
INTRODUCTION

One aim of the theory of probability is the effective computation, perhaps

only approximate, of probabilities that are given in principle. Of course

there are other aims, for example the creation of an effective tool for think-

ing in a probabilistic way about physical problems and other applications, and

also the development of an aesthetically satisfying theory that ties together

the results of probabilistic computations for a particular class of structures,

for example sums of independent random variables. Here I shall be concerned

almost exclusively with a single approach to the approximate computation of

probabilities and, more generally, expectations. This work may be thought of

as an attempt to say something not entirely trivial about the approximate

computation of expectations at an abstract level. I have tried, without

complete success, to keep in mind the interaction of abstract ideas and

concrete problems.

The problem of computing expectations, perhaps only approximately, can

be divided into two parts. Let (Ω, β, P) be a probability space and E: X -* R

the expectation mapping associated with P on the linear space X of all real

random variables Z: Ω ->- R having finite expectations. In order to approximate

EZ for such a Z we may first determine

(1) ker E = {Y: EY = 0}

and then search ker E for a random variable that is approximately Z-c for

some constant c. We can then conclude that

(2) E Z « c .
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In these notes I shall study these two subproblems from an abstract point of

view and apply these considerations to a number of special problems. The basic

abstract structure is described in the first seven pages of the first lecture,

except for the proof of Lemma 1.2 which is postponed until the end of the

second lecture.

The principal systematic tool used here for the determination of ker E

may be described as a method of auxiliary randomization. It may be instructive

to indicate first how this can sometimes be used for the direct computation of

probabilities. The probabilistic notation used will be somewhat informal.

Let X denote a random point of a countable set Ω, distributed according to the

probability measure P and let W = ψ(X) be a discrete random variable. We can

sometimes obtain the distribution of W in the following way. On a larger

probability space we construct an exchangeable pair (X
9
X') of random points of

Ω in such a way that the new X is still distributed according to P, and let

W
1
 = φ(X'). Then (W,W) is an exchangeable pair, so that for any w and w

1

(3) P{W = w}P{W' = w'|W = w}

= P{W = w & W = w
1
} = P{W = w & W = w

1
}

= P{W = w'}P{W' = w|W = w
1
} .

If we can compute or approximate the conditional probabilities in this equation

we can solve for the ratio P{W = w'}/P{W = w}. If the system is connected in

an obvious sense we can obtain the probabilities P{W = w} (or approximations to

them) from these ratios and the fact that the sum of the probabilities is 1.
n

A simple example is provided by the binomial random variable W = J X
η
. where

the X. are independent random variables satisfying P{X. = 1} = p and

P{X. = 0} = 1-p with 0 < p < 1. We choose I uniformly distributed in {!,...,n}

independent of X
Γ
...,X

n
 and define X] = X

i
 for i ί I but Xj = X* (another

random variable with the same distribution as X-|».-.,X
n
 independent of

X
r
. . X

n
, I ) . Then, with W

1
 = \ Xi = W + (X*-Xj) the pair (W,W) of random

variables is exchangeable and, for w € {0,1,...,n},
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(4) P{W = w - 1|W = w} = ̂  (1-p),

and

(5) P{W = w + 1|W = w} = (1 - ̂ )p.

From these and (1) with w
1
 = w+1 we obtain

(κ\ P{W = w + 1} _ (n - w)p
{Ό)
 P{W = w} (w + Ί)(Ί - p)

The binomial probabilities can easily be constructed from (6). Two slightly

less trivial problems of this sort are discussed at the beginning of Lecture

XII.

Such an exchangeable pair (X,X') can be used for the determination of
p

ker E. Let 3 be the space of antisymmetric functions F: Ω -> R having finite

expectation under the appropriate extension of P. Then, for such F,

(7) EF(X,X ) = 0

and consequently, if we define T: 3 -> X by taking conditional expectation:

(8) (TF)(X) = E
X
F(X,X')

we have

(9) EoT = 0.

In the case where Ω is finite, Lemma 1.2 shows that, under an appropriate

connectedness condition, which is clearly necessary,

(10) ker E = im T.

An analogous result must be true in infinite cases. In places I have used

different ways to get at ker E. In particular, in the sixth lecture I have

used integration by parts and, in the tenth lecture still another approach.

These methods are related to the principal approach.

The second aspect of the problem of approximate computation of expecta-

tions, the search for a random variable in ker E approximately equal to Z-c

with c constant when we want to approximate EZ, is handled by the development
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of an explicit formula (1.33) for the difference between the expectation of a

random variable and its expectation under a specified approximating distribu-

tion, using the simple diagram, (1.28). This leads to the study of a certain

linear mapping LL: %Q -> 3 Q associated with each approximating distribution, as

described in (I.27)-(I.33). The easy analytic problems associated with UQ are

discussed for the univariate normal case in the first part of the second

lecture, and for the Poisson case in the eighth lecture. In the latter case

it is clear that special properties of the Poisson distribution have not been

used \/ery strongly. For the continuous case, the operator UQ is studied,

somewhat sketchily, in a fairly general context, in the sixth lecture. The

basic idea is applied to the normal approximation problem in several of the

lectures, as indicated in the table of contents. In the discrete case, only

binomial and Poisson approximation are considered.

The method described in this series of lectures for deriving a simple

explicit expression for the difference between the true expectation and its

approximation by a simpler expectation, for example normal or Poisson, seems

to be as successful as one could wish but the problem of bounding or approxima-

ting that difference has not really been solved. At least three different

attitudes toward this problem are possible:

(i) This remainder is an expectation, so it is reasonable to try to

apply the same method that was successful for the original problem.

(ii) One can try to bound the remainder by special devices in each case.

(iii) The notion of approximate independence of two random variables

seems to arise frequently in bounding or approximating the remainder. To

approximate E XY we may define a random variable Z, together with X and Y, on

a larger probability space, in such a way that Z is independent of X and also

Z is nearly equal to Y and then use

(11) E XY = E XZ + E X(Y - Z)

= (E X)(E Z) + E X(Y - Z).
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The first approach is successful in the treatment in Lecture VIII of the

Poisson approximation to the distribution of the number of successes in a

large number of independent trials. There the remainder in the basic identity

(VIII.27) is bounded rather trivially in (VIII.43). The remainder can then be

evaluated by another application of the basic identity, leading to the

inequality (VIII.47). It is likely that this approach will be successful in

other cases but there are difficulties. The remainder is not eliminated but

rather replaced by another remainder, which we hope is substantially smaller.

Thus some additional device must be applied. I have been completely unable to

apply this approach in the abstract context of (1.31) (or XV.5). However I

still believe that, properly interpreted, this approach will be useful.

The third approach is best illustrated by Lecture XI, which is the second

lecture on counting Latin rectangles. In order to study some properties of

a random permutation π of {!,...,n} we first use auxiliary randomization in

the form of a random ordered pair (I,J) of distinct elements of {!,...,n}

independent of π. This yields the basic identity (VII.36) of the earlier

lecture on this subject. From this a crude bound is obtained in Lecture VII.

This is substantially improved in Lecture XI by observing that the two factors

under the expectation sign in the remainder of (VII.36) are nearly independent.

The construction used to prove this suggests some similarity between this and

the first approach. An exchangeable pair ((π,I,J), (π
11
,1",J")) is constructed

in which π" differs only slightly from π. This construction should also be

useful in other problems concerning a random permutation such as the study of

the distribution of the sum of a random diagonal discussed in Lecture III.

The rather weak dependence among the first fourteen lectures is

indicated in Fig. 1. The fifteenth lecture makes some reference to material

of nearly all the other lectures.
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XIII

Fig. 1

Practically none of the concrete results are new. The basic approach

seems to have been new at the time of my paper at the Sixth Berkeley Symposium.

The algebraic formalism of (1.33), (XIV.33), and (XV.5) is new. Lectures VII

and XI on counting Latin rectangles are a corrected version (I hope) of my

1978 paper in the Journal of Combinatorial Theory (Series A ) . Lecture VIII on

Poisson approximation is based on the work of Louis Chen and Lecture XIII on

random graphs is based on work of Barbour and Eagleson. Lecture IV is based on

joint work of Diaconis and the author, reported in Diaconis (1977). Some

applications of the method by other people are listed in the bibliography and,

in some cases, described briefly in Lecture XV.

I believe that this approach will eventually turn out to be quite

powerful but I recognize that I have not yet made a convincing case for this

statement. I regret that the treatment of many special problems and even of

the basic idea is poorly organized and incomplete. Some special problems are

treated more thoroughly by other authors in papers listed in the bibliography.

I hope that my emphasis, systematic in intent though somewhat disorganized, on

the basic ideas will help people think about this class of problems more

effectively. Further delay in getting out these notes, in the hope of

improving them, seems unwise.

I am grateful to the National Science Foundation for its support of this

work at the Mathematical Sciences Research Institute in Berkeley, at
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Stanford University, and elsewhere. I thank Michael Perlman and the University

of Washington at Seattle for their invitation to spend the winter and spring

of 1982 in Seattle, where some of this work was done. Persi Diaconis suggested

that I work on some of the special problems treated here, and Akimichi Takemura,

Louis Chen, and others have made very helpful comments. I am grateful to my

wife Margaret for her encouragement and for her typing of the penultimate

version of this manuscript. I also thank Norma Lucas for typing the final

version.






