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MOMENT INEQUALITIES WITH APPLICATIONS
TO REGRESSION AND TIME SERIES MODELS

BY TZE LEUNG LAI1 and CHING ZONG WEI2
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Herein we review several important moment inequalities in the literature and discuss
their applications to strong (almost sure) limit theorems for linear processes and for least
squares estimates in multiple regression models.

1. Introduction and Summary. A classical model for random noise in the regression
and time series literature is that of equinormedorthogonal random variables en, i.e.,

(1.1) £(€,€,) = () forΊΦj,

= σ 2 for/=7.

Such random variables have the important mean square property that for all constants ch

(1.2) E(XUm ctd2 = σ 2 XUmcf for all i&m.

For example, the so-called Gauss-Markov model in multiple regression theory is of the

form

(1.3) z/ = β1r l7 + ... + β*/l* + e l ( ί = l , 2 , ... )

where fy are known constants, z, are observed random variables, β, , ... , β* are unknown

parameters, and €i are equinormed orthogonal random variables that represent unobserv-
able random errors. Throughout the sequel we shall let Trt denote the design matrix
(*ϋ)i<i<n. \*j*k> a n ( i let Zn = (zu ... , zn)

f. For n^ky the least squares estimate b n =

(bnί, ... , bnk)' of β = (β!, ... , β*)' based on the design matrix Ύn and the response vector

Zn is given by

(i 4) bn = (τnτnr'τnzn,

provided that T'ΠTΠ is nonsingular. From (1.1), it follows easily that

(1.5) cov(bn) = σ2(T'πTπ)-1,

and therefore b n is weakly consistent (i.e., bn̂ -> B) if

(1.6) (T' .Tjr^Oasiwoo.

If σ Φ 0, the condition (1.6) is also necessary for the weak consistency of b n (cf. Drygas

(1976)).

In time series theory, it is well known that every wide-sense stationary sequence {yn}

with zero means and an absolutely continuous spectral distribution can be represented as

0-7) yn = π.m.^Σy_

where {ej is an orthonormal sequence (i.e., σ = 1 in (1.1)), {an} is a sequence of constants

such that Σ~=-ootf2 < α>, and l.i.m. denotes limit in quadratic mean (cf. Doob (1953), page

499). From this representation, it follows that
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E(ϊ"j=iyj)2 = Σ7=-oo(Σ?=1^_I )
2 = o{n\

and therefore \yn} satisfies the weak law of large numbers:

(1.8) /Γ^o^O.

The representation (1.7) also provides an important stochastic model in the engineering
literature, where the sequence {€„} is a white noise sequence and {yn} is the output sequence
obtained by passing {en} through a linear filter defined by {an} (cf. Kailath (1974)). We
shall call the sequence \yn} in (1.7) a linear process generated by {en}.

In order to strengthen the weak consistency result on bn into its strong consistency under
the minimal assumption (1.6) on the design constants, or to strengthen the weak law (1.8)
into the corresponding strong law, we have found it necessary to introduce additional struc-
ture into the noise sequence {en}. Indeed, Chen, Lai and Wei (1981) gave a counter-exam-
ple to show that the condition (1.6) is not sufficient for the strong consistency of bn in the
Gauss-Markov model. A very useful additional assumption on {en}, which is satisfied by
many important classes of random variables that are natural models for random noise, and
which yields the desired strong limit theorems, takes the form of the following moment
inequality, to be satisfied for somep>2 and all constants c,:

(1-9) E\^i=mCi 4P ^ Kpm=mc\γ12 for all n^m.

Given p>0, a sequence of random variables {en} is called a lacunary system of order
p9 or an Sp system, if there exists a positive constant Kp such that the moment inequality
(1.9) is satisfied for all constants c, . The concept of Sp systems was introduced by Banach
(1930) and Sidon (1934). If {en} is an Sp system for allp>0, then it is called an SΌo system.
In view of (1.2), an equinormed orthogonal system is an S2 system, and the moment in-
equality (1.9) can be regarded as an Lp extension of the L2 property (1.2). In Section 2,
we give some basic properties and examples of Sp systems, and in this connection, review
some important moment inequalities in the literature. In particular, we also discuss how
the moment inequality (1.9) in the case/?>2 is related to the almost sure limiting behavior
of the sequence {Σ/L i ct €,}.

While the moment restriction (1.9) appears more restrictive than the equinormed ortho-
gonal situation (1.2) in the sense that it considers the pth absolute moment with p>2, it
is also less restrictive than (1.2) in the sense that it replaces equality in (1.2) by an upper
inequality (^). If we replace equality in (1.2) by a lower inequality (^), then we get a
Bessel-type inequality. A sequence of random variables {en} is said to satisfy the Bessel
inequality if there exists K>0 such that for all constants ch

(1.10) E&l^ctd2 & K%%mc2 for all n^m

(cf. Gaposhkin (1966)). Since E\Y\P ^ (EY2)p/2 forp>2, the inequality (1.10) in turn im-
plies the existence of a positive constant Ap>0 such that for all constants ch

(1.11) E\V\=mc^ ApW=mcfy/2 for all n^m.

Gaposhkin (1966) showed that if {en} is an Sp system for some p>2 and if it also satisfies
the Bessel inequality, then it is a Banach system, i.e., there exists A(=Aλ) such that (1.11)
holds withp= 1 for all constants c, . Clearly, if {en} is aBanach system, then for every p ^ l ,
there exists Ap>0 such that (1.11) holds for all constants ch

Replacing equality in (1.2) by the upper inequality (1.9) (with/?=2) and the lower in-
equality (1.10) enables us to substantially enlarge the equinormed orthogonal model for
random noise and include random errors that are correlated and have different variances.
Assuming (1.9) for some p>2 in addition often enables us to extend the mean square con-
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vergence properties in classical regression and time series models with equinormed ortho-

gonal errors to the corresponding almost sure convergence properties. For example, as

shown by Lai and Wei (1983), if the random errors en in the linear process (1.7) form an

orthonormal Sp system with/?>2, then the weak law (1.8) can indeed be strengthened into

the strong law, i.e.,

rr^^yj^O a.s.

To establish the strong consistency of the least squares estimate b n = (bnU ... , bnk)
f

in the multiple regression model (1.3) when the random errors 6/ form an Sp system with

p>2, we 6x7=1, ... , k and note that bnjcan be represented for all large n as

where {αni: 1 ^/^Λ, n= 1,2, ... } is a triangular array of constants such that

(1.13) Σ7Liflmαml = Σ7=iflmι for n^m

(cf. Lai and Wei (1982), Lemma 2). Thus, to study the limiting behavior of the least squares

estimate bnjy it is useful to consider more generally linear transformations of the form

(1.14) j c ^ Σ ^ - o c ^ e;

where αni are constants such that V°=-«&2

ni < °° for every n. Since {en} is an Sp system with

p>2, the series in (1.14) indeed converges a.s. (see Section 2). Partial sums xn = Σ?=iV/

of the linear process {y,} defined in (1.7) can also be expressed in the form (1.14). In Section

3, we consider the almost sure limiting behavior of such linear transformations of Sp sys-

tems and discuss applications of the results to regression and time series models.

2. Lacunary systems, Banach systems, and related moment inequalities. We now

give some examples of Sp systems and Banach systems, and in this connection, also review

some important moment inequalities in the literature.

Example 1. If {ej are i.i.d. standard normal random variables, then since £|Σ7=mc/€/|
/7

= (Xn
i=mc2)p/2E\N(0, \)\p, { en} is an 5Όc system and a Banach system.

Example 2. Let {eπ} be i.i.d. Bernoulli random variables such that P{en = 1} = P{en

= -1} = Vi. Then by an inequality of Khintchine (1924), for every p>0, there exist positive

constants Ap and Bp such that

Π \\ Δ C£n r2>ip/2^F\^n re\P^R f£" r2}?'2

for all ri^m and all constants c;. Thus, Khintchine's inequality implies that {en} is an S<χ>

system and a Banach system.

Khintchine's inequality was generalized to general independent random variables by

Marcinkiewicz and Zygmund (1937) who showed that if en are independent random vari-

ables with zero means, then for every p^ 1, there exist positive constants Ap and Bp depend-

ing only on/? such that

\ ) p^\\^ i=m is i ^^ \^ i^nt^il ^^ *^D*^'\\^ i=tn^i/ S

for all n^m. In the case/?> 1, the moment inequality (2.2) was extended from independent

random variables to martingale difference sequences {en} by Burkholder (1966). Some

other important martingale extensions of the Marcinkiewicz-Zygmund inequality can be

found in Burkholder's survey paper (1973) and the references therein.

Making use of Burkholder's inequality (2.2) for martingale difference sequences and

Minkowski's inequality, Lai and Wei (1983) obtained
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Example3. Let p ^ 2 , and let {en} be a martingale difference sequence (i.e., E{en\eJf

= 0 for all n) such that S*P E\ejp«*>. Then { en} is an Sp system. If furthermore

\tn\>0, then it follows from Lemma 4 of Burkholder (1968) that { e j is also a Banach

system.

Let r be a positive even integer. A sequence of random variables { en} is said to be multi-

plicative of order r if

(2.3) £(€,, . . . e,r) = 0 for all iι<i2<...< ir

When r=2, this reduces to orthogonal random variables and therefore forms an 5 2 system

if SUP£€2 < oo. Forr^4, Komlόs (1972) obtained the following

Example 4. Let r ^ 4 be an even integer, and let { e j be a multiplicative sequence of order

r such that S U P Ee' < oo. Then as shown by Komlόs (1972), {en} is an Sr system. Obviously,

if ιψ E^n > 0, then {en} satisfies the Bessel inequality, and this in turn implies that { e j

is a Banach system since it is an Sr system (r>2) satisfying the Bessel inequality.

Longnecker and Serfling (1978) introduced three different ways to weaken the multiplica-

tive condition (2.3) and showed that these three different classes of weakly multiplicative

systems of order r are also Sr systems if S U P Ee' < oo. They also showed that certain station-

ary mixing sequences and Gaussian sequences are special cases of these weakly multiplica-

tive sequences.

The following maximal inequality plays an important role in the theory of Sp systems

withp>2.

LEMMA 1. (Mόricz (1976)). Let p>0 and α > l . Let {xn} be a sequence of random vari-

ables. Suppose that there exist nonnegative constants dt such that

(2.4) Elxn-xJi^&Un+^r forn>m^m0.

Then there exists an absolute constant CPtOL such that

(2.5) E( max \xi-xJr)^Cp,J2%m+ldi)a forn>m^m0.

As a consequence of the maximal inequality (2.5), we obtain the following corollary

on the almost sure convergence of {xn} and also its order of magnitude in case of divergence

(cf. Lai and Wei (1983), Lemma3.2).

COROLLARY 1. With the same notation and assumptions as in Lemma 1, define

(2.6) Dπ = Σ ΐ = m o + , 4 ,

(i) If Urn Dn < °°, then xn converges a.s. and in the LΌ - norm.
n->°°

(ii) If Mm Dn = oo, then for every δ > 0,
w^oo

(2.7) xn = o{{D^P{\ogDnγ'P{\og\ogDnf
λ+h)'P}) a.s.

Remark. Suppose that { e j is an Sp system for some p>2 and {cn} is a sequence of con-

stants. Let xn = Σ L,£,€,. Then (1.9) implies that {xn} satisfies (2.4) with α = p/2>\, dt

= Kp

/pcf and m o = 1. Therefore Lemma 1 and Corollary 1 are applicable to {JCΠ}.

The special case/?=α=4 in Lemma 1 was first established by Erdόs (1943) for lacunary

trigonometric series. The result of Erdos was subsequently extended by several authors (cf.

Mόricz (1976) and the references therein), and Mόricz (1976) considered in addition to

the case α > 1 in Lemma 1 also the cases α = 1 and 0 < α < 1. The latter two cases are quite

different from the case α > 1 instead of the absolute constant Cpot in (2.5), the correspond-
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ing maximal inequalities in these two cases involve constants of the form CpOL(m,n). These

results generalize the classical Rademacher-Mensov inequality for orthogonal random vari-

ables (cf. Doob (1953), page 156): If ej, ... , en are orthogonal random variables with finite

variancesσ\, ... ,σ^,then

(2.8)

The following recent generalization of this kind of maximal inequalities is due to Mόricz,

Serfling and Stout (1982).

LEMMA2.L*tfg:{l, ... ,n}x{l, ... , n}-> [0 ™) such that for some Q^ 1

(2.9) g( )

(2.10)

Leteu ... , €„ be random variables such thatfor some p^\ and a^ 1,

(2.11) E\yt=ιet\r^g"(iJ) foralll^j^n.

(i) Ifa> 1 and β < 2 ( α " 1 )/ot, then there exists an absolute constant CPtOLtQ such that

(2.12) E{ max

(ii) In the case a= 1, we have the maximal inequality

(2.13) E( max |Sί-,€,|*) ^ ©£§« / l o g 2] e ' '

For the case Q—l, inequality (2.9) says that g is superadditive and implies (2.10). In
this case, as pointed out by Longnecker and Serfling (1977), there exist nonnegative con-
stants^, ... ,dn such that

(2.14) g(A,n) = X^λut and g(i,j) ^ £ U « , for 1^/^ ^ n ,

and therefore the maximal inequality (2.12) reduces to that of Lemma 1.

For the case where g(i,j) takes the form g(i,j) = g(H+1), (2-9) becomes

(2.15) g(ί) + g(j-i) ^Qg(j) for/^/.

Another maximal inequality of this nature but under an assumption different from (2.15)

is

LEMMA 3. (Lai and Stout (1980)). Letg:{\ ,2, .. .}-• (0, °o) be afunction satisfying

(2.16) lim inf g(Kn)/g(n) > K for some integer K^29

and

(2.17) for all b>0, there exists ρ=p(b)<\ for whichlim sup { max g(i)/g(n)} < \+d.

Leteue2f ...be random variables such that for somep>0,

(2.18) E | 2 £ v \ , et\
p^ g(n) for allv^Oandn^ 1.

Then there exists a positive constant C such that

(2.19) E( max IX^^,e t\
p) ^ Cg(n) forallv^Oandn^ 1.

1 S S / ^

3. Linear transformations of Sp systems and their applications. In this section we

first consider the multiple regression model (1.3) where the random errors €; form an Sp

system with p>2, and apply Corollary 1 to establish the strong consistency of the least
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squares estimate bn = (bnl, ... , bnk)' under the assumption (1.6) on the design constants.

This is the content of

COROLLARY 2. Suppose that in the multiple regression model (1.3) the random variables
ejorm an Sp system for some p>2. Let Vn = ( v ^ ) ^ - , ^ = (TnΊJΓι. Fixj=l9 ... , k.
If lim vjj1^ = 0, then for every b>l/p,

(3.1) bnj- β, = *({(vjf >)1/2|log vjf >| ι/*> (log|log vjfψ}) a.s.

Proof. By (1.12), bn-$j = (Σ7= \ani 6^/(^7= i#m) f° r all large n, where αni dirt constants
satisfying (1.13). Letjcn = Σ7=i«m€ l. Since {^ is an Sp system, for n>m,

(3.2) E\xn-xm\P = £ | Σ 7 = i ( a m - O €, + ^ni=m^αm^\p

LetD π = %%ια*i, dn = D n - D n _ 1 ( D 0 = 0 ) . It follows from (1.13) that for n > m

ϊ?=i(αnΓαmi)
2 + Σ?- m + 1 <ά = Σ7=,^ ί-Σ7 l=1α^ ι = Dn-Dm,

and therefore by (3.2), for n>m

E\xn-xm\p ^ Kp{Dn-Dmγ12 = Kp&
n

i=m+λdίf'2.

As n->oo, Dn = l/vĵ

l) -> oo (cf. Lai, Robbins and Wei (1978)), and therefore we can apply

Corollary 1 (ii) to obtain that for every δ > l/p,

(3.3) xn = o({Dι

n

/2(\ogDn)
υP(\og \ogDn)

b}) a.s.

proving the desired conclusion (3.1). •

Corollary 2 extends the result of Lai, Robbins and Wei (1978) who considered the special

case p=4. The above proof also shows that the linear transformation *n=Σ7=itfm €t of an
Sp system {e,} has the asymptotic behavior (3.3) if Dn = X7=i«m -* °° and if t n e constants
α m satisfy (1.13).

More generally, let {αni \ri^\, -oo</<oo} be a double array of constants such that

(3.4) Σ?=-oo<4 < ooforevery n.

Thus, ^ = (αmLo<ί<Oo€Λ and we shall let | k | | = (Σ°°=^α2J'2 denote the i* norm of

an. Let {€n}_oo<π<oo be an Sp system with/?>2. Define

(3.5) xn = X?=-oΰαniei,

noting that the series in (3.5) converges a.s. and in the Lp norm in view of Corollary l(i)

and(3.4).By(1.9),

(3.6) E\xn-xm\P ̂  Kp{X%-oo(αnΓαmi)
2r2 = KP\\*n-*m\K

If furthermore {en} satisfies the Bessel inequality, then E(xn-xm)2 ^ KXT=-oo(αnι-αmi)
2 by

(1.10), and it then follows from (3.6) that

(3.7) E\xn-xn\P ^ Kp{E(xn-xm)2y2.

This inequality in turn enables us to relate the Lp properties of {jcn} to its L2 and spectral
properties. Making use of this observation, Lai and Wei (1983) obtained the following

THEOREM 1. Consider the linear process yn defined in (1.7) where the random errors

znform an orthonormal Sp system with p>2. Let f be the spectral density of{yn}. If ess

supo^θ^2i/(θ) < °°, then {y j is an Sp system. Consequently, XJLiC^ converges a.s. and

in the Lp norm for all constants ct such that Σ^c) < oo.

In view of the inequality (3.6), the random variables xn = Σ i_«£!,„.€,• satisfy moment
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inequalities of the type in Lemma 1 or 2 or 3 if the function h(m,n) = | |an-am | | satisfies

corresponding conditions of the type h(m,n) ^ (Σ°°=m+1dI)
α//?, or h(m,n) ^ ί^ί/π+l,/!),

or h{ m, n) ^ gι/p(n-m) for n>m. Under such assumptions on | |an-am | | , we can therefore

apply the maximal inequalities in these lemmas to obtain almost sure limit theorems of the

type in Corollary 1 above or in Corollary 3.3 of Lai and Wei (1983) for linear transforma-

tions xn = ΣΓ=_ooflm€i of Sp systems {en} satisfying the Bessel inequality. Such maximal
inequalities can also be applied in conjunction with exponential bound of the type

(3.8) P{\xn\ > τ(θ)(DnloglogDn)I/2} = 0(exp(-θ log logDJ),

where Dn = Σ/L-«>a&, Θ>1 and τ(θ)>0, to establish laws of the iterated logarithm for xn

(cf. Lai and Wei (1982), Theorem 4). Using this approach and certain truncation tech-

niques, Lai and Wei (1982) obtained the following law of the iterated logarithm for double

arrays of independent random variables and applied the result to regression and time series

problems.

THEOREM 2. Let... , e_!, €0, e ], ...be independent random variables such that

(3.9) Een = 0andEe2
n = σ* for all n, and supπ£|^ \ < ™forsomep > 2,

and let {ani :n> 1, —<χ><i<*>}be a double array of constants such that (3.4) holds and

(3.10) D n = Xr—fl£ ^ « ,

(3.11) s u ^ ^ = ^ ( D n ( l o g D n n farallr>0.

(i) If there exist constants d^O and λ>l/p such that

(3.12) | k - a J < ( Σ r = m + , 4 ) λ forn>m^nio,and

(3.13) ® L , ddx = 0(Dj/2) as n-+oof

then

(3.14) lim sup \xn\/(2Dn log logDn) 1 / 2 ^ σ a.s.

(iOZ/lla^-a^H =̂  gι/p(n-m), where g : {1, 2, ...}->(0,°o) satisfies conditions (2.16) and

(2ΛΊ)andg(n) = 0(Dξ/2), then (3 Λ4) still holds.

REFERENCES

BANACH, S. (1930). Uber einige Eigenschaften der lacunaren trigonometrische Reihen. Studia
Math. 2 207-220.

BURKHOLDER, D. L. (1966). Martingale transforms. Ann. Math. Statist. 37 1494-1504.
BURKHOLDER, D. L. (1968). Independent sequences with the Stein property. Ann. Math. Statist.

39 1282-1288.
BURKHOLDER, D. L. (1973). Distribution function inequalities for martingales. Ann. Probability I

19-42.
CHEN, G. C , LAI, T. L., and WEI, C. Z. (1981). Convergence systems and strong consistency of

least squares estimates in regression models. J. Multivariate Anal. 11 319-333.
DOOB, J. L. (1953). Stochastic Processes. Wiley, New York.
DRYGAS, H. (1976). Weak and strong consistency of the least squares estimators in regression

models. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete34 119-127.
ERDOS, P. (1943). On the convergence of trigonometric series. J. Math. Phys. (M.I.T.) 22 37-39.
GAPOSHKIN, V. F. (1966). Lacunary series and independent functions. Russian Math. Surveys 21,

No. 6, 1-82.



172 TZE LEUNG LAI AND CHING ZONG WEI

KAILATH, T. (1974). A view of three decades of linear filtering theory. IEEE Trans. Inform.
Theory /Γ-20 146-181.

KHINTCHINE, A. (1924). LJber einen Satz der Wahrscheinlichkeitsrechnung. Fund. Math. 6 9-20.
KOMLOS, J. (1972). On the series Σ c ^ k . Studia Sci. Math. Hungar. 7451-458.
LAI, T. L., ROBBINS, H., and WEI, C. Z. (1978). Strong consistency of least squares estimates in

multiple regression. Proc. Nat. Acad. Sci. USA 75 3034-3036.

LAI, T. L , and STOUT, W. (1980). Limit theorems for sums of dependent random variables. Z.
Wahrscheinlichkeitstheorie undVerw. Gebiete 51 1-14.

LAI, T. L., and WEI, C. Z. (1982). A law of the iterated logarithm for double arrays of inde-
pendent random variables with applications to regression and time series models. Ann. Prob-
ability /0 320-335.

LAI, T. L., and WEI, C. Z. (1983). Lacunary systems and generalized linear processes. Stochastic
Processes Appl. 14 187-199.

LONGNECKER, M. and SERFLING, R. J. (1977). General moment and probability inequalities for
the maximum partial sum. ActaMath. Acad. Sci. Hungar. 30 129-133.

LONGNECKER, M. and SERFLING, R. J. (1978). Moment inequalities for S n under general depen-
dence restrictions with applications. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 43 1-21.

MARCINKIEWICZ, J. et ZYGMUND, A. (1937). Sur les functions independantes. Fund. Math. 29
60-90.

MORICZ, F. (1976). Moment inequalities and the strong laws of large numbers. Z. Wahrschein-
lichkeitstheorie und Verw. Gebiete 35 299-314.

MORICZ, F., SERFLING, R., and STOUT, W. (1982). Moment and probability bounds with quasi-
superadditive structure for the maximum partial sum. Ann. Probability 10 1032-1040.

SIDON, S. (1934). Ein Satz uberFourierische Reihen mitLucken. Λto/i. Z. J2 481-482.




