SOME SHARP MARTINGALE INEQUALITIES RELATED TO DOOB'S INEQUALITY

By David C. Cox
Battelle Memorial Institute

Abstract

Let $p>1$. The best constant $C=C_{n, p}$ in the inequality $E\left(\max _{1 \leqslant i \leqslant n}\left|Y_{i}\right|\right)^{p} \leqslant C E\left|Y_{n}\right|^{p}$, where Y_{1}, \ldots, Y_{n} is a martingale, is determined. For each n and p, the method allows one to construct a martingale attaining equality. As $n \rightarrow \infty, K_{p} n^{2 / 3}\left(q^{p}-C_{n, p}\right) \rightarrow 1$, where K_{p} is a known constant. As an application, the classical inequality of Doob is sharp. It is shown that equality cannot be attained by a non-zero martingale.

1. Introduction. Let Y_{1}, Y_{2}, \ldots be a martingale with difference sequence $X_{1}=Y_{1}$, $X_{i}=Y_{i}-Y_{i-1}, i=2,3, \ldots$ Thus, $E\left(X_{i} \mid X_{1}, \ldots, X_{i-1}\right)=0, i=2,3, \ldots$. Let $p>1$ and define $q=p /(p-1)$. The principal purpose of this paper is to determine the best constant $C=C_{n, p}$ in the inequality

$$
\begin{equation*}
E\left(\max _{1 \leqslant i \leqslant n}\left|Y_{i}\right|^{p} \leqslant C E\left|Y_{n}\right|^{p} .\right. \tag{1.1}
\end{equation*}
$$

Although $C_{n, p}$ is found in implicit form, it can be easily approximated. For each n and p, the method allows one to construct a martingale attaining equality in (1.1), with $C=C_{n, p}$. Once the distribution of Y_{1} is fixed, such a martingale is uniquely determined.

Furthermore, as $n \rightarrow \infty, C_{n, p} \rightarrow q^{p}$ at a rate proportional to $n^{-2 / 3}$. Specifically, $K_{p} n^{2 / 3}$ $\left(q^{p}-C_{n, p}\right) \rightarrow 1$, where K_{p} is a known constant. As an application, this provides a new proof that Doob's inequality (1953, p. 317)

$$
\begin{equation*}
E\left(\sup _{i \geqslant 1}\left|Y_{i}\right|^{p} \leqslant q^{p} \sup _{i \geqslant 1} E\left|Y_{i}\right|^{p}\right. \tag{1.2}
\end{equation*}
$$

is sharp. An example to that effect was given previously by Dubins and Gilat (1978). Inequality (1.2) is strengthened to

$$
\begin{equation*}
E\left(\sup _{i \geqslant 1}\left|Y_{i}\right|^{p} \leqslant q^{p} \sup _{i \geqslant 1} E\left|Y_{i}\right|^{p}-q E\left|Y_{1}\right|^{p} .\right. \tag{1.3}
\end{equation*}
$$

It follows from (1.3) that equality cannot be attained in (1.2) by a non-zero martingale. The sharpness of Doob's inequality for $p=1$ (1953, p. 317)

$$
E\left(\sup _{i \geqslant 1}\left|Y_{i}\right|\right) \leqslant[e /(e-1)]\left(1+E\left(\sup _{i \geqslant 1}\left|Y_{i}\right| \log ^{+} \sup _{i \geqslant 1}\left|Y_{i}\right|\right)\right],
$$

is still an open question.
The method of this paper is based on results from the theory of moments (Kemperman (1968)), together with induction and the device of conditioning. Where applicable, it always leads to a sharp inequality and provides an example of a martingale attaining equality or nearly so. In principle, the method can be applied to many other martingale inequalities. For example, the author used it (Cox (1982)) to find the best constant in Burkholder's weakL^{1} inequality (Burkholder (1979)) for the martingale square function. The method does have the drawback of computational complexity, which sometimes makes it difficult or impossible to push the calculations through.
Section 2 contains statements of the results, together with comments and some proofs. In section 3, some needed analytic lemmas are established. Section 4 contains the main proofs, and an example for the case $p=2, n=3$ of (1.1).
2. Results. Throughout the paper, p is fixed. Dependence on p will often be suppressed in the notation. Let s, t be real numbers with $|t| \leqslant|s|$. For $0<A \leqslant 1$ and $n=1,2$, $3, \ldots$, define

$$
\phi_{n}(s, t, A)=\inf E\left[\left|t+\sum_{i=1}^{n} X_{i}\right|^{p}-A \max \left(|s|^{p},\left|t+X_{1}\right|^{p}, \ldots,\left|t+\sum_{i=1}^{n} X_{i}\right|^{p}\right)\right],
$$

where the infimum is taken over all martingale difference sequences X_{1}, \ldots, X_{n} with $E X_{1}$ $=0$. The idea here is that $C_{n, p}^{-1}$ can be defined as the largest A for which $\phi_{n-1}(t, t, A) \geqslant$ 0 for all t. Thus, to determine the best constant in (1.1), only the case $s=t$ of ϕ_{n} is needed. However, the inductive step (2.2) below requires knowing the value of ϕ_{n} for $|s|>|t|$ also. Note that $\phi_{n}(s, t, A)=|t|^{p} \phi_{n}(s / t, 1, A)$, for $t \neq 0$. This reduction does not, however, simplify the calculations made in the paper.

One has

$$
\begin{equation*}
\phi_{1}(s, t, A)=\inf \left\{E\left[|t+X|^{p}-A \max \left(|s|^{p},|t+X|^{p}\right)\right]: E X=0\right\}, \tag{2.1}
\end{equation*}
$$

and by induction, conditioning on $X_{1}=X$,

$$
\begin{equation*}
\phi_{n+1}(s, t, A)=\inf \left\{E \phi_{n}(\max (|s|,|t+X|), t+X, A): E X=0\right\} \tag{2.2}
\end{equation*}
$$

for $n=1,2, \ldots$. Both (2.1) and (2.2) involve evaluating inf $E f(X)$ over all random variables X with $E X=0$, where f is a given function. This is a standard problem of the theory of moments (Kemperman (1978), Cox (1982)) and can be solved graphically as shown in the proof of Theorem 1 given in Section 4.

Theorem 1. For $n=1,2, \ldots$, there exists $A_{n} \in\left(q^{-p}, 1\right]$, together with a function $g_{n}:\left(0, A_{n}\right] \rightarrow[0,1)$ for which

$$
\begin{gathered}
\phi_{n}(s, t, A)=|t|^{p}-A|s|^{p} \quad \text { if }|t| \leqslant g_{n}(A)|s|, \\
=p g_{n}(A)^{p-1}|t||s|^{p-1}-\left[A+(p-1) g_{n}(A)^{p}\right]|s|^{p} \quad \text { if } g_{n}(A)|s| \leqslant|t| \leqslant|s|
\end{gathered}
$$

for $0 \leqslant A \leqslant A_{n}$, while $\phi_{n}(s, t, A)=-\infty$ if $A>A_{n}$.
The constant A_{n} and the function g_{n} are defined inductively as follows. Let

$$
\begin{equation*}
\phi(y, x)=\left\{x /\left((p-1)\left[\left(p y^{p-1}-(p-1) y^{p}-x\right)^{1-q}-1\right]\right)\right\}^{1 / p} \tag{2.3}
\end{equation*}
$$

for $0 \leqslant x, y \leqslant 1$ and $0 \leqslant \gamma(y, x) \equiv p y^{p-1}-(p-1) y^{p}-x<1$. Define $g_{0}(x) \equiv 1, g_{n+1}(x)$ $=\phi\left(g_{n}(x), x\right), n=0,1, \ldots$. Then, for $n=1,2, \ldots$, there is a unique $q^{-p}<A_{n} \leqslant 1$ with $g_{n}\left(A_{n}\right)=0$; the domain of g_{n} is precisely $\left(0, A_{n}\right]$. One has $A_{n}>A_{n+1}>q^{-p}$ and $\lim _{n \rightarrow \infty} A_{n}=q^{-p}$. More precisely,

THEOREM 2. $\quad \lim _{n \rightarrow \infty} n^{2 / 3}\left(A_{n}-q^{-p}\right)=\left(2 \pi^{2} q^{1-3 p}\right)^{1 / 3}$.
For $0<x \leq q^{p}$, the sequence $\left\{g_{n}(x)\right\}$ is strictly decreasing with limit $g(x)=y$, the larger of the two roots of the equation

$$
\phi(y, x) \equiv(p-1)\left(y^{p}-y^{p-1}\right)+x=0 .
$$

In particular, $g\left(q^{p}\right)=q^{1}$.
Corollary 1. Let $n \geqslant 2$ and $0<A \leqslant A_{n-1}$. Suppose that Y_{1}, \ldots, Y_{n} is a martingale. The following inequality is sharp

$$
E\left|Y_{n}\right|^{p} \geqslant A E\left(\max _{1 \leqslant i \leqslant n}\left|Y_{i}\right|\right)^{p}+\gamma\left(g_{n-1}(A), A\right) E\left|Y_{1}\right|^{p} .
$$

Proof: Let $X_{i}=Y_{i+1}-Y_{i}, i=1, \ldots, n-1$. Then, conditional on $Y_{1}=t, X_{1}, \ldots X_{n-1}$ is a martingale difference sequence with $E X_{1}=0$. Now apply Theorem 1 with $s=t$, and then integrate with respect to the distribution of Y_{1}.
Corollary 2. The best constant $C=C_{n, p}$ in (1.1) is $C_{n, p}=A_{n}^{-1}$.

Proof. One has $\gamma\left(g_{n-1}(A), A\right) \geqslant 0$ for $0<A \leqslant A_{n}$ with equality iff $g_{n}(A)=0$, i.e., iff $A=A_{n}$. Now apply Corollary 1.
The proof of Theorem 1, presented in Section 4, shows how a martingale attaining equality in (1.1), with $C=A_{n}^{-1}$, may be constructed. Moreover, once the distribution of Y_{1} is fixed, such a martingale is uniquely determined. An example is given after the proof of Theorem 1.

From Theorem 2, the asymptotic behavior of $C_{n, p}$ can be characterized.
Corollary 3. $\lim _{n \rightarrow \infty} n^{2 / 3}\left(q^{p}-C_{n, p}\right)=\left(2 \pi^{2} q^{3 p+1}\right)^{1 / 3}$.
Letting $n \rightarrow \infty$ in Corollary 1, one obtains
Corollary 4. Let Y_{1}, Y_{2}, \ldots be a martingale, and $0<A \leqslant q^{-p}$. The following inequality is sharp

$$
\sup _{i \geqslant 1} E\left|Y_{i}\right|^{p} \geqslant A E\left(\sup _{i \geqslant 1}\left|Y_{i}\right|\right)^{p}+g(A)^{p-1} E\left|Y_{1}\right|^{p} .
$$

In particular, letting $A=q^{-p}$, one obtains (1.3).
Proof. Just note that $\gamma(g(A), A)=g(A)^{p-1}$, see Theorem 2.
Corollary 5. Doob's inequality (1.2) is sharp. However, equality cannot be attained by a non-zero martingale.

Proof. Sharpness follows from $C_{n, p} \rightarrow q^{p}$. Equality in (1.2) forces $Y_{1} \equiv 0$, from (1.3). Applying the same argument to the martingale Y_{2}, Y_{3}, \ldots, one finds $Y_{2}=0$, etc.
3. Analytic Preliminaries. The object of this section is to establish some needed results concerning the functions g_{n}.

Lemma 1. The function ϕ, defined by (2.3), has the following properties.

$$
\begin{gather*}
\phi(y, x) \leqslant y \text { with equality iff } \theta(y, x)=0 \tag{3.1}\\
\delta \phi / \delta y>0, \text { for } 0<x, y<1,0<\gamma(y, x)<1 \tag{3.2}\\
\delta \phi / \delta x<0, \text { for all } y \text {, if } q^{-p}<x<1 \tag{3.3}
\end{gather*}
$$

Proof. First consider (3.1). One has $\phi(y, x) \leqslant y$ iff

$$
\begin{equation*}
(p-1) y^{p}\left[\gamma(y, x)^{1-q}-1\right]-x \geqslant 0 . \tag{3.4}
\end{equation*}
$$

The derivative of the LHS of (3.4) with respect to x is given by $y^{p} \gamma(y, x)^{-q}-1$. Since $\gamma(y, x)+\theta(y, x)=y^{p-1}$, it follows that the minimum value of the LHS of (3.4) is 0 , taken when $\theta(y, x)=0$. Since $\theta(y, x)>0$ for all $y>0$ when $x>q^{-p}$, one has $\phi(y, x)<y$ for all y in this case. Next, a straightforward calculation gives

$$
\begin{equation*}
\delta \phi / \delta y=\left[(q-1) x y^{p-2}(1-y)\right] /\left[\phi^{p-1} \gamma^{q}\left(\gamma^{1-q}-1\right)^{2}\right] \tag{3.5}
\end{equation*}
$$

where $\phi=\phi(y, x), \gamma=\gamma(y, x)$, which establishes (3.2). Finally,

$$
\begin{equation*}
\delta \phi / \delta x=\left[\gamma-\gamma^{q}-(q-1) x\right] /\left[p(p-1) \phi^{p-1} \gamma^{q}\left(\gamma^{1-q}-1\right)^{2}\right] \tag{3.6}
\end{equation*}
$$

The numerator in (3.6) is $(1-q) \theta\left(\gamma^{q-1}, x\right)$, which yields (3.3).
Lemma 2. There is a unique $q^{-p}<A_{n} \leqslant 1$ with $g_{n}\left(A_{n}\right)=0, n=1,2, \ldots ;$ the domain of g_{n} is $\left(0, A_{n}\right]$. One has $\theta\left(g_{n}(x), x\right)>0$ for $0<x \leqslant A_{n}$. For $0<x \leqslant q^{-p}, g_{n}(x) \downarrow g(x)$ as $n \rightarrow \infty$.

Proof. First consider $0<x \leqslant q^{-p}$. I claim that $1 \geqslant g_{n}(x)>g(x)$ for all $n=0,1$, $2, \ldots$. Since this is trivial for $n=0$, assume that it holds for some $n \geqslant 0$. Then,

$$
1>\gamma\left(g_{n}(x), x\right)>\gamma(g(x), x)=g(x)^{p-1}>0
$$

so that $g_{n+1}(x)$ is defined. Next,

$$
(p-1) g(x)^{p}\left[\gamma\left(g_{n}(x), x\right)^{1-q}-1\right]<(p-1) g(x)^{p}\left[\gamma(g(x), x)^{1-q}-1\right]=x .
$$

It follows that $g_{n+1}(x)>g(x)$. From Lemma $1, g_{n+1}(x)<g_{n}(x)$, so that $g_{n}(x) \downarrow g(x)$ as $n \rightarrow \infty$, since $y=\lim _{n \rightarrow \infty} g_{n}(x)$ must satisfy $\phi(y, x)=y$. Suppose next that, for some $n \geqslant 1$, it has been established that the domain of g_{n} is ($\left.0, A_{n}\right]$ with $g_{n}\left(A_{n}\right)=0$, where q^{-p} $<A_{n} \leqslant 1$. I claim that $g_{n}^{\prime}(x)<0$ for $q^{-p}<x<A_{n}$. This is clear from (3.3) for $n=1$, since $g_{1}^{\prime}(x)=\delta \phi / \delta x$. Since $g_{j+1}^{\prime}(x)=\delta \phi / \delta y g_{j}^{\prime}(x)+\delta \phi / \delta x$, for $j=1,2, \ldots$, the claim follows by induction from (3.2) and (3.3). By the same argument, $g_{n+1}(x)$ is strictly decreasing on its domain, for $x>q^{-p}$. Since $g_{n+1}(x)<g_{n}(x)$ where both are defined, and $g_{n+1}\left(q^{-p}\right)>g\left(q^{-p}\right)>0$, the existence and uniqueness of $A_{n+1}<A_{n}$ follow. Finally, $\theta\left(g_{n}(x), x\right)>0$ for $0<x \leqslant A_{n}$ follows from Lemma 1 .

4. Main Proofs.

Proof of Theorem 1. The properties of g_{n} and A_{n} a relevant to this proof have been established in Section 3. If one defines $\phi_{0}(s, t, A)=|t|^{p}-A \mid s^{p}$, then the theorem holds for n $=0$. Moreover, see (2.1) and (2.2), the inductive relation between ϕ_{n} and ϕ_{n+1} remains valid for $n=0$. Assume by induction, therefore, that the theorem is true for some $n \geqslant 0$. Let $0<A \leqslant A_{n}$ (where $A_{0}=1$), and, without loss of generality, $t \geqslant 0$. From (2.2) one finds

$$
\phi_{n+1}(s, t, A)=\inf \{E h(X): E X=t\},
$$

where $h(x)$ is given by

$$
\begin{gathered}
|x|^{p}-A|s|^{p} \quad \text { if }|x| \leqslant g_{n}(A)|s| \\
p g_{n}(A)^{p-1}|s|^{p-1}|x|-\left[A+(p-1) g_{n}(A)^{p}\right]|s|^{p} \quad \text { if } g_{n}(A)|s| \leqslant|x| \leqslant|s| \\
\gamma\left(g_{n}(A), A\right)|x|^{p} \quad \text { if }|x|>|s| .
\end{gathered}
$$

It is well-known (Kemperman (1968), Cox (1982)) that the required infimum is given by the height, at location $x=t$, of the lower boundary of the convex hull of the graph of h. For $A_{n+1}<A \leqslant A_{n}, \gamma\left(g_{n}(A), A\right)<0$ so the infimum is $-\infty$. Now suppose $0<A \leqslant A_{n+1}$. Clearly, $h^{\prime}(x)$ is continuous at $x= \pm g_{n}(A)|s|$ so that $h(x)$ is convex for $|x|<|s|$, and also for $|x|>|s|$. Moreover, $h_{+}^{\prime}(|s|)=\gamma\left(g_{n}(A), A\right) p|s|^{p-1}<p g_{n}(A)^{p-1}|s|^{\mid p-1}=h_{-}^{\prime}(|s|)$, since $\theta\left(g_{n}(A), A\right)>0$. It follows that the convex hull of the graph of $h(x)$ for $x \geqslant 0$ is formed by drawing a common tangent from the part for $0 \leqslant x \leqslant g_{n}(A)|s|$ to the part for $x>|s|$. The tangent to $y=|x|^{p}-A|s|^{p}$ at $x=x_{0}>0$ has equation

$$
\begin{equation*}
y=x_{0}^{p}(1-p)-A| |^{p}+p x_{0}^{p-1} x . \tag{4.1}
\end{equation*}
$$

The slope of $h(x)$ for $x>|s|$ is $p \gamma\left(g_{n}(A), \mathrm{A}\right) x^{p-1}$, which coincides with the slope of (4.1) iff $x_{0}=\gamma\left(g_{n}(A), A\right)^{q-1} x$. It follows that the required common tangent has a point of tangency at $x_{0}=\phi\left(g_{n}(A), A\right)|s|=g_{n+1}(A)|s|$ with the graph of $h(x)$ for $0 \leqslant x \leqslant g_{n}(A)|s|$. Using (4.1) one immediately obtains the required formula for $\phi_{n+1}(s, t, A)$. This completes the inductive step and proves Theorem 1.

Remark 1. It is clear from the above proof that $\phi_{n+1}(s, t, A)=\inf \{E h(X): E X=t\}$ is attained by a unique random variable X, for each s and t. Specifically, $X \equiv t$ if $|t| \leqslant$ $g_{n+1}(A)|s|$, while X takes the two values $g_{n+1}(A)|s| \operatorname{sgn} t, \gamma\left(g_{n}(A), A\right)^{1-q} g_{n+1}(A)|s| \operatorname{sgn} t$, if $g_{n+1}(A)|s| \leqslant|t| \leqslant|s|$. By working backwards, then, the unique martingale attaining the value $\phi_{n}(s, t, A)$ can always be constructed, see Example 1 below. Further, once the distribution of Y_{1} is fixed, a unique martingale attaining equality in (1.1) with $C=C_{n, p}$ is determined.

Example 1. Let $p=2$, so that $\left.\phi(y, x)=\left[x\left(x+(1-y)^{2}\right)^{-1}-x\right)\right]^{1 / 2}$. A calculation shows that $A_{3}=16 / 25$. Hence, if X_{1}, X_{2}, X_{3} is a martingale difference sequence, the following inequality is sharp.

$$
\begin{equation*}
E \max \left[X_{1}^{2},\left(X_{1}+X_{2}\right)^{2},\left(X_{1}+X_{2}+X_{3}\right)^{2}\right] \leqslant(25 / 16) E\left(X_{1}+X_{2}+X_{3}\right)^{2} . \tag{4.2}
\end{equation*}
$$

The following martingale difference sequence attains equality. Let

$$
\begin{aligned}
& X_{1} \equiv 1, P\left[X_{2}=1\right]=3 / 8, P\left[X_{2}=-3 / 5\right]=5 / 8 . \text { Then } \\
& P\left[X_{3}=4 / 3 \mid X_{2}=1\right]=3 / 8, P\left[X_{3}=-4 / 5 \mid X_{2}=1\right]=5 / 8, \\
& P\left[X_{3}=0 \mid X_{2}=-3 / 5\right]=1 .
\end{aligned}
$$

Note that equality can be attained in (4.2) with an arbitrary distribution for X_{1}. Namely, multiply the difference sequence given above by any variable X independent of (X_{1}, X_{2}, X_{3}). However, once the distribution of X_{1} is fixed, a unique martingale attaining equality in (4.2) is defined.

Proof of Theorem 2. From results of Section 2, it is clear that $A_{n} \rightarrow q^{-p}$. After all, $\lim _{n \rightarrow \infty} A_{n} \geqslant q^{-p}$ exists. Moreover, $\lim _{n \rightarrow \infty} A_{n}>q^{-p}$ is impossible because the equation $\phi(y, x)=y$ has no solution if $x>q^{-p}$

It follows from (3.5) that $\delta \phi / \delta x$ is continuous at the point (q^{-1}, q^{-p}), where it takes the value 1 . Let $0<\epsilon<1 / 4$ be otherwise arbitrary and choose $\delta>0$ such that $\left|y-q^{-1}\right|$ $<\delta,\left|x-q^{-p}\right|<\delta \Rightarrow|\delta \phi / \delta y-1|<\epsilon$. Choose n_{0} so that $n \geqslant n_{0} \Rightarrow A_{n}-q^{-p}<\delta$. Then, for $n \geqslant n_{0}, j=0, \ldots, n$, one has $g_{j}\left(A_{n}\right) \leqslant g_{j}\left(q^{-p}\right)$. Also, $g_{j}\left(A_{n}\right) \geqslant g_{j}\left(A_{n_{0}}\right)$, for $j=0, \ldots$, n_{0}. Since $g_{j}\left(q^{p}\right) \downarrow q^{1}$ as $j \rightarrow \infty$, the above two inequalities taken together imply that there exists n_{1}, independent of n, such that $\left|g_{j}\left(A_{n}\right)-q^{-1}\right|<\delta, j=0, \ldots, n$, with the possible exception of n_{1} values of j, i.e., all but finitely many members of the sequence $g_{j}\left(A_{n}\right), j$ $=0, \ldots, n$, lie within δ of q^{-1} independently of n. Now fix $n \geqslant n_{0}$ and let $y_{j}=g_{j}\left(A_{n}\right)$. Thus,

$$
\left(y_{j}-y_{j-1}\right) /\left(\phi\left(y_{j-1}, A_{n}\right)-y_{j-1}\right)=1, j=1, \ldots n .
$$

Now

$$
\int_{y_{j-1}}^{y_{j}} d y /\left(\phi\left(y, A_{n}\right)-y\right)=1+\rho_{j}, j=1, \ldots n-1 .
$$

(where $j=n$ is excluded since the corresponding integral is not finite). One has $\left|\rho_{j}\right| \leqslant$ $1 / 2 M_{j}\left(1-M_{j}\right)^{-2}$, provided $M_{j}=\sup \left\{|\delta \phi / \delta y-1|: y_{j} \leqslant y \leqslant y_{j-1}\right\}<1$. Hence, all but n_{1} of the $\left|\rho_{j}\right|$ are smaller than ϵ. Since ϵ is arbitrary it follows that

$$
\lim _{n \rightarrow \infty} 1 / n \int_{g_{n-1}\left(A_{n}\right)}^{1} d y /\left(y-\phi\left(y, A_{n}\right)\right)=1
$$

As $n \rightarrow \infty, g_{n-1}\left(A_{n}\right) \rightarrow U$, where $U<q^{-1}$ is the solution of the equation $\gamma\left(U, q^{-p}\right)=0$. Therefore,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} 1 / n \int_{U}^{1} d y /\left(y-\phi\left(y, A_{n}\right)\right)=1, \tag{4.3}
\end{equation*}
$$

Next, examine the asymptotic behavior of the integral $I(x)=\int_{U}^{1} d y /(y-\phi(y, x)$, as $x \downarrow$ q^{p}. Clearly, $I(x) \rightarrow \infty$ as $x \downarrow q^{p}$. It is well-known that its asymptotic behavior is determined by the behavior of $y-\phi(y, x)$ near its minimum (as a function of y). For x close to q^{-p}, this minimum is attained at a value of y close to q^{-1}. Recalling the definition of $\theta=$ $\theta(y, x)$, one has, for (y, x) close to $\left(q^{-1}, q^{-p}\right)$,

$$
\begin{aligned}
(y-\phi(y, x))^{-1} & =2 q^{2-2 p}(q-1)^{-1} \theta^{-2}+o\left(\theta^{-2}\right) \\
& =8 /\left(q p^{3}\left[\left(y-q^{-1}\right)^{2}+2\left(x-q^{-p}\right)(p-1)^{-2} q^{p-3}\right]^{2}\right)
\end{aligned}
$$

on expanding θ in a Taylor series about $\left(q^{-1}, q^{-p}\right)$. It follows that

$$
\begin{equation*}
\lim _{\downarrow q^{p}}\left(2 \pi^{2}\right)^{-1 / 2}\left(q^{3 p-1}\left(x-q^{-p}\right)^{3}\right)^{1 / 2} I(x)=1 . \tag{4.4}
\end{equation*}
$$

The conclusion of Theorem 2 follows from (4.3) and (4.4).

REFERENCES

Burkholder, D. L. (1979). A sharp inequality for martingale transforms. Ann. Probability 7 858-863.
Cox, D. C. (1982). The best constant in Burkholder's weak- L^{1} inequality for the martingale square function. Proc. Amer. Math. Soc. 85 427-433.
Doob, J. L. (1953). Stochastic Processes. Wiley, New York.
Dubins, L. E., and Gilat, D. (1978). On the distribution of maxima of martingales. Proc. amer. Math. Soc. 68 337-338.
Kemperman, J. H. B. (1968). The general moment problem, a geometric approach. Ann. Math. Statist. 39 93-122.

