
LECTURE IV. THE NUMBER OF ONES IN THE BINARY EXPANSION

OF A RANDOM INTEGER

Let n be a natural number and X a random variable uniformly distributed

over the set {0,...,n-l}. We shall see that for large n the number of ones in

the binary expansion of X has approximately a binomial distribution, the

distribution of the number of successes in k independent trials with probabil-

ity one-half, where k is determined by

(1) 2
k
~

1
 < n £ 2

k
.

The expected value of the number of ones in this expansion was studied as a

function of n by Delange (1975). In Diaconis (1977) the present problem was

studied by the method of the third lecture. Here I shall give a slightly

different treatment in order to emphasize the notion of approximation by the

binomial distribution rather than the asymptotically equivalent normal distri-

bution. At the end of the lecture I shall also sketch a proof of the same

result by an induction argument, not related to the main ideas of this series

of lectures.

Let n be a natural number and X a random variable uniformly distributed

over the set {0,...,n-l}. For the binary expansions of n-1 and X, I shall

write

k

(2) a = n-1 = I a.2
k
Λ

i=l
and

£ k i
(3)

£ k i= I X,2
K
 \

i=l
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We are interested in the distribution of

k
(4) ..

i

When n = 2 , with k a non-negative integer, the distribution of W is the

binomial distribution for k trials with probability-p. It is intuitively

plausible that this should also hold approximately for all large n with k

defined by (1) and we shall see that this is true in a fairly strong sense.

In order to prove this, let I be a random variable uniformly distributed

over the set {l,...,k} independent of X, and let the random variable X' be

defined by

k
(5)

where

X
1
 =

(6) x;.=

Also let

(7)

X
i

1-X

0

if

I

if

if

i=I

I

i=I and

, Xj=O

w =

this c

and X+2

î i
 X
i

k-I
> n.

The ordered pair (X,X*) of random variables is exchangeable, and thus the

pair(W,W') is also exchangeable. Because the function

(8) (w,w ) H* f(w)cKw'=w+l} - f(w')c9{w=w'+l}

is antisymmetric in the sense of (1.5) for all f: {0,...,k} -> R, we have

(9) 0 = E[f(W)«HW'=W+1} - f(W μ{W=W'+l}]

= E[f(W)P
X
{W'=W+l} - f(W-l)P

X
{W'=W-l}]

where

(10) Q = |{j:X,=O & X+2
K
~

J
 >, n}|.

j

I have used the fact that

k
~

j
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(Π) P
X
{W'=W-1} = P

X
{X

I
=1} = £,

and

(12) PX{W'=W+1} = PX{Xj=O & XJ=Ί>

Multiplying (9) by k we obtain

(13) E[(k-W-Q)f(W) - Wf(W-l)] = 0.

Motivated by the fact that, as we shall see later,

(14) E Q < 2 ,

we introduce a function g: {0,...,k} -* R related to f by

(15) (k-w)f(w) - wf(w-l) = g(w).

Then (13) can be rewritten in the form

(16) E[g(W) - Qf(W)] = 0.

We shall need the following.

Lemma 1: For given g: {0,...,k> -> R, in order that there exist a

function f: {0,...,k-l} •> R such that (15) holds for all w € {0,...,k} it is

necessary and sufficient that

(17) B.
 ς
g = 0

where

(18) B
k 5

g-\ ! ( > ) .
k,.5

 2

K
 w=0

V w /

When this condition holds, the unique solution f of (15) is given by

(19) f(w) = I -γ

k

v4+i(6)
 k
"
w

for all w € {0,...,k-l}.

Proof: First we observe that the values f(-l) and f(k), which are
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undefined, are multiplied by 0 when they occur in (15), so that no ambiguity

arises. The necessity of (17) follows from the case n = 2 of (13) since Q = 0

identically in this case and thus (16) implies

(20) 0 = Eg(W) = B
k j # 5

g.

When (17) holds, we can verify that the first form of (19) satisfies (15) by

direct substitution: For w < k

(21) (k-w)f(w) - wf(w-l)

w (k) w-1 (k)=
 Σ 7 ^

9 ( v )
- Σ τYτ FSττ9(v)=g(w),

v=o (5) v=o (
w
:τ)

 k w+l

while, for w = k,

(22) (k-w)f(w) - wf(w-l) = -kf(k-l)

k-1 ({)
= - I -\r9(v) = g(w),

by (17) and (18). The equality of the two forms of (19) follows from (17) and

(18), and the uniqueness of the solution f is readily verified by induction on

w.

In order to approximate E h(W) where h: {0,...,k} •* R is given, we write

(23) g = h - B
k
^

5
h

and define f by (19) so that (16) implies that

(24) E h(W) = B _h + E Qf(W).
K, b

It remains to bound E Qf(W).

Let us look at the special case h = h , the indicator function defined
w
0

by

1 i f w=w
Λ

(25) h
w
 (w)

w
0

0 if

The function f .related to h as f is related to h by (19) and (23), is given

by
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(26) (w) =

-
B
k,.5

h
w w (k)

i f w < w Ό

It is not difficult to see that

(27)

B
k,.5

h
w

Q
 k (k)

-^r ...L.Tk;
lf w
 ̂  v

If (w)| i f
WQ K

In fact, consider the function p defined by

(28)

By writing this in the form

P(w) = I -Γ- .
v=0 („)

Λ Λ l . w . w(w-Ί)
p ( w ) = Ί + k ^ 7 Γ + (k-w+1)(k-w+2) + "

we see that p is an increasing function. Thus, for w < w
0

(30)
o>
 V

w ) 1
V

w
° "

υ

•-T

. h
(v1)

= " "O F

1
k-wQ+l

1

k-w0 +l

v?0 Θ

(wo-l)

1

2k

2

w -1

The final inequality follows from the fact that the immediately preceding

k+1 k+1
expression decreases as w

Q
 increases from 1 to [-o~] and for WQ _> C"^-] is

2
clearly greater than - γ. The corresponding inequality for w _> w

Q 5

(31) i y V
<
 t

follows from the symmetry property
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(32) f.
 w
 (k-w-1) = f (w).

κ-w
0
 w

Q

Now let us prove (14) in order to complete the proof of the binomial

approximation for the distribution of W. The behavior of EQ as a function of n

was studied by Delange (1975) but for our purpose the following simple

argument of Diaconis (1977) will suffice. By the definition (10) of Q,

(33) E Q < I P{X > n-2
k
"

J
'}

" j=l

k
 2

k-j
 2

k

Of course Q is non-negative. It follows from (24), (27), and (33) that

= | E Q f W o ( W ) | < l E | Q | < £ .

Thus the probability that W has a given value differs from the corresponding

binomial probability by O(-r-). Since this binomial probability is of the

exact order of k"^ in the main part of the distribution, the bound is

reasonably satisfactory in some respects.

Now let us look more carefully at the way this fits into the abstract

framework of the first lecture. The underlying sample space Ω is {0,...,n-l},

the probability measure P is the uniform distribution in Ω and the random

variable W is the number of ones in the binary expansion of the random number

X, uniformly distributed over {0,...,n-l}. The exchangeable pair (X,X*) is

constructed from X by choosing a random number I uniformly distributed in

k 1 k
{!,...,k} independent of X where k is related to n by 2 < n <_ 2 and

k I

changing the coefficient of 2* in the binary expansion of X to obtain X
1

provided this is less than n. Otherwise X'=X.

The space 3
Q
 of diagram (1.28) consists of the functions

f: {0,...,k-l} •* R and α: 3L + 3 is defined by
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(35) (αf)(X,X ) = f(W)c9{W=W+1} - f (W )c9{W=W+l }.

The linear mapping T
Q
: 3

Q
 ->%

Q
, where X

Q
 is the space of all h: {0,...,k} -> R

is defined by

(36) (T
Q
f)(W) = [(k-W)f(W) - Wf(W-l)]/k

with the convention that the result of multiplying the undefined f(-l) or

f(k) by zero is zero. Of course \: %
Q
 -* X is the appropriate inclusion mapping,

that is

(37) (lh)(X) = h(W)

in the present notation. The linear functional E
Q
: X

Q
 •*• R is B. ^expectation

under the appropriate binomial distribution, defined by (18), and the linear

mapping U
Q
: %

Q
 -> 3

Q
 is defined by

(38) U
Q
h = kf

given by (23) and (19). The identity (1.30) states that the f defined by (23)

and (19) satisfies (15). Finally, (1.33) is specialized to (24) since

T°α - I°TQ: 3 Q -> %
Q
 is given by

(39) (Toα - ιoTQ)f(X)

= EX[f(W)<KW'=W+l} - f(W l)J{W=W l+l}] - [ f ( W ) ( l - j) - f(W-Ί) £ ]

= f(W)PX{W=W+l} - f(W-l)PX{W=W-l} - [ f ( W ) ( l - γ) - f(W-l) γ]

- - f f ( W ) .

Substituting in (1.33) and using (38) we obtain (24). Of course T: 3 -+ X is

defined as usual by (1.20).

Now let us look at an alternative argument that is in some ways more

successful than the above. I shall have to indicate the dependence of X, W

and k on a in (2), (3), and (4) by writing X(a), W(a) and k(a). Then, for

any h: {0,...,k(a)} •* R



50 APPROXIMATE COMPUTATION OF EXPECTATIONS

(40) E h(W(a))

= P{X(a) <. 2
k ( a )

'
Ί
 - l}E[h(W(a))|X(a) < 2

k ( a )
'

]
 -

+ P{X(a) >_ 2
k(a)

~
1
}E[h(W(a))|X(a) >_ 2

k ( a )
"

Ί
]

?k(a)-l ,
+
i
 9
k(a)-l

= S * T «k(a)-l,.5
 h + a 1

1
+ 1

 E
 h(l W ) ) .

In the second equality I have inserted the probabilities of the two cases and

recognized the conditional distribution of W(a) given each of the two condi-

tions. Given that X(a) <_ 2
k
^ ~

1
- l , the conditional distribution of W(a) is

that of W(2
k
^

a
^"

1
), a binomial distribution with k(a)-Ί trials and probability

j. Given that X(a) >. 2
k
^

a
^"

Ί
 the conditional distribution of W(a) is the

unconditional distribution of l+W(a-2
M α
^~ ) since the number of ones in the

binary expansion of X(a) is one more than the number of ones in the binary

expansion of X(a)-2
k
^

a
'"

1
 which, given that X-j(a) = 1, is distributed as

X(a-2 ).

In order to apply (40) inductively, let

(41) k^a) = k(a)

and, for j >_ 1,

j k.(a

(42) k
j + 1

(a) = k^a - J 2
 Ί

We can express (41) explicitly as

(43) k^a) = 1 + [log
2
a].

Then, by induction on j, (40) yields

(44) E h(W(a))

a - I 2
 Ί
 + 1 .

 M a ) - 1

+
 1

~
Π
 E h(j+W(a - I 2

 i
 )).

In particular, for j equal to j(a), the number of ones in the binary
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expansion of a,

(45) E h(W(a)) =

β
k(a),.5

h +

If k is not enormous this can be used to compute E h(W(a)) exactly. In the

second form it also yields

(46) ^ Φ

and the approximation Bj, x ,-h for Eh(W(a)) can readily be improved by using

a few of the terms of the summation in the final form of (45) and bounding the

rest.

For large n, the number of ones in the binary expansion of a random

integer uniformly distributed over {0,...,n-l} has approximately a binomial

distribution, that of the number of successes in [log^n] independent trials

with probability one-half. The error in the probability of any particular

values was shown to be of the order of (log^n)" . The proof by the method of

the present series of lectures seems to be quite simple in its basic outline.

However, starting just above (40), an alternative proof by induction on n

that is more powerful and perhaps simpler was described briefly.






