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We are interested in best /^-approximations Σr$rgr(x) to a given finite array of num-
bers z(σ)(jt), (jteX). For the case p > 1, a natural iterated polishing method is shown to
converge to the unique optimal solution. Let/? = 1. Several conditions are obtained, each
of which is necessary and sufficient for a given array of residuals z(x) (JC e X) to be optimal.
Detailed results are derived for the case of a two-way m x n layout, allowing several obser-
vations z(</|k in cell (i, j). For instance, a set of residuals is optimal if and only if there exists
a solution to an associated moment problem with given marginals, which depends only on
the signs σ,y* of the residuals zijk. This criterion leads to an elegant and efficient max-flow-
min-cut type of algorithm for calculating a best L\-approximation. For the case of a single
observation in each cell, it is also determined precisely which pairs (m, ή) are 'safe' for
Tukey's median polish, in the sense that the endproduct ofanmX/i polish is necessarily
a best L i-approximation. The answer depends on the type of allowable medians.

1. Introduction. Let the m x n matrix Z ( σ ) = (z(g}) represent a two-way table of ob-

servations. An elementary way of arriving at a reasonable additive approximation α, + βy

is by means of median polish, as developed by Tukey (1977); see Section 4 for further de-

tails. An algorithm in APL and further comments can be found in Anscombe ((1981) p.

106,382).

One motivating idea behind median polish is that it might minimize the Lj-norm of the

matrix Z = (z,y) of residuals zi} = z ^ - α, - βy. However, this is not always true as follows

already from the well-known fact that the norm of the final endproduct of a median polish

or mid-median polish may not be the same when starting with a polishing of the rows as

when starting with a polishing of the columns.

These endproducts will be called an EMP or EMMP, respectively. More generally, an

m X n matrix Z will be called an EMP or EMMP, respectively, when 0 is a median or

mid-median, respectively of each row and each column.

The matrix Z of residuals will be said to be optimal if its norm cannot be further reduced.

For this it is necessary that Z be an EMP. It is shown (Theorem 6) that for each choice

of (m, ή) there exist non-optimal EMP's. There even exist non-optimal EMMP's, unless

(m, ή) is one of the special pairs (2, n)\ (3, 4); (4, 4); (4, 5) and (4, 6), (assuming that

2 =ss m ̂  ή). Thus, if m = 4 and n = 6 then the endproduct of a convergent mid-median

polish process is always optimal. This is false when m = 3 and n = 3 or 5.

The main purpose of the present paper is to derive efficient tests for optimality together

with explicit procedures for improving a given non-optimal matrix. Many of our results

lead to an explicit algorithm, usually safer and faster than median polish, though that al-

gorithm may not be spelled out in any great detail. For, our principal goal is to achieve

a good theoretical understanding of the main problem.

Most results are developed for the general regression problem, where one wants to

minimize the L^-norm (2.1) by a suitable choice of the free parameters βr. Median polish

carries over to this general problem in a natural way. We show in Theorem 1 that this
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generalized polish always converges to the unique optimal solution, providedp > 1.

From Section 5 on, it is assumed that p = 1. Then the optimality of Z = {Z(JC); x e X}

depends only on the associated sign pattern {sgn z(x); xeX} and one may speak of optimal

sign patterns. It turns out that an optimal sign pattern remains optimal when one or more

of the elements +1 or -1 are replaced by 0. In the different criteria for optimality, a central

role is played by the set D = {x e X: z(x) = 0}. For instance, in the case of an n-way layout,

one necessary and sufficient condition for optimality requires the existence of a measure

on D having preassigned marginals, see Section 7. The sections 8 and 9 are concerned with

a two-way layout, allowing several observations per cell.

There is a large literature on explicit algorithms leading to an optimal Lx-approximation.

Each of these algorithms amounts to a descent method of some type, often restricted to

the finite set of basic solutions of the associated linear programming problem. See the sur-

veys by Gentle (1977) and Kennedy and Gentle (1980) pp. 515-559.

A selected list of such papers has been included in the bibliography. Space did not allow

us to give an adequate discussion of the many cross relations which exist between these

papers and the present one.

2. Stating the problem. In this paper, X is a fixed finite index set and Zo) = {έo)(x): x

€ X} a given collection of real numbers or observations. Further, gr : X•—> R (r =
1, ... , Λf) is a given set of linearly independent functions on X. We will be interested in

diferent aspects of the problem to

(2.1) minimize: 5 = Σ ^ ω(x)\ϊ°\x) - ΣM

r=ιβrgr(x)\P.

Here, p ^ 1 and only the β r are unknown. The weights ω(;c) > 0 may indicate the multiplic-

ity or importance of the corresponding observations.

This problem arises in many ways, for instance, as a maximum likelihood problem when

z(o\x) = 2^= i βrfΛz) + η(*), (x€X)

where the errors η(jc) (JC € X) are independent with a density type c(ω)exρ(-<oW|y|p),

We will especially be interested in the case p = 1. One situation we have in mind, see

Sections 8 and 9, is that of a two-way m x n layout with observations z{% in cell (/, j),

with ieY\ = {1, ... , m}\j e Y2 = {1, ... , n} and k = 1, ... , kiJt where one wants to

minimize the L j -norm

(2.2) S = χ . J i J z ( ^ _ α | . - β 7 . | .

Here, X is taken as the set of triplets (/, j , k) with ieYl9jeY2,ke{\9 ... , k0} while ω(x)

= 1. Further, M = m + n and

Zr(i>j>k) = §ri forr= 1, ... ,m;
(2 3)

= δj w f I forr = m + 1, ... ,M;

(δ r = 1 or 0 if q = r or q Φ r, respectively). The general layout problem is to minimize

a norm of the form

(2.4) 5 = ΣxeXω(x)\z}°Kx)-ΣteT βt(φt(x))\.

Here, for each teT, φt: X«* Yt is a given function, while the βt(y) are unknown parame-

ters. Often X is a subset of 9?n while φt(y) is expressed in terms of the coordinates xh oix,

e.g., φt(x) = *i orφt(x) = (xι,x2).
In this illustration, the function gΓ in (2.1) becomes

(2.5) &,W = « U '
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while β,(y) plays the role of βΓ. The support of gt>y is

(2.6) Lt(y)={xeZ:gty(x) Φ 0} = {xeX: φt(x) = y }

and will also be referred to as a 'layer'. In the case (2.2) one would have T = {1, 2},

ΦiOϊj. £) = * and φ2(«, 7, A:) = 7. Moreover, Lx(ϊ) and L2(/)> respectively, would be the

set of points x = (i,j, k) having a fixed component / orj, respectively.

The general layout problem is equivalent to having, for each t e Γ, a partition of X into

disjoint sets Lt(y) with associated additive parameters β/(y).

Remark. As will be shown in a subsequent paper, most results of the present paper

carry over to the case where the exponent p in (2.1) is replaced by a function p(x) ^ 1

(xeX).

3. The p-Centre of a Mass Distribution. Be given a mass distribution on the reals

having mass qx > 0 at y, (1 = 1, ... , Λ) and suppose one wants to minimize ψ(s) =

Σ/=i q\s - yi\p. This is somewhat comparable to least squares relative to the (variable)

weights qfoi - S\P~2, as observed by Mosteller and Tukey (1977) p. 365. If p < 2 then rela-

tively less weight is given to the very large observations.

If p > 1 then ψ(s) is strictly convex and the minimum on hand is uniquely achieved at

the so-called p-centre s° = meanp{v/: qt} of the mass distribution. It is the unique solution

of the equation

(where sgn(w) = - 1 , 0 or + 1 , depending on the sign of u). In particular, mean2{y/: q^ is

nothing but the ordinary mean.

If 0 < p < 1 then ψ(s) would be strictly concave as long as s differs from the y, and,

thus, ψ(s) takes its minimal value (only) at one of the points y,. If p = 1 then ψ(s) is

piecewise linear and convex and, hence, attains its minimal value precisely at the values

s where the nondecreasing derivative ψ'(s) = Σ7=i<7;Sgn(.s — yf ) changes sign from negative

to positive; this always includes one of the points y/. Such a 1-mean or median s° may also

be defined by the inequalities

(3.1) ^qt*Q/2*^qi9 where Q = Σ^q.

This median is unique unless the second sum can take the value Q/2. The latter happens,

for instance, when n is even and <?, = 1 for all 1. The notation

s° = mean, {y;: <?,} = med{y,: qt] or mean x {y t: qt] = s°

will simply indicate that s° is a median for the distribution on hand. The set of all medians

is a finite closed interval [sr, s"]. Its midpoint (sf + s")ll is called the mid-median and will

be denoted as Med{y,: qt}.

LEMMA 1. In order that β* = (β*i, ... , β^) achieves the minimum in (2.1), it is nec-

essary that the residuals

(3.2) z(x) = zM(x)-S%lp*rgr(x) (xeX)

satisfy

(3.3) meanP(Γ{z(jc) = 0} forr = 1, ... ,M.

The latter mean is defined as

(3.4) meaivX*)} = mtanp{z(x)/gr(x): ω(x)\gr(x)γ>}.

If p > 1 then the minimum in (2.1) is achieved at a unique point β* and condition (3.3)

is also sufficient.
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Proof. Fix 1 ̂  r ^ M. A necessary condition is that

( 3 5 ) Σ ^ ω (x)\z(x) - sgr(x)\r (s e R)

takes its smallest value at s = 0. Since one may as well restrict x e X to the points with

gr(x) =t 0, this is the same as saying that s = 0 minimizes the sum

Zx*χω(x)\gr(x)\p\s-z(x)/gr(x)\p.

From the remarks preceding the Lemma, the latter in turn is equivalent to (3.3).

If p ^ 1 then the sum in (2.1) defines a nonnegative and convex function F(β) =

F(βi, ... , βM) on RM. Condition (3.3) says precisely that F is minimal at β* relative to

changes in a single variable only. If p > 1 then F is of class C 1 and strictly convex (since

the gr are linearly independent). This easily yields the last assertion. •

Comments. Also note that the sum in (3.5) assumes its smallest value at s° if and only

if 5° = mean^ r{z(jt)}, as defined in (3.4). In the case/7 = 1 this means that

(3.6) mins ΣX€Xω(x)\z(x) - sgr(x)\

is achieved at s° if and only if s° is a median of the set of all numbers z(x)/gr(x) with gr(x)

¥ 0 having corresponding weights ω(jc) \gr(x)|.

The last two assertions of Lemma 1 would be false when p = 1. Namely, medians and,

in general, optimal Lx-approximations are often not unique. The following example shows

that condition (3.3) is not sufficient for optimality when p = 1.

Choose X = {1, 2, 3} and ω(jc) = 1. Further, M = 2; g,(l) = g2{2) = 0 while gr(x)

= 1, otherwise. Finally, z(l) = - 1 ; z(2) = +1 and z(3) = 0. Then condition (3.3) holds

with β*! = β*2 = 0. Namely, it then says that 0 is a median of the set of numbers z(2)

= 4-1 and z(3) = 0, with weight 1 each, and also that 0 is a median of the set of numbers

z(l) = -1 and z(3) = 0, with weight 1 each. Which is true. Nevertheless, the minimum

in (2.1) is not achieved at β = (0, 0). For, the L r norm (equal to 2) of {z(x}} can be reduced

to 0 since z(x) - g\(x) + g2(χ) = 0 for all x e X. Essentially, one is confronted here with

the simple function

f(u, v) = |w-l | + | v+ l| + |κ + v|.

It is convex and satisfies/(O, 0) ^ / ( M , 0), for all u, and/(0, 0) ^/(0, v), for all v. Neverthe-

lessJ(l,-l) = 0 < 2 = / ( 0 , 0 ) .

4. Median Polish. Tukey (1977) developed in detail the idea of calculating a reasona-

bly good additive approximation to a given /i-way layout of observations by so-called me-

dian polish. For a two-way layout as in (2.2), this additive approximatioon α, + β, to z^k

is derived as follows.

One starts with the 'matrix' Z(o) = (z^)k) and applies a (median) row polish, yielding

the matrix
y(I) _ /-(I) _ Λό) O(1)Λ
^ ijk ~~ Vz ijk ~ z ijk—Pi )•

Here, the adjustment β ί υ of the /-th row is taken as a fixed median (often the mid-median)

of the set of numbers z{% in /-th row (/ fixed). Next, one applies a column polish to Z ( 1 )

yielding
7(2) _ /_(2) _ _(1) o(2h
^ — U ijk — z ijk—Pj )-

Here, β}2) is a fixed median of the set of numbers z{\]k with j fixed. Polishing the rows of

Z ( 2 ) one obtains Z ( 3 ) and so on. In general.
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(4.1) ^ ψ ^ ^
As observed by Gabriel (1983), a more efficient and self-correcting procedure would be

to keep the original matrix Z(o) and store not the Z{g) but only the current cumulative sums

a\h) = X^=i β P * - υ and bfh) = Σ * β l β j 2 * } of the row and column adjustments. For, these

can be recursively computed: (i) a\h) is the median of the numbers zuβk - b\h~ι\ (i fixed;

b}°) = 0); (ii) i f > is the median of the set of numbers z$ - ajh\ (j fixed). Here, one

typically uses the mid-median.

One continues (4.1) or the latter process until either convergencew is nearly obtained or

else the norm of the matrix Z(*> seems to have reached its minimal value.

GENERALIZED POLISH. We now introduce the following analogous calculation for the

general minimization problem (2.1). Here/? ̂  1.

Start out by selecting a fixed infinite sequence of integers {rn; n ^ 1} taking values in

{1, ... , M}, with the property that there exists a possibly large integer N, such that, for

all n ^ no, each r = 1, ... , M occurs in the finite subsequence {rn, rn+,, ... , rn+N). For

instance, if rn = n (modΛf) thenN = M- 1.

Now calculate recursively, for n = 1,2, ... ,

(4-2) /n\x) = z^-ι\x)-sngrn(x)9 (xeX)

where

(4-3) s» PΛ

(as defined in (3.4)). Therefore,

(4.4) Σ ^ K * ) | * » > ( * ) | P = min, ΣX j

while sn attains the latter minimum. If/? = 1, this means that sn is a median (to be specified)

of the numbers z(n~] \x)/grn(x) with grnΦ 0, relative to the weights ω(jt)|gΓnOt)|.

As an illustration, in example (2.4) each index rn is of the form rn = (tn, yn) with

tneT and yn e Yίn. In the above generalization, the numbers z(n\x) would be derived from

the z(n~ι\x) by adjusting only the numbers with x e Lt(yn). For instance, if p = 1 and ω(x)

= 1 then one substracts from the zin~ι\x) with x e Ltn(yn) a fixed median of this same set

of numbers.

In the remaining part of the present section, we consider the general minimization prob-

lem (2.1) with/? > 1. Let β* = (β*!, ... , β*M) denote the unique vector attaining the mini-

mum (2.1), see Lemma 1, and let

(4.5) Z * = {z*{x) = z^°\x) - ϊM

r=ιβ*rgr(xy,xeX}

denote the corresponding optimal 'matrix' of residuals, the unique adjustment having the

smallest possible Lp-norm.

THEOREM 1. Supposep> \ .Then the sequence Z{n) = {z{n\x);xeX}(n = 0, 1,2, ... )

defined by the above generalized polish always converges to the optimal matrix Z*.

Remark. The special case p = 2 can also be deduced from results due to Amemiya

and Ando (1965) concerning projections in a Hubert space. Smith, Solmon and Wagner

((1977) p. 1229) even established an exponential rate of convergence when/? = 2 and {rn}

is periodic.

Note from (4.2) that Z(n) = {Z(">(JC); x e X} is of the form

(4.6) z(n)(x) = ^\x)-ϊM

r=φn,rgr(x).

Here, the β r t r are unique since gu ... , gM are linearly independent. Moreover, from (4.4),
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in going from the z(n~υ(jc) to the z(n)(jt), one takes β n r = βn_i,r for all r ¥ rn, while βn>Γn

is chosen so as to minimize the norm of Z(n).

A GENERALIZATION. One can even replace the linear combination $\g\(x) + . . . +

βΛ/gΛ/C*) by a general continuous function g(jc; β l 5 β 2, ... , β^), thus the residuals take

the form

The main goal would normally be to minimize some explicitly given expression in terms

of these residuals, for instance, of the type ΣxeXω(x)\d(x)\p. It measures the 'norm' or 'size'

of the present set of residuals. Keeping the data Z(O)(JC)(JC e X) fixed, this expression becomes

a known function F(β 1 ? ... , βM).

We will assume that this resulting function F is a strictly convex function on RM of class

C1 and such that F(β) tends to + » as β = (βi, ... , $M) tends to infinity. In the above

special case with p > 1, the function F would be given by the right hand side of (2.1) and

does indeed have the above properties.

The generalized polish starts again with Z ( o ) = {z(o\x); x e X}. After n - 1 steps, one

obtains a set of residuals

(4.7) z^]\x) = z^(x)-g(x; β ^ l f I , ... , βπ_1>Λf)

(x e X) and having its 'size' equal to F ( β π _ u , ... , βn_i,Λf) We now derive that z(n)(jc)

from the z(n~]\x) by choosing βn r = βn_i,Γ for all r Φ rn and choosing $nΓn such that

F(βn> i, ... , βπ,Λ/) is as small as possible.

It follows from the above assumptions that βn r is uniquely determined. We will assume

as before that there exists a positive integer Λf such that, for all n ^ no, each r =

1, ... , M occurs among {rn, r n + 1 , ... , rn+N}. The following result generalizes Theorem

THEOREM 2. The sequence {bn} converges to the unique point β* = (β*!, ... , β*M)

where Fassumes its smallest value. Hence, for eachxeX, z{n)(x) converges to

(4.8) Z*(JC) = z^\x)-g(x; β*,, ... , βV>.

Proof. It follows from the properties of F and the choice of βn ^ that, for all n ^ 1,

(4.9) ( δ / δ β j F ( β ) = 0 a t β = fcn,

and further

(4.10) F(bn) ^ F{φn_λ + bn)l2) ^ F(bn_x).

Hence, lim F(bn) exists and all the bn belong to the compact "τi K = {β e RM:

F(β) ^ F(bo)}. We further claim that

(4.H) lunn(nn-bn_l) = 0.

For, suppose not. Then there would exist integers 1 < nλ < n2 < ... such that bHk -> u and

bnk-\ -> v as k -> oo? with u, v e K and u ¥ v. Then F(u) = lim F(bn) = F(v) while, from

(4.10), F(u) ^ F((u+v)/2) ^ F(v). Hence, all the equality signs hold here which con-

tradicts the strict convexity of F.

Let {bn) be a convergent subsequence of {bn} with limit fc*. From (4.11), one also has

for each fixed m that lin\ bnk+m = b*. And we conclude from (4.9) that



90 J. H. B. KEMPERMAN

(4.12) (δ/δβr)F(β) = 0 (r = 1, ... , M) at β = b*.

After all, F is of class C1 while, for each k, one has that each r = 1, ... , M occurs among
rnk+m(m = 0, 1, ... , N). However, property (4.12) uniquely determines the single point

β* where F takes its smallest value, thus &* = β*. This proves that {&„} converges to β*.

The last assertion follows from (4.7) and (4.8). •

5. Optimal Sign Patterns. In the remaining part of the paper, we restrict ourselves

to the case p = 1 of the general minimization problem (2.1). Let Z = {z(x); x e X} be a

fixed 'matrix'; it usually arises as a matrix of residuals. We associate to Z the function

(5.1) F(β) = lX€Xω(x)\z(x) - Σ*-,βΓsΓ(*)|,

where β = (βj, ... , βM). Clearly, F is a piecewise linear, continuous and convex function

o n ^ M tending to - » as β tends to infinity. Let Kz denote the non-empty compact

polyhedral convex set of points β e 9?M where F assumes its smallest value.

The matrix Z will be said to be optimal if its norm cannot be reduced by substracting

from z(x) a linear combination of the gr(x)(r= 1, ... ,M). Equivalently,Oe#z. Similarly,

(5.2) Zβ= zβ(x)-Σβrgr(xy,xeX

is optimal if and only if β e Kz. It is known, see Kennedy and Gentle (1980) p. 515, and

can easily be proved by an induction on M, that at least one of these optimal matrices Z β

has M or more of its components ZP(JC) equal to 0.

We will derive several different criteria which are necessary and sufficient for Z to be

optimal. An important role is played by the set

(5.4) D = {xeX: z(x) = 0} = {xeX: ζ(x) = 1}

of zero locations. Here, ζ(jc) = 1 - \σ(x)\ with

(5.4) σ(;c) = sgnz(jc), (xeX).

We further associate to Z the set of M constants

(5.5) ur = ϊxeXQ(z(x)Mx)gr(x), (r = 1, ... ,M).

Here, Θ(Z(JC)) = σ(x) + ζ(x) equals -1 if z(x) is negative and + 1 , otherwise. We always

define v+ = max(0, v), v_ = max(0, -v).

LEMMA 2. In order that Z = {z(x)\ x e X) be optimal, it is necessary and sufficient

that

(5.6)

holds for each choice of the real constants βl9 ... , βm. In fact, given β e 3^(5.6) fails to

hold if and only ifF(λβ) < F(0)for all sufficiently small scalars λ > 0.

Proof. Optimality of Z means that the associated convex function F defined by (5.1)

has the origin as a local minimum along each half line through the origin of ^M for, this

implies global minimality. Equivalently, one must have for all β that

(5.7) l im U 0 (F(λi3)-F(0))/λ>0.

Given β e RM

9 we have from (5.1) that (5.7) is equivalent to

(5.8) ΣxέDσ(x)ω(x) XM

r=, βrgr(x) ^ ϊxeDω(x)\ϊM

r=,βrgr(x)\.

Adding Σ ^ ω M Σ ^ , β r g r ( x ) to both sides of (5.8), one obtains condition (5.6). This
proves Lemma 2. G
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COROLLARY. Whether or not the matrix Z = {Z(JC); x e X} is optimal depends only on

the associated sign pattern {σ(;c); x € X} and not on the values z(x) themselves. Therefore,
we will also speak of optimal and non-optimal sign patterns.

A sufficient condition for optimality is that ur = 0 for all r. If z(x) Φ 0 for all x e X,

(that is, if D is empty) then the latter condition is also necessary.

It is convenient to introduce the set

(5.9) B = B(σ) = {β: XJxDω(x)\ Σ ^ i β ^ W l < Σ * Dσ(x)ω(x)XM

r=]βrgr(x)} ,

where β = (βl9 ... , βM). It is the set for which the (equivalent) conditions (5.6), (5.7),

(5.8) fail to hold. That is, B is precisely the set of direction in which F is strictly

decreasing when starting at the origin. Also note that B is an open convex cone; (naturally,

OέB).

The set B depends only on the associated sign pattern. A sign pattern σ is optimal or not

depending on whether B(σ) is empty or non-empty, respectively.

It is useful to introduce the following (quasi) partial ordering among sign patterns over

X. Namely, let us say that the sign pattern σ = {σ(x); x e X} is smaller than the sign pattern

T = {τ(jc); x eX} (and we write σ -< τ) if either σ = τ or else τ can be obtained from σ

by replacing one or more elements σ(x) = 0 by either -1 or + 1 . Such an ordering is clearly

transitive.

If σ —£ τ then the lower sign pattern σ has a larger set D of zero locations. Moreover,

condition (5.8) for τ is easily seen to imply the analogous condition for σ. Therefore,

(5.10) if σ ^ τ then£(σWB(τ).

THEOREM 3. If a sign pattern σ(x); x e X is optimal then it remains optimal when

one or more non-zero elements (- or +1) are replaced by 0; ('the more zeros the better').

Proof. What is asserted is that σ-< T, together with the optimality of τ, (that is, B(Ί)

is empty), implies the optimality of σ, (that is, B(σ) is empty). And this is evident from

(5.10).

Note that, relative to the partial ordering on hand, the optimal sign patterns form a lower

set while the non-optimal patterns form the (complementary) upper set. In order to be able

to recognize a non-optimal pattern, it would be sufficient to have a list of all minimal non-

optimal patterns σ. For each such non-optimal σ, the set B(σ) is non-empty and it would

be useful to list not only σ itself but also one or more members β of the associated set B(σ).

Namely, we know from (5.10) that β also belongs to each set#(τ) with σ -< T and supplies

a method for improving any matrix whose ± 1 pattern contains that of σ (ignoring zeros).

Example. Consider the problem of minimizing Σ/= jΣ;= i \z(°) - α, - β,|. It is not hard

to show that a set of residuals Z = (z,y) which is invariant under median polish (a so-called

EMP) is non-optimal if and only if σ = (σ,y = sgn z/y) shows a subpattern of the type σ} i

= +1 σ22 = +1 σ 3 3 = - 1 . More precisely, Z is non-optimal if and only if, for some

permutation (/,, j 2 , j3) of (1, 2, 3) the values η, = σ,^ (i = 1, 2, 3) are all non-zero but

not all of the same sign. If for instance σί3 = -1 σ2i = +1 σ 3 2 = -1 then the norm of

Z can be reduced by adding a small positive number e to the second and third column,

and simultaneously substracting € from the second row.

Comments. A typical algorithm for solving (2.1) (with p = 1), that is, for minimizing
a function F as in (5.1), would first check whether or not the matrix Z on hand is optimal.
If it is not then one locates somehow an element β € B (known to be non-empty), that is,
a direction in which F is strictly decreasing when starting at 0. One may as well proceed
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in that same direction until a minimum of F(λβ) is reached. This dictates the choice

(5.11) λ° = med{z(jc)/Λ(jc): ω(*)|Λ(*)|)}, where *(*) = Σ ^ = , β r ^ W

and leads to the new matrix

z = {z'w=z(x) - Σr=iλ°β^ω^€X}.
It has a strictly smaller norm. One next checks whether Z' is optimal and so on.

Median polish as described by (4.2), (4.3) (with p = 1) is of a similar type except that
one only allows motions parallel to one of the m coordinate axes. We will call Z an end-
product of median polish (EMP) if a single motion of that type does not improve the norm,
(though two subsequent motions of that type might). In view of (5.11), this is equivalent
to

(5.12) med{z(jt)/gr(jt): ω(jc)|gr(jc)|} = 0, (r = 1, ... ,M).

We will call Z and endproduct of mid-median polish (EMMP) if (5.12) holds with 'median'

replaced by 'mid-median'. Condition (5.12) means precisely that the (equivalent) condi-

tions (5.6), (5.7), (5.8) hold on choosing β r = +1 or -1 and βs = 0, otherwise, (r =

1, ... ,Λf). Thus, by (5.6), (5.12) is equivalent to

(5.13)

6. Additional Criteria for Optimality.

THEOREM 4. In order that Z = z(x); x e X be optimal, it is necessary and sufficient
that numbers w{x) (xeX) exist with

(6.1) w(x) = σ(x)ω(x) ifxέ D;

|w(jc)|̂ ω(;c) ifxeD,

andfurther

(6.2) ϊxeXw(x)gr(x) = 0 for all r= 1, ... ,Λ/.

An equivalent condition is that the following moment problem has a solution. Namely,

there must exist numbers W(x) (x e D) with

(6.3) 0 ^ W(x) ̂  2ω(jc) for each xeD

and

(6.4) ^DW(x)gr(x) = ur for all r= 1, ... ,M.

Here, D is defined by (5.4) and ur is defined by (5.5).

Proof That the two conditions are equivalent is seen by letting W(x) = ω(x) - w(x),

for* e P. From (6.1) and the definitions of σ(x) and ζ(;c), (6.2) can be written as

ϊxeχσ(x)ω(x)gr(x) + ϊxeXζ(x)(ω(x) - W(x))gr(x) = 0.

In view of (5.5), this is equivalent to (6.4). D

As is obvious and well-known, see Wagner (1959), the minimization problem (2.1)

(with/? = 1) can be regarded as a linear programming problem to

(I) Minimize: Xxeχ^(x)(p(x) + <?(-*)),

subject to the conditions

The variables βr are real-valued.
In order that Z be optimal, it is necessary and sufficient that the minimum on hand be
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equal to ΣX€Xω(x)\z(x)\9 (corresponding to p(x) = z(x)+; q(x) = z(x)_ and βr = 0 as an

optimal solution).

The dual of problem (I) is to

(II) Maximize: XxeXz(x)w(x), subject to the conditions (6.2) and —ω(x) =̂  w(x) ^ ω(x).

Each problem has feasible solutions. Thus, optimal solutions exist for each, and the min-

imum in (I) equals the maximum in (II). Let w(x) (x eX) be a feasible solution of (II). Then

^xz(x)w(x) ^ XxeX\w(x)z(x)\ ^ Σ^ω(;c)|zθc)|.

In order that Z be optimal and, simultaneously, w(x) be optimal for (II), it is necessary

and sufficient that the equality signs hold here. This means that w(x) = σ(x)ω(x) each time

that z(x) ¥ 0. Since optimal solutions for (II) always exist, this proves Theorem 4. •

Remark 1. Note that the conditions (6.1), (6.2) depend only on the sign pattern σ =

{σ(jc); x e X} and that it becomes weaker (less demanding) on replacing some elements +1

or -1 by 0. This yields a second proof of Theorem 3.

Remark 2. An other proof of Theorem 4 would be as follows. Consider the moment prob-

lem (6.3), (6.4). It requires the existence of a (nonnegative) measure μ on D satisfying

(r = 1, ... , M; x e D). As is well-known, see Kemperman (1983), since D is finite such

a measure exists if and only if p(x) ^ 0 (x e D) and

Σ ^ i β ^ r ( ξ ) ^ Σ Λ e D p W δ ^ ( ξ e D ) imply ϊM

r=]βrur^ϊxeD2p(x)ω(x).

One might as well choose p(jc) = [βigiOt) + ... + βM#mW]+ and then one obtains exactly

condition (5.6) of Lemma 2, which is indeed equivalent to the optimality of Z.

7. Optimality for a General Layout. Let us now apply the above results to the gen-

eral layout problem as in (2.4). For simplicity, we assume that ω(x) = 1 (x e X), thus, one

is interested in minimizing

(7.1) s = lxeX\z^\x) - Σ le7ft(φ,(*))|

by a suitable choice of the regression parameters β,Cy). Note that the role of the index r

= 1, ... , M is presently taken over by the pairs (ί, y) with t e T and yeY{. The total number

M of such pairs is often large. The function gr — gty onX is presently as in (2.5).

Let Z = {Z(JC); x e X} be a fixed matrix, usually arising as a sequence of residuals

(7.2) z(x) = z(">(jc)-:£,€7£,(<|>,(jt)) (jceX),

with Z(o) = z<o)(x); xeX) as the original data. We like to know in how far Z is optimal.
The number of elements* in the layer L,(y) = {xeX:φt(x) = y} will be denoted as nt(y).

Let further n?(y), nf/(y) and nj(y), respectively, denote the number of elements x e Lt(y)

such that σ(x) = sgn z(x) = + 1,0 or-1 respectively. Put

(7.3) iι,G0 = n^iy) + n?{y) - rςiy) = nt(y)-2n7(y),

(teT ye Yt). As usual, D = {xeX: z(x) = 0}. Theorem 4 yields the following two criteria

for optimality.

Criterion I. In order that Z be optimal, it is necessary and sufficient that there exist

numbers vv(jc) (x e X) such that

(7.4) SΦfu)=yw(jc) = 0, forallreΓ;

and



94 J. H. B. KEMPERMAN

w(x)=+\ ifz(jc)>0;

(7.5) w(x) = -\ ifz(jc)<0;

-1 ^w(x) = ^+\ ifz(jc) = O.

Remark. In certain eases, such as in the two-way layout, one may add the condition
that w(x) €{-1,0 , +1} when x e D. If moreover z(x) is of the form (7.2) and the original
data z(o\x) are integers then it follows that Z has an integral Lj -norm as soon as it is optimal;
(thus, a residual matrix with non-integral norm cannot be optimal).

Namely, as follows from the proof of Theorem 4, (7.4) and (7.5) imply that the norm
of Z is equal to

ϊxeXw(x)z(x) = ϊxeXw(x)zio\x)

Criterion II. In order that Z be optimal, it is necessary and sufficient that there exist

numbers W(x) (x e D) such that

(7.6) ϊ{W(x): xeD;φ((x) = y} = uί(y) ifteT yeY,

and that further 0 ^ W(x) ̂  2 for each x e D.

One may describe condition II as requiring the existence of a measure μ on D, having
at most a mass 2 at each point of D, and such that, for each t e 7\ the φΓprojection of μ

onto Yt is precisely equal to the signed measure μ, on Y having a mass ut(y) at each v e

Yt. Note that the total algebraic mass of μ, equals

(7.7) Q = XyzyUtiy) = N+ + N°-N~ = N-VT,

which is independent of t e T. Here, N denotes the number of elements in X while Λf+,

N°, ΛΓ, respectively, denotes the number o f i e X with σ(x) = sgn z(x) = + 1 , 0 or - 1 ,

respectively.

Obviously, the required measure μ can only exist when

(7.8) 0 < φ) < 2n*(y), (teT yeY,).

This is equivalent to

(7.9) nγ(y) *s nt(y)l2 and Λ |

+(y) *ss Λ<(y)/2, (/€Γ y € K,).

In fact, (7.9) is precisely the condition the Z be an EMP. Equivalently, that for4 all t e T
and ytYt the set of nt(y) numbers z(x) with x e Lt(y) (each with weight 1) has 0 as a median.
Which is exactly the condition which median polish tries to attain.

It is very easy to check condition (7.9). Thus, our main problem is to decide whether
Z is optimal in a situation where (7.9) is true. In particular, the above given marginal
measures μt are all nonnegative.

Lemma 2 easily yields the following criterion.

Criterion III. In order that Z be optimal, it is necessary and sufficient that

(7.10) Σ,erΣJ€κ,w,(y)β,(y) ^ ϊxeD 2 [ Σ , e Γ ]

holds for each choice of M real numbers β,(y), (teT ye Yt).

The set B defined by (5.9) presently takes the form

(7.11) B = {β: ^eD|Σ,€rβ,(Φ,M)| < Z*Mx)Σ

Here, β stands for the set of M numbers βt(y) (teT ye Yt). The matrix Z is optimal if and

only if B is empty. If B is non-empty then each β e B supplies an explicit way of reducing

the norm of Z, see (5.11).

8. Optimality for a Two-Way Layout. Here, we only consider the case of a two-way
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m X n layout (m > 2; n > 2) with a single observation &\x) = tf> in cell x = (/, 7) and

weights ω(jc) = 1. One wants to minimize

(8.1) S = X l V |z (?j-α |.-βy |

by a suitable choice of the M = m + n numbers α, = β λ (i) and β, = β2(/)

Unspecified indices i and 7 run through Yλ = {1, ... , m} and K2 = {1, ••• » Λ h respec-

tively. Presently, we have X = Yλ x F 2 while Γ = {1, 2} and φ,(jc) = /; φ2(jc) = 7 when

Having chosen the numbers α, and βj (at a particular stage of the calculation), one is

confronted with the problem whether or not the matrix Z of residuals is optimal, in the

sense that its norm cannot be further reduced.

Let Z = {zφ be a fixed m x n matrix. Whether or not Z is optimal depends only on

the sign pattern σ = (σ,y), where σ,y = sgn zψ The number of elements σ^ = - 1 , 0, + 1 ,

respectively, in the i-th row of σ will be denoted as n]{i)9 n°(i), n+i(0» respectively; simi-

larly, n~2(j), n°2(j)9 n
+

2(j) for the7-th column of σ.

Definition. The matrix Z is called an EMP (or EMMP) if 0 is a median (or mid-me-

dian, respectively) of each row and each column of Z. Each EMMP is an EMP. In order

that Z be an EMP it is clearly necessary and sufficient that

(8.2) max(n-χ(ϊ), n\(i)) < n/2; max(/r2(/), n+

2(j)) < m/2,

for all 1 and 7.

An EMMP cannot have exactly one zero in a row unless n is odd. In fact, an EMMP

has, for each fixed 1, that n\(i) = nil if and only if n\{ί) = nil and, similarly, for each

fixed7, n\(J) = mil if and only if w2(/') = m^ ^ n EMP with the latter property will be

called a weak EMMP.

A necessary condtion for Z = (zφ to be optimal is that it be an EMP. Though numerical

calculations suggest it, we are not asserting that a median polish (mid-median polish) al-

ways leads to an EMP (EMMP). For the case where either m or n is odd, it is not difficult

to show that mid-median polish does create a convergent sequence Z(π) = (zί$) of matrices

whose limit is an EMMP.

Anyway, at the end of a median polish one is typically confronted with a matrix Z =

(zφ of residuals which already is an EMP or EMMP and then the question arises how one

can recognize its optimality. And if this EMP is non-optimal (as is often true) then how

should one proceed in determining an optimal matrix of residuals?

CONDITION (A, B). Let ACY\ and B C Y2 Let G and H denote the submatrices of

Z defined by

(8.3) G = (zij;ieA,jέ B); H = (zu;iέ AJeB).

The number of positive, zero and negative elements in G will be denoted as N+

G, N°G and

/VG, respectively, while N G denotes the total number of elements. Similarly, Λ ^ N H and

NHandNnforH. We will say that Z satisfies Condition (A,B)if

(8.4) A^ G + W H ^ ( ; V G + ;VH)/2.

Note that Condition (Ac, Bc) requires that7VG + # +

H ^ (NG + NH)/2.

THEOREM 5. In order that Z = {zφ be optimal, it is necessary and sufficient that Cond-

tion (A, B) holds for each choice of the subset A ofYλ and subset B ofY2.

Proof. The sufficiency follows from Theorem 8 in Section 9. As to the necessity of

(8.4), consider the modified matrix
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where α, = + λ when / e A; α, = 0 when i 4. A, while βy = —λ wheny e B; βy = 0 when

)έ B. Here, λ denotes a sufficiently small positive constant. The effect of this transforma-

tion is that each element ztj in G is decreased by λ, each element in H is increased by λ,

while the remaining part of Z remains unchanged. This causes on the one hand a decrease

in norm by (N^ + N~G)λ and on the other hand an increase in norm by

(NG + N G + N+

u + N&)λ = (NG + NH)λ - (N+

G + WH)X.

Hence, unless (8.4) holds the matrix Z' would have a strictly smaller norm than Z and Z

would not be optimal. G

Remark 1. In order that Z be an EMP it is necessary and sufficient that condition

(A, B) holds with one of the sets A, B empty and the other consisting either of a single

element or else all but a single element. This in turn is equivalent to Condition (A, B) for

the case where one of the two sets A, Bis either empty or full. Thus, if Z is already known

to be an EMP then one only needs to verify (8.4) for the case where neither G nor H is

empty.

Remark 2. Theorem 5 suggests the following algorithm for determining an optimal set

of residuals. After n steps one has a matrix Z ( n ) . If it satisfies all conditions (A, B) then

it is optimal. If not then the above proof indicates how to arrive at a new matrix Z ( n + 1 )

having a strictly smaller norm. It is best to choose λ = λn in an optimal way, namely, as

a median of the NG + Nu elements gtj and -Λjy in G and - H . If the original data z(< j are

all integers then one can attain that, for all. n, also z(/ j and λn and thus z<"+ 1 ) are integers.

But then the norm of the matrix decreases at each step by a positive integer, hence, the

process must stop after finitely many steps.

Example. Armstrong, Elam and Hultz (1977) developed a quite different algorithm.

Details were given for the following 4 x 5 matrix

350 492 232 220 360
392 428 253 241 385 I
400 498 273 260 401 I *

320 390 264 240 300

Their method led to the following matrix of residuals

Z =

which has norm 299 and was claimed to be optimal. Note that Z is an EMP but not an

EMMP. Actually, Z does not satisfy Condition (A, B) with A = 1, 2, 3 and B = 3,4,

5 . For, then NG = 6; NG = 4; NH = 3;N~H= 1 so that (8.4) is violated. This allows an

improvment as usual; it is best to choose λ = 9. In this way, substracting 9 from the first 3

rows and adding 9 to the last 3 columns, one arrives at the matrix

-9 +63 0 0 0

+ 1 2 - 2 2 0 0 +4 \
Z ~ 0 +28 0 -1 0 .

0 0 +71 +59 -21

0

21

9

0

72

-13

37

0

0
0

0

62

0
0

-1

50

0
4

0

-30
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which has norm 290. Using any of several criteria in Sections 8 and 9, it is easily seen that

Z' is optimal. For instance, substracting 14 from each element in the second column, one

obtains a matrix Z" which has the same norm is is an EMMP and, thus, optimal by

Theorem 6 below. This implies that also Z' is optimal.

Definition. The pair (m, ή) of integers ^ 2 is safe for median polish if each EMP

of dimension (m, ή) is optimal. Similarly, (m, ή) is safe for mid-median polish if each

EMMP of dimension (m, n) is optimal.

THEOREM 6. No pair (m, n) is safe for median polish. And further the only pairs which

are safe for mid-median polish are the exceptional pairs (2, n); (3, 4); (4, 4); (4, 5);

(4,6) and their reflections such as (n,2).

In fact, for these exceptional pairs (m, n) it is even true that every weak EMMP of

dimension (m, n) is optimal.

Remark. In particular, the pairs (3, 3); (3, 5); (6, 6); (4, 8) are all unsafe for mid-me-

dian polish. A weak EMMP may be described as a matrix whose sign pattern (having only

elements - 1 , 0, +1) is exactly an EMMP. Thus, its sign pattern indicates an EMMP but

the matrix may not have the property that 0 is exactly the mid-median of each row and

each column. But indeed we know from Section 5 that the sign pattern alone already deter-

mines optimality or nonoptimality.

Proof In order to prove the stated 'unsafety', it suffices to construct an EMP or

EMMP which violates one of the conditions (8.4) and, hence, is not optimal. Consider an

m x n matrix Z which after a suitable permutation of rows and columns takes the form

(8-5) Z (z<y) ξ

Here, G and H are of dimension m\ x n{ and m2 x n2, respectively, (mι + m2= m; n\

+ n2 = n), while K and L are zero matrices of dimension m\ x n2 and m2 x nu respec-

tively. From Theorem 5, the matrix Z is non-optimal as soon as (8.4) is false.

In fact, we will choose all the elements of G as (strictly) positive. Let further the elements

of H be either negative or 0, in an alternating (checkerboard type) fashion, starting with

a negative element in the left upper corner of H. In this situation one has NQ = N G and

NH ^ NH/2, hence, the difference between the left and right hand sides of (8.4) is at least

NG/1 = mxn\l2. Thus, Z is non-optimal as soon as mx and nx are positive. Moreover, Z

is easily seen to be an EMP provided

(8.6) \^mλ^m2\ \^n\^n2.

That is, 1 ̂  Wj =̂  mil and 1 ^ nλ ̂  nil. Since such a choice of mx and nλ is always

possible, this proves the first assertion of Theorem 6. By the way, the leeway m1n1/2 above

indicates that there are usually many mild modifications of Z which are also non-optimal

EMP's.

The matrix Z in (8.5) is even an EMMP provided

(8.7) mx<m2\ mx > 2 if rr^ odd; nλ<n2\ nx > 2 if i^odd,

and further all non-zero elements ztj equal -1 or 1.

For, then 0 is a mid-median of each row and each column; (if m2 is odd then some columns

of H have an excess of negative elements; hence, if m, = 1 then that column would have

0 as a median but not as a mid-median; similarly if n2 is odd). Therefore, a sufficient cond-
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tion for (m, ή) to be 'unsafe' for mid-median polish is that (8.6) can be strengthened to

(8.7).

Choosing mx = nx = 2, this is true if both m ^ 5 and n ^ 5. Letting mx = nx = 1,

it also holds whem m and n are odd, m ^ 3 and n ^ 3. Letting mx = 1 and Wj = 2, this

approach also covers the pairs (3, ή) with n ^ 5. Similarly for the pairs (m, 3) with m ^

5.

It only remains to consider the pairs (4, ή) with n > 7, (the pairs (n, 4) having the same

character). Since one can enlarge the matrix Z by adding pairs of columns of the type

(*} + } ί } +J)Γ> (^ for transpose), one easily sees that it suffices to construct for the

(m, ή) pairs (4, 7) and (4, 8) an EMMP of the type (8.5) with m, = 2 and n2 = 4 and

such that (8.4) is false; thus, we do not require that L and K are zero matrices. Examples

with m = 4, n = 1 are:

; + + 0 + 0 0 0 , / + + - + - 0 0
( 0 0 + + 0 0 0 ) / - - + + + 0 0 }
1 0 0 0 0 / 1 + 0 0 +/

0 0 0 - 0 0 - - 0 0 - + + -

where + and - may, for instance be interpreted as +1 and-1, respectively. Examples with

m = 4 and n = 8 are:

+ +
+ 0
- 0
- 0

+
0
0
0

0
+
0
0

0
0
_
0

0
0

0

0
0
0

0
0
0
_

-1- +
+ -
- 0
- 0

+
-
0
0

_
+ .
0
0

- 0
+ 0

+ +

0
0

+
-

0
0
4.
—

Finally, let Z be a weak EMMP of dimension (m, ή). It only remains to show that Z

is optimal for the special dimensions (2, n); (3, 4); (4, 4); (4, 5) and (4, 6). This will be

done by verifying that in these cases Z satisfies all conditions (A, /?), see Theorem 5. Rear-

ranging rows and columns, one may assume that the associated matrices G and H as in

(8.3) are located as in (8.5). In view of Remark 1 following Theorem 5, one may assume

that the mt and nt (t = 1,2) are positive integers. For brevity, let p = N+

G and q = Λ/H

It must be shown that

(8.8) p + q ^ (NG + Nu)/2 = (m,n, + m2n2)/2,

whenever Z is a weak EMMP having one of the above dimensions. Thus, Z is an EMP

such that each row containing exactly nil positive (negative) elements has the property that

all the other nil elements in that row are negative (positive); equivalently such a row con-

tains no zeros. Similarly for columns.

The case (2, ή) is particularly easy. Here mx = m2 = 1 while NG = nx and Nn = n2

with ri\ + n2 = n. It must be shown that p + q ^ n/2, with p as the number of positive

elements among the zx j with 1 ^j^nx and q as the number of negative elements among

the Zy with n{<j< n. But z^ is negative if and only if zυ is positive. Hence, p + q equals

the number of positive elements in the first row and therefore p + q ^ n/2.

The case (4, 4) can be reduced to the case (6, 4), while the case (3, 4) can be reduced

to the case (5, 4). Namely, if Z is a weak EMMP of dimension (m, 4) then adding two

rows of the type (ΐ. ~+ ΪL ~~+), one obtains a weak EMMP of dimension (m + 2,4).

And if this new matrix Z' is optimal then so is the original matrix Z. For, it is easily seen

that condition (8.8) for Z follows from the analogous condition for Z'; (the implication

would also be an easy consequence of Criterion I of Section 7). It remains to show (8.8)

for the cases (4,5); (4,6).

Let us do the case where Z is of dimension (4, 6). Consider for instance the situation

that mx = 2; m2 = 2; nx = 3 and n2 = 3. It must be shown that/? + q =SΞ 6. Suppose zx,,
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z12, z1 3 are all positive, thus p ^ 3 and z]4, z1 5, z J 6 must be negative, therefore, q ^ 3.

If a column has two negative elements the other two must be positive. Hence, at least q

of the elements z24, z2 5, z2 6 are positive, thus, at most 3 - q of the elements z2 J, z22, 2̂3

are positive, showing that/? ^6-q.

A similar reasoning applies when z2 1, z2 2, 2̂3 are all positive. Thus, one may assume

that at most two of zx,, z ) 2, z ) 3 are positive and at most two of z21, z2 2, z2 3 are positive,

hence, p ^ 4. Similarly, one may assume that at most two of z3 4, z35, z3 6 are negative and

at most two of Z44, z45, z4 6 are negative, hence q ^ 4. One is ready if p ^ 3 and q ^ 3.

Suppose instead that for example p = 4. Typically, interchanging the first two rows or

first three columns if necessary, the elements z n , z1 2, z21 are positive and further one of

z22 or z23. This forces z3I and z41 to be negative. If z2 2 were positive then also z3 2 and z4 2

would be negative and then q^2. Thus, suppose instead that z2 3 is positive.

One is ready if each row of H contains at most one negative element, (for, then q ^

2). If not then typically Z44 and z4 5 are negative. This forces z4 2, z4 3 and z4 6 to be positive

which in turn forces z3 2 and z3 3 to be negative which in turn forces z3 4, z3 5, z3 6 to be positive

and therefore that q = 2.

The above takes care of the (actually most difficult) case that G (and thus H) has dimen-

sion (2,3). The other cases follow by a quite similar reasoning. Analogously for the case

where the weak EMMP Z is of dimension (4,5). We omit the details. This completes the

proof of Theorem 6. •

9. Optimality for the General Two-Way Layout. Here, we study the case of a two-

way m x n layout with weights ω(x) = 1, this time allowing for several values zijk (k =

1, ... , kφ in cell (/, j) where ktj = 0 is possible. This more general case becomes important

in applications where one has a large number of observations and one likes to keep m and

n relatively small so as to simplify the calculations. Unspecified indices /, j and k will run

through Y], Y2 and{1, ... , £#}, respectively.

Our problem is to minimize the sum (2.2). Thus, one needs to determine whether a given

matrix of residuals

Z = (zijk = z%-ai-£j)

is optimal. A necessary condition for Z to be optimal is that it be an EMP. Equivalently,

that for each of the M = m + n layers Lλ{ϊ) and L2(j) the associated set of numbers zijk

(with i fixed or '̂ fixed) has 0 as a median. This is equivalent to

(9.1) max(*!(0, n\(i)) < Λ l(ι)/2; max(AΓ2(/), n\(J)) ^ n2(j)/2.

Here,

(9.2) *,(/) = S μ , ^ ; n1(j) = X%xkij

is the number of elements inL,(/) andL2(/), respectively. Further,

(9.3) Λ K 0 = Σ J « I * ^

is the number of negative elements z{x) = zijk with x = (ij, k) in layerL,(/), thus i is fixed.

Similarly for n°λ{ϊ), /ι+,(0 and rΓ2(j), n°2(j), n+

2(j). Moreover, \cίjt fy and k+

φ respectively,

denote the number of negative, zero and positive elements zijk, respectively, located in cell

(ij).
Analogously to (7.3) we define

(9.4) uλ(i) = nx(i) - 2rrx(iy, u2(j) = n2(j) - 2/r2(/).

The EMP property (9.1) is equivalent to
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(9.5) 0 « «,(/) ^ 2n"λ(ΐ) = Σ ? = 1 2 * V θ « u2(j) ^ 2n"2(j) = Σ7-ι2*£.

THEOREM 7. In order that ΊJ = (zijk) be optimal, it is necessary and sufficient that

there exist numbers Wtj satisfying

(9.6) 0 < W , y < 2 ^ ;

and

(9.7) Σ - . ^ = «,(!); Σ^W^ = u2{j),

for all i e Yj andj e Y2.

Proof. This result is a direct consequence of Criterion II in Section 7, applied to the

set X of triplets x = (i, , £) while Z(JC) = z,^. Further put W,7 = Σ*W(ί, j , k), where W(JC)

= 0 when z(x) Φ 0. D

Remark!. Since ^ and w,(>0 are all integers one may even require that the Wy are

integers. Namely, the moment problem (9.6), (9.7) corresponds to the usual transportation

problem which has a totally unimodular matrix, see Garfinkel and Nemhauser (1972) p.

73 and Hu (1969) p. 123. If all n{(i), n2(j) and thus the ut(y) are even then one can even

attain that W(j are even. This additional information may simplify the problem of deciding

whether Z is optimal.

In view of the Remark following (7.5), we may conclude that an optimal matrix Z of

residues necessarily has an integral norm provided all the original data z(°)k were integers.

Remark 2. If one allows not only additive adjustments of the form α, + β, but also

one or more additive adjustments of the form yrgr(i, j) (with the gr as given functions and

the yr as free constants) then optimality of Z = (zijk) is equivalent to the existence of num-

bers Wij satisfying (9.6), (9.7) and, moreover, the additional 'moment' conditions

(9.8) %jWijgr(iJ) = Xnikv-ΊkΊJigAhj).

CONDITION {A, B). Let A and B be subsets of Yλ = {1, ... , m) and Y2 = {1, ... , «},

respectively. Given the matrix Z, consider the associated arrays

(9.9) G = (zijk;ieA,jέ β); H = (zuk;U AJeB).

We will say that Z satisfies Conditions (A, B) if

(9.10) WG

+ + Λfc ^ (NG + NH)/2.

Here,

denote the number of elements in G and the number of positive elements in G, respec-

tively. Similarly for#H andN~.

THEOREM 8. In order that Z = (z^) be optimal, it is necessary and sufficient that Z

satisfies Condition (A, B)for each choice of the subsets A ofY\ andB ofY2.

THEOREM 9. In order that Z = (zijk) be optimal, it is necessary and sufficient that the

inequality

(9.11) Σ/eΛ «,(/)^Σ^ 1 min[ W 2 (/),Σ / e / ,2^]

holds for each subset A ofYλ.

Moreover, if (9.11) fails for a given subset A ofY\ then Condition (A, B) fails for the

associated pair defined by

(9.12) B = {jeY2:. u2(j)<ϊM2V$.

And in that case the matrix Z admits an easy improvement.
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Remark. What is meant here is the improvement

Z' = (z'ijk = Zijk-<*i-βj)

with the α, and βy as in the proof of Theorem 5. Namely, choose α, = +λ when / e A;

β, = - λ wheny e B and α, = 0, βy = 0, otherwise. The best choice for λ is a median

of the NG + NH numbers ziJk in G and -ziJk in -H. Note that this choice of λ depends on

the full matrix Z, not only on the associated sign pattern or the numbers k+

tj and lCψ

Proof of Theorems 8 and 9. For t e T = {1, 2}, let μ, be the (possibly signed) measure

on Yt having a mass ut(y) at y e Yt. Let further q( . ) denote the (nonnegative) measure on

Yx x Y2 having a mass 2K\j at the point (/, j). The criterion for optimality stated in Theorem

7 requires precisely that there exists a (nonnegative) measure μ o n F , x Y2 having margi-

nals μj and μ 2 and such that μ(E) ^ q(E) for every subset E of Y\ x Y2. A necessary condi-

tion for the existence of μ is that

(9.13) μ](A)^q(AxBc) + μ2(B),

for every subset A of Yx and every subset B of Y2. After all, A x Y2 C (A x Bc) \J

(Yx x B) and μ(A x Y2) = μi(Λ); μ(}Ί X £) = μ2(£); (taking A empty, this requires that

μ2 ^ 0; similarly μ, ̂  0since μ,(r,) = μ 2 (r 2 ) , see (7.7)).

As was shown by DalΓAglio (1961) and Kellerer (1961), condition (9.13) is also

sufficient for the existence of μ, hence, it is equivalent to the optimality of Z. See Strassen

(1965) p. 423 for generalizations and further references. The sufficiency of (9.13) is also

an immediate consequence of the Ford-Fulkerson max-flow-min-cut theorem, see Ford and

Fulkerson (1962), Berge (1970) and Jacobs (1978) p. 539.

For each fixed pair A and B, (9.13) is equivalent to Condition (A, B), proving Theorem

8. After all, using (9.2), (9.3), (9.4), the inequality (9.13) can be written as

Equivalently,

0 « XiJZjt B(-k+ij + Kj + Kj) + 2« A ̂ {k+tj + Kj-k-φ.

In view of (9.9) this is equivalent to (9.10).

Given the subset A of Y,, one might as well choose the subset B of Y2 so as to make

the right hand side of (9.13) as small as possible. Forj e Y2, putting^ in B yields a contribu-

tion μ2({/}) = u2(j)\ putting j in Bc yields a contribution q(A x {/}) = Σ/€Λ 2Λ^ . Thus, the

best choice for B would be as in (9.12), in which case (9.13) reduces to (9.11). Ths proves

the first part of Theorem 9.

If (9.11) fails for a set A then (9.13) fails for the pair A, B with B as in (9.12), which

in turn means precisely that Condition (A, B) fails. This in turn allows us to improve the

matrix Z as explained in the above Remark. •

ALGORITHM. A good algorithm for minimizing the sum (2.2) would be to apply the

Theorems 7 and 9, at each stage of the calculation, to the matrix Z = (zijk) of residues on

hand. One first tries to construct the set of numbers Wi} as in Theorem 7 by using the

standard max-flow-min-cut algorithm. If this does not succeed then Z is optimal and we

are ready.

If this attempt does not succeed then the calculation automatically leads to a 'cut' of small

capacity which in turn corresponds to the failure of a well-defined Condition (A, B). Using

the latter knowledge, one next improves the matrix Z of residuals as explained in the

Remark following Theorem 9. Afterwards, one tests the optimality of the new matrix Z' of

residuals by trying to construct the desired numbers Ŵ y. And so on. Provided the original

data z{fjl are all integers, one can arrange the calculation so that also all subsequent residual
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matrices Z are integral in which case the norm decreases each time by a positive integer.

Hence, the calculation will then lead in finitely many steps to an optimal matrix of residuals.

In more detail, in trying to construct {Wφ, one considers a directed capacitated network

with vertex set V = {a} \J {b}{J Yι ( J Y2 and with a as the only source, b as the only

sink. One has the following directed edges (JC, y) and associated capacities k(x, y).

(i) The edges (a, i) with / e Y} and capacity u i (/).

(ii) The edges (/, j) with ieYuje Y2 and capacity 2lήj.

(iii) The edges (/, b) withy e Y2 and capacity u2(j). Note that the ux{ϊ), u2(j) and ty are

integers and that Σ/U|(i) = Σyw20) = Q (say), see (7.7).

One proceeds with determing an admissible flow/in this network (with/(;t, y) as the

flow along the directed edge (JC, V)) which maximizes the total flow from a to b. Admissibil-

ity means here that 0 ^/(JC, y) ^ Jc(x, y).

Relative to a given admissible flow/, an unsaturatedpath from the vertex a to the vertex

x is defined as a sequence xυ = a, x}, ... , xn_λ, xn = x of distinct vertices such that the

flow from a to JC along that path can be increased. More precisely, this requires that, for

i = 1, ... , n, either (JC,.! , JC,) is an edge of the network and/(jC/_], JC,) is smaller than the

capacity k(xt l9 x); or (JC,, JCM) is an edge of the network and/(jct, JCM) is positive.

Let Vf denote the set of all vertices JC such that some unsaturated path leads from a to

x. During the construction of Vf, one marks each new member of Vf with a single label

pointing to a previously constructed vertex in V^from which it 'originated') so as to allow

for backtracking. As soon as Vy is found to contain the sink b, one obtains through back-

tracking an unsaturated path from a to b. One proceeds to increase the flow along that path

in an obvious and maximal way. This new flow is again integer valued, provided one starts

with an integer valued flow (such as the zero flow). After finitely many steps, no further

increase of the total flow from a to b is possible and one has reached an integer flow/with

the property that b i Vf. Let

F = Σ7_1/(β,0 = Σ;. 1/(Λ*)

be the resulting total flow from atob. There are the following possibilities.

(I) F = Q. In this case, the set of edge flows WtJ = /(/, j) (i eY\',je Y2) satisfies (9.6)

and (9.7), consequently, the present residual matrix Z is optimal.

(II) F < Q. The Z is not optimal. In fact, Condition (A, B) fails with

(9.14) A = V/ΠY] andB = VfΓ)Y2,

allowing us to improve the matrix Z.

Proof. Let E denote the set of edges (JC, y) with JC e Vf and y 4. Vf. The sum of all

the corresponding capacities k(x, y) is called the capacity of E. The set E is known to define

a 'cut' whose capacity is equal to the maximal flow F on hand and, thus, is smaller than

β
In fact, E consists of the edges (a, i) with / € Ac, further the edges (/, b) withy e B and

finally the edges (/, j) with / e A and j e Bc. As is easily seen, the capacity of this set E
being smaller than Q means exactly that (9.13) is false and, hence, that Condition (A, B)
fails. D
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