
Inequalities in Statistics and Probability

IMS Lecture Notes-Monograph Series Vol. 5 (1984), 78-83

SOME SHARP MARTINGALE INEQUALITIES

RELATED TO DOOB'S INEQUALITY
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Let/? > 1. The best constant C = Cnφ in the inequality E ( m a x i ^ π \Yftf ̂  C E\Yn\
p,

where Y\, ... , Yn is a martingale, is determined. For each n andp, the method allows one
to construct a martingale attaining equality. As n -» «, Kpn

2l^{qp - Cnφ) -> 1, where tfp
is a known constant. As an application, the classical inequality of Doob is sharp. It is shown
that equality cannot be attained by a non-zero martingale.

1. Introduction. Let Yi9Y29 ... be a martingale with difference sequenceXλ = Yu

Xi = Yi - Yi-u i = 2, 3, ... Thus, E(Xt\Xu ... , **_,) = 0, / = 2, 3, .... Let/? > 1 and

define q = p/(p - 1). The principal purpose of this paper is to determine the best constant

C = Cnp in the inequality

(1.1) E(mιa1^mίn\Yl\y^C^YJr.
Although Cnp is found in implicit form, it can be easily approximated. For each n and/?,

the method allows one to construct a martingale attaining equality in (1.1), with C = Cn>p.

Once the distribution of Yλ is fixed, such a martingale is uniquely determined.

Furthermore, as n -> oo, CΛtP -> cf at a rate proportional to n~2/3. Specifically, Kpn
2/3

{(f - Cnp) -> 1, where Kp is a known constant. As an application, this provides a new proof

thatDoob's inequality (1953, p. 317)

(1.2) £(suP l ̂  \Yt\Y ̂  <f s u p ^ E W

is sharp. An example to that effect was given previously by Dubins and Gilat (1978). In-

equality (1.2) is strengthened to

(1.3) ^(sup^Jy^^^sup^^lr^-^fl^h

It follows from (1.3) that equality cannot be attained in (1.2) by a non-zero martingale.

The sharpness of Doob's inequality for p = 1 (1953, p. 317)

Eisvφ&ilYil) ^ [e/(e-1)](1 + E f e u p ^ M log+ s u p ^ M ) ] ,

is still an open question.

The method of this paper is based on results from the theory of moments (Kemperman

(1968)), together with induction and the device of conditioning. Where applicable, it al-

ways leads to a sharp inequality and provides an example of a martingale attaining equality

or nearly so. In principle, the method can be applied to many other martingale inequalities.

For example, the author used it (Cox (1982)) to find the best constant in Burkholder' s weak-

V inequality (Burkholder (1979)) for the martingale square function. The method does

have the drawback of computational complexity, which sometimes makes it difficult or

impossible to push the calculations through.

Section 2 contains statements of the results, together with comments and some proofs.

In section 3, some needed analytic lemmas are established. Section 4 contains the main

proofs, and an example for the casep = 2,n = 3 of (1.1).
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2. Results. Throughout the paper, p is fixed. Dependence on p will often be suppres-

sed in the notation. Let s, t be real numbers with |ί| ^ \s\. For 0 < A ^ 1 and n — 1,2,

3, ... ,define

where the infimum is taken over all martingale difference sequences Xx, ... , Xn with EXλ

= 0. The idea here is that Cn~p

ι can be defined as the largest A for which φn_i(ί, t, A) ^

0 for all t. Thus, to determine the best constant in (1.1), only the case s = t of φ π is needed.

However, the inductive step (2.2) below requires knowing the value of φn for \s\ > \t\ also.

Note that φn(s, t, A) = \t\p φn(s/t, 1, A), for t Φ 0. This reduction does not, however,

simplify the calculations made in the paper.

One has

(2.1) φ,Cs, t, A) = inf{E[|ί + X\p-A m<ιx(\s\p, \t + X\P)]:EX = 0},

and by induction, conditioning onX^ = X,

(2.2) Φn+ι(s, t, A) = inf{£φn(max(H, \t + X|), t + X, A):£X = 0},

for n = 1,2, ... . Both (2.1) and (2.2) involve evaluating inf EflX) over all random vari-
ables X with EX = 0, where/is a given function. This is a standard problem of the theory
of moments (Kemperman (1978), Cox (1982)) and can be solved graphically as shown in
the proof of Theorem 1 given in Section 4.

THEOREM 1. For n = 1, 2, ... , there exists An e (q~p, 1], together with a function
gn:(0,An]^[0,l)forwhich

φn(s, U A) = \t\p-A\s\p if |ί| ^ gn(A)\s\,

= Pgn(A)p-ι\t\ \s^-ι-[A + (p-l)gn(AY]\s\p if gn(A)\s\ ^ \t\ ^ \s\,

forO^A^ Any while φn(s, ty A) = -oo if A > An.
The constant An and the function gn are defined inductively as follows. Let

(2.3) φ(y,;c) = {xHtp-

r, v ^ 1 and 0 ^ y(y,χ) = pyp~^ _ (p _ \)y> _ x < 1. Define ^ 0 U ) Ξ 1, gΛ+i(Jc)

, x), n = 0, 1, ... . Then, for n = 1, 2, ... , there is a unique ^ < An ^ 1

with gn(An) = 0; the domain of gn is precisely (0, An]. One has ΛΛ > Λn + 1 > q~p and

limn_>ooΛΛ = q~p. More precisely,

THEOREM2. Wmn^n2/\An-q-p) = (2>π2 ql~3p)m.

For 0 < x < q-p, the sequence {gπ(jc)} is strictly decreasing with limit g(jc) = y, the

larger of the two roots of the equation

Φ(v, x) = (p-lW-yΓ1) + x = 0.

In particular, g(<rp) = ̂ r1.

COROLLARY 1. Let n ̂  2 and 0 < A ^ An_x. Suppose that Yu ... ,Ynisa martingale.
The following inequality is sharp

ti\YJr^AE(maxlWH \Yt\f + Ί{gn_x{A\A)E\Yx\
p.

Proof: Let Xέ = Yi+, - y, , / = 1, ... , n-\. Then, conditional on y, = t, Xλ, .. Xn_λ

is a martingale difference sequence with EXλ = 0. Now apply Theorem 1 with s = t, and

then integrate with respect to the distribution of Yx. •

COROLLARY 2. The best constant C = Cn>p in (1.1) is CntP = A~].
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Proof. One has y(gn-ι(A), A) ̂  0 for 0 < A ^ An with equality iff gn(A) = 0, i.e.,

iff A = An. Now apply Corollary 1. π

The proof of Theorem 1, presented in Section 4, shows how a martingale attaining equal-

ity in (1.1), with C = A ~λ, may be constructed. Moreover, once the distribution of Yλ is

fixed, such a martingale is uniquely determined. An example is given after the proof of

Theorem 1.

From Theorem 2, the asymptotic behavior of Cn>p can be characterized.

COROLLARY 3. \\mn^n2l\cf-Cn>p) = (2>π2q3p+')m.
Letting n-̂ oo in Corollary 1, one obtains

COROLLARY 4. Let Yλ, Y2, ...be a martingale, andO <A^ q~p. The following inequality

is sharp

s u p ^ W ^ A ECsup^MF + g(AΓιE\Yι\P.

In particular, letting A = q~p, one obtains (1.3).

Proof. Just note that y(g(A), A) = g(AY~\ see Theorem 2. •

COROLLARY 5. Doob's inequality (1.2) is sharp. However, equality cannot be attained

by a non-zero martingale.

Proof. Sharpness follows from CHtP -> q?. Equality in (1.2) forces Yλ = 0, from (1.3).

Applying the same argument to the martingale Y2, Y3, ... , one finds Y2 — 0, etc. •

3. Analytic Preliminaries. The object of this section is to establish some needed re-

sults concerning the functions gn.

LEMMA 1. The function φ, defined by (2.3), has the following properties.

(3.1) φ(y, x)^y with equality iff Q(y, JC) = 0

(3.2) δ φ % > 0 , f o r

(3.3) δφ/δjc<0

Proof. First consider (3.1). One has φ(y, x)^y iff

(3.4) (p.\)^Ί(yyXγ^.\^x^o.

The derivative of the LHS of (3.4) with respect to x is given by y γ(y, *)"* - 1. Since

y(y, x) + θ(j, x) = y^ 1 , it follows that the minimum value of the LHS of (3.4) is 0, taken

when θ(y, x) = 0. Since θ(j, x) > 0 for all y > 0 when x > q~p, one has φ(y, x) <y for

all y in this case. Next, a straightforward calculation gives

(3.5) bφ/by = [(q- \)xyP-\\ -y)] I [ φ ^ V (V"*-1)2]

where φ = φ(y, x), 7 = y(y, JC), which establishes (3.2). Finally,

(3.6) δφ/δjc = [ 7 - 7 ^ - ( ^ - l ) j c ] / [ p ( β - l ) φ ^ - 1 7 V ^ - l ) 2 ]

The numerator in (3.6) is (1 - q)^{ψ~\ JC), which yields (3.3). •

L E M M A 2. There is a unique q~p < An ^ 1 with gn(An) = 0, n = 1,2, ... the domain

ofgn is (0, An]. One has β(gn(x), x) > 0 for 0 < x ^ An. For 0 < x ̂  q~p, gn(x) I g(x)

Proof First consider 0 < x ^ q~p. I claim that 1 ̂  gn(x) > g(x) for all n = 0, 1,

2, . . . . Since this is trivial for n = 0, assume that it holds for some n ̂  0. Then,

1 > y(gn(χ), x) > y(g(χ),χ) = g(χγ-λ > o,
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so that gn+1 (JC) is defined. Next,

(P- i)g(xYly(gnW, χΫ~*-i]<(p- Όg(χΠΊ(g(χ), χ)1^- l] = *•

It follows that gn+ι(x) > g(x). From Lemma 1, gn+ι(x) < gn(x), so that gn(x) j g(x) as n-^oo

since y = limn̂ oogn(jc) must satisfy φ(y,jc) = y. Suppose next that, for some

n ^ 1, it has been established that the domain of gn is (0, An] with gn(An) = 0, where q~p

< An ^ 1. I claim that gή(x) < 0 for q~p < x < An. This is clear from (3.3) for n = 1,

since g\(x) = δφ/δ c. Since g'j+ί(x) = δφ/δy gj(x) + δφ/δ c, fory = 1, 2, ... , the claim

follows by induction from (3.2) and (3.3). By the same argument, gn+\(x) is strictly de-

creasing on its domain, for x > q~p. Since gn+iQc) < gn(x) where both are defined, and

gn+ι(q~p) > gi<Γp) > 0, the existence and uniqueness of An+ι < An follow. Finally,

Q(gn(x)> x) > 0 for 0 < x ^ An follows from Lemma 1. D

4. Main Proofs.

Proof of Theorem 1. The properties of gn and An a relevant to this proof have been estab-

lished in Section 3. If one defines φo(s, t, A) = \t\p - A\s\p, then the theorem holds for n

= 0. Moreover, see (2.1) and (2.2), the inductive relation between φ n and φ n + 1 remains

valid for n = 0. Assume by induction, therefore, that the theorem is true for some

n ^ 0. Let 0 < A ^ An (where Λo = 1), and, without loss of generality, t ^ 0. From (2.2)

one finds

φ n + 1 ( j , t,A) = mf{Eh(X):EX = ή,

where h(x) is given by

\x\p-A\s\p if \x\^gn(A)\s\

pgniAT-^rM - [A + (p- ΌgniAY] \s\p ifgn(A)\s\ ^ \x\ *s \s\

Ί(gn(A),A)\x\p if\x\>\s\.

It is well-known (Kemperman (1968), Cox (1982)) that the required infimum is given by

the height, at location x = t, of the lower boundary of the convex hull of the graph of h.

ForΛn + 1 < A ^ An, y(gn(A), A) < 0 so the infimum is -°°. Now suppose 0 < A ^ An+ι.

Clearly, h'(x) is continuous at x = ± gn(A)\s\ so that h(x) is convex for |JC| < \s\9 and also

for |JC| > | j | . Moreover, Λ'+(|j|) = y(gn(A), A)p {s^1 < p gn{Arλ H ^ 1 = * - (H), since

θ(gπ(Λ), A) > 0. It follows that the convex hull of the graph of h(x) for x ^ 0 is formed

by drawing a common tangent from the part for 0 ^ JC ^ gπ(Λ)|5 | to the part for x > \s\.

The tangent toy = \x\p -A\s\p at x = x0 > 0 has equation

(4.1) y = Λ%(1 -p)-A\s\p +px$~λx.

The slope of h(x) for x > \s\ is p y(gn(A), K)xΓλ, which coincides with the slope of (4.1)

iff x0 = y(gn(A)9 A)q~λx. It follows that the required common tangent has a point of tangency

at jco = φ(£n(A), A)\s\ = gn+ι(A)\s\ with the graph of h(x) for 0 ^ x ^ gn(A)\s\. Using (4.1)

one immediately obtains the required formula for φn+i(s, U A). This completes the induc-

tive step and proves Theorem 1. π

Remark 1. It is clear from the above proof that φn+ι(s> ι> A) = inf {Eh(X): EX = t}

is attained by a unique random variable X, for each s and t. Specifically, X = t if \t\ ^

gπ+i(A)|j|, while X takes the two values ^ - H ^ Λ ) ^ ! sgn t, y(gn(A)9 A)1"^ gπ +i(A)|j | sgn t,

if gπ+i(A)|j| ^ \t\ ̂  |5|. By working backwards, then, the unique martingale attaining the

value φn(s, t, A) can always be constructed, see Example 1 below. Further, once the distri-

bution of Y\ is fixed, a unique martingale attaining equality in (1.1) with C = Cn>p is deter-

mined.
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Example 1. Letp = 2, so that φ(y, x) = [x(x + (1 -y) 2)" 1 -x)]]/2.A calculation shows
that A3 = 16/25. Hence, if Xu X2, X3 is a martingale difference sequence, the following
inequality is sharp.

(4.2) £max[X,2, (X, + X2)
2, (X} + X2 + X3)

2] ^ (25/16) E{Xλ + X2 + X3)
2.

The following martingale difference sequence attains equality. Let

X, s l ,P[χ 2 = 1] = 3/8,P[X2 = -3/5] = 5/8. Then

P[X3 = 4/3|X2 = 1] = 3/8, P[X3 = -4/5|X2 = 1] = 5/8,

P[X3 = 0\X2 = -3/5] = 1. π

Note that equality can be attained in (4.2) with an arbitrary distribution for Xλ. Namely,

multiply the difference sequence given above by any variable X independent of (Xl9 X2,

X3). However, once the distribution of Xλ is fixed, a unique martingale attaining equality

in (4.2) is defined.

Proof of Theorem 2. From results of Section 2, it is clear that An -> q~p. After all,

lim^oo An ^ q~p exists. Moreover, lim^oo An > q~p is impossible because the equation

Φ(y> *) = y has no solution if x > q~p

It follows from (3.5) that δφ/δ c is continuous at the point (q~\ q~p), where it takes the

value 1. Let 0 < e < 1/4 be otherwise arbitrary and choose δ > 0 such that |v - q~]\

< δ, |JC - q~p\ < δ => |δφ/δy - l | < e. Choose n0 so that n ^ n0 => An - q~p < δ. Then,

for n^n0j = 0, ... , n, one has gJAn) ^ gj(q~p). Also, g/ΛJ ^ gj(Ano), for; = 0, ... ,

ΠQ . Since § ( ^ ) I qx a s / ^ oo? the above two inequalities taken together imply that there

exists /i,, independent of n, such that Ig/ΛJ - q~λ\ < δ, 7 = 0, ... , n, with the possible

exception of nx values of j , i.e., all but finitely many members of the sequence gj{An), j

= 0, ... , n, lie within δ of q~x independently of n. Now fix n ^ n0 and let yy = gj(An).

Thus,

Cyy-y>_i)/(φ(y7_1,ΛJ-yJ_1)= 1,;= 1, ... n.

Now

(where; = n is excluded since the corresponding integral is not finite). One has |py | ^

1/2 Af/1 - Mj)-2, provided M, = sup {|δφ/δy - l|:yy ^ y ^ y,_i} < 1. Hence, all but n}

of the |pj are smaller than €. Since e is arbitrary it follows that

V l ( Λ | i ) <ty/(y-φ(y,An)) = 1

As AÎ OO, gn_λ(An) -• ί/, where C/ < 4-1 is the solution of the equation y(U, q~p) = 0. There-
fore,

-φ(y, Λn)) = 1,

Next, examine the asymptotic behavior of the integral I(x) = /J dy/(y - φ(y, x), as x |
<ΓP. Clearly, /(*}—» o° as Jf | ^ . It is well-known that its asymptotic behavior is determined
by the behavior of y - φ(y, x) near its minimum (as a function of y). For x close to q*t

this minimum is attained at a value of y close to q~λ. Recalling the definition of θ =
θ(y, x), one has, for (y, JC) close to (q~], q~p),

(y~Φ(y, x)Tl = 2q2-2p(q- I)"1 θ"2 + o(θ"2)

= Wqp3[(y-q~1)2 + 2(x-q-p)(p- l ) ' 2 ^ 3 ] 2 )

on expanding θ in a Taylor series about (4-1, ̂ ) . It follows that
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(4.4) lim, i(ΓP (2τr2Γ1/2 {q3p-\x-q-pΫ)υ2I{*) = 1

The conclusion of Theorem 2 follows from (4.3) and (4.4). •
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