the number of empty urns, in the case where v is large compared with k. We

have

N
n

+ Ί

N i

(34) P
N
{N£ = N

0
+l} =^1

and

(35) P
N
{N^ = N

0
-l} = (1 - / ) / •

These are consequences of (5) and (6) but the reader may find it easier to

verify them directly. Applying the identity (1.6) to the antisymmetric func-

tion F defined by

(36) F(N.N') = f(N
Q
) J{H^ = N

0
-l} - f(N£)JKN

0
 = N^-l},

we obtain, with the aid of (34) and (35),

Γ
 N

l
 N
n

 N
l

 N
n

+ 1
 1(37) 0 =[E (1 - ̂ί) ̂ f(N

Q
) - J- (1 - -O_)f(N

o
+l)J

- ̂ r
 N
i

f ( N
o

+ 1 )

where f: Z -> R is arbitrary.

As suggested by the resemblance of (37) to (VIII.l), we take f to be the
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solution of equation (VIII.5), that is

(38) λf(w+l) - wf(w) = h(w) - P,h,
λ

where

(39)
 λ = J

V
E N

1 l^"
1

h is for the present an arbitrary bounded function on Z to R, and P h is
λ

defined by (VIII.4). Then (37) yields

(40) Eh(N
Q
) = P

χ
h + E(λ- -^ N

Ί
)f(N

0
+l)+ E -^-L (f(N

Q
+l) - f(N

Q
)).

We need to bound the remainder in (40), that is, the sum of the last two terms,

especially in the case h = h» given by (VIII.32). Recall the definition of

the linear mappings U., V. given in (VIII.18) (that is, in our present notation,
λ λ

U
χ
h = f) and (VIII.29). We bound the last term in (40) by using (VIII.42),

that is

(41) I W w ) l l λ " ] Λ l

Thus

NnN, , NnN,
( 4 2 ) |E - ^ ( f ( N 0 + l ) - f ( N Q ) ) | < ( λ " 1 Λ 1)E - 2 J . .

But

(43) ENQN1 = k(k-l) v. I (1 - f Γ ' 1 = v(k-l)(l - \Ϋ'λ.

Consequently

(44) E - 2 J - ( f ( N 0 + l ) - f ( N Q ) ) | < (λ"1 Λ l ) ( k - l ) ( l - f ) V " Ί .

This is small provided ηr is large.

It remains to bound the second term on the right hand side of (40). In

order to obtain a bound comparable to the bound obtained in (44) for the third

term, a moderately subtle argument will be needed. With the urns numbered,
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let M
Q
 be the number of balls in the β

t h
 urn. Then

k
(45) EN,f(Nn+l) = E I J{M = l}f(N f t +l)

1 υ g=l β °

k
= E I j){Mg = 1}E[f(N0+l)|Mβ = 1]

= EN.,Ef(N*+l),

where N« is a random variable whose distribution is the same as the condi-

tional distribution of N
Q
 given M, = 1. It follows that for any determination

of random variables NQ and N^* with the same distributions as N
Q
 and N* on a

common probability space we have

(46) |E(λ - M

<
J
T-EN

1
E|H--H-*|sup|V

λ
h|

when f = U
λ
h, where U

χ
 and V

χ
 are defined by (VIII.18) and (VIII.29).

We can define random variables NI and Nλ with the desired distributions

on a common probability space in the following way. Somewhat imprecisely, I

shall call these random variables N
Q
 and N

Q
. Having distributed v balls among

k urns, thus determining N we choose an urn and a ball at random, uniformly

distributed over all possible such pairs, independent of N. We throw away

the ball that we selected, remove the balls from the urn that was selected,

discard that urn, and distribute the balls uniformly among the remaining urns,

conditionally uniformly given the earlier choices. We shall see that, with

this definition of N
Q
 and N* on a common probability space (described somewhat

informally, I must admit), we have

(47) E|N
0
-N*

0
| <(2

+
f)(l - I ) -

1
.
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First we observe that NQ - N
Q
 is at most one, and it can be equal to one

only in the ball is selected from an urn containing exactly one ball. Thus

(48) ml-n
0
)

+
<Un

}
-o.lr\

Now let A be the number of balls in the urn that was selected. Then, unless an

empty urn was selected, N
Q
- N Q is at most equal to the number of balls out of

the A redistributed balls that fall into the N« empty urns. Thus

(49) E(N
0
 - N*

o
)

+
 < E ̂

 +
 EA ̂ < ̂  EN

0

Then (47) follows from (48) and (49). Substituting in (46) we obtain

(50) |E(λ - M l ^ J f t N o + D I < ( l+l)(v+2k)( l- l ) 2 ( v - Ί ) sup|V λ h A |.l ) ( v + 2 k ) ( l - l ) s u p | V
λ
h

A

Finally, (40), (41), (44), and (50) yield

(51) |P{N
Q
 € A} - P

λ
h

A
| < (3 + £)(1 - { ^ [ l Λ (k(l - {)

v
"

]
)].

Note that this approaches zero as T- approaches infinity.

In the first part of this lecture, the method of auxiliary randomization

was applied to determine the exact distribution in two simple problems. In

both of these cases the results are well known. For the first problem suppose

v balls are distributed uniformly among k urns. The joint distribution

of the numbers N of urns containing α balls, for α € {0,...,v} was obtained

by applying the identity (10), where (N,N') is an appropriately chosen

exchangeable pair. The second problem was to determine the joint distribution

of the cycle lengths of a random permutation.

In the second part, starting with (34), the formalism of Lecture VIII,

resulting from appropriate specialization of diagram (1.28) was applied to

obtain the Poisson approximation to the distribution of the number of empty
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cells when v is large compared to k. This method seems to be more powerful

than the simpler approach of the first part of the lecture when good

approximations are wanted.






