
CHAPTER 5

Complex zonal polynomials

In this chapter we study complex zonal polynomials, i.e. zonal polynomials
associated with the complex normal and the complex Wishart distributions.
The complex multivariate normal distribution is used in the frequency analysis
of multiple time series and complex zonal polynomials are useful for noncentral
distributions arising in this setting. Other than that the practical applicability
of complex zonal polynomials seems rather limited. Actually our main reason
of studying them is that they are simpler than real zonal polynomials. If one
compares Farrell (1980) and Chapter 1 of Macdonald (1979) it becomes appar-
ent that complex zonal polynomials are the same as homogeneous symmetric
polynomials called the Schur functions and the latter have been extensively
studied. We will make this connection clear. Hopefully developing complex
zonal polynomials gives further insights into the real case.

The theory of the complex normal and the Wishart distributions very

closely parallels that of the real case (see Goodman (1963) or Brillinger (1975))

and it turns out that our development of Chapter 3 and Chapter 4 can be

directly translated into the complex case. In the literature on zonal polyno-

mials it seems customary to put a ~ to denote corresponding objects in the

complex case. For example we use Zp ,Cp ,yp, etc. With this convention the

translation of the results in Chapter 3 and 4 are almost immediate.
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§ 5.1 THE COMPLEX NORMAL AND THE COMPLEX WISHART

DISTRIBUTIONS

We give a brief summary of the complex normal and the complex Wishart

distributions. Let x,y be independently distributed according to i/(0,l/2) and

let z = x + iy. z is said to have the standard complex normal distribution. Or

we say that z is a standard complex normal (random) variable. Now let A be

an n X n matrix with complex elements and let

(1) u = (uι,...,uky = A (zι,...,zky,

where 2i,...,2& are independent standard complex normal variables. This

scheme generates a family of distributions called the multivariate complex nor-

mal distribution. Its density (with respect to Πi d(9tu{) Πi d(^U{) ) is given

by

(2) /(«) - -λ

where * means conjugate transpose and Σ = £uu* = AA*. If u has the

density (2) we denote this by ti ~ CM(O, Σ). Now suppose that t i j , . . . , tιn are

independently distributed according to CM(O,Σ). Let W= ]C£=i *•»'*•*• The

distribution of W is called the complex Wishart distribution and its density

(with respect to Π£=i &*>%% Yli<j^{^^)ij)^{^^ij)) ιs given by

Mn-*exP(-tri;-U)

This distribution is denoted by CW(Σyn).

Let W= TT be the (unique) triangular decomposition of a positive defi-

nite Hermitian matrix where 3P=(ϊt y) is a lower triangular matrix with positive

diagonal elements. Analogous to Lemma 3.1.3 we have the following lemma.

Lemma 1. Let W be distributed according to 0/11(1^,1/). Let W— TΓ*.

Then t{j, i > j , are ndependently distributed. 2 1/ 2 ϊ t t — χ(2(i/ — + 1)) and

hj> * > h are standard complex normal variables.

Proof. See Goodman (1963), formula(1.8) |
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— * - — xRemark 1. t t t has the gamma density f(x) = (1/Γ(ί/ — + \))zv"te

With this lemma we are ready to translate the results of Chapter 3 and 4.

§ 5.2 DERIVATION AND PROPERTIES OF COMPLEX ZONAL

POLYNOMIALS

For ease of comparison of the results here and the results of Chapter 3

and 4 we will consistently put ~ on corresponding objects of the complex case.

This sometimes results in somewhat unnatural notation, for example if H is

orthogonal then H is unitary etc. So much for the notation; now let us follow

the development of real zonal polynomials step by step for a while. All proofs

will be omitted since they are the same for the real and the complex cases.

We consider the following transformation.

(1) ( r v l

where A is Hermitian and W

Lemma 1. (corresponding to Lemma 8.1.2) τv Up G Vn.

Corollary 1. (Corollary 3.1.1)

(2) {τv Λj/p Up\

q<P

Corollary 2. (Corollary 3.1.2)

^t/p

>t + v + 1 - t)

(fe)

(3)
[v + l-ihi

where I — ί(p) and (a)k = a(a + 1) (α + k - 1).
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Corollary 1 shows that

(4)

where Tv is an upper triangular matrix with diagonal elements tpp = \up.

Lemma 2. (Lemma 3.1.4) There exists a nonsingular upper triangular

matrix 3 such that

(5) BTV
for all v,

where Λμ = di3,g(\μp , p G Pn) B is uniquely determined up to a (possibly

different) multiplicative constant for each row.

Using this B we define complex zonal polynomials.

Definition 1. (Definition 8.1.1) Complex zonal polynomials

Let B be as in Lemma 2. Complex zonal polynomials yp, p € Pn are

defined by

(6)

Lemma 2 is a consequence of the fact that there exists

p € ?n
 a r e all different and the following lemma.

for which

Lemma 3. (Lemma 3.1.5)

(7) Tv Tμ =TμTv.

We summarize these results in the following theorem.
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Theorem 1. (Theorem 8.1.1) Let yp be a complex zonal polynomial

then

where W ~ CW(lic,v), A is Hermitian, and \up is given by (3). Conversely

(8) (for all sufficiently large v and for all Hermitian A) implies that yp is a

complex zonal polynomial.

Now we explore various integral identities satisfied by complex zonal poly-

nomials. The uniform distribution of unitary matrices can be defined as in the

case of orthogonal matrices. In particular we have

Lemma 4. (Lemma 3.2.2) Let U = ( ύ t y) be a kX k matrix such that

U{j are independent standard complex normal variables. Then with probability

1 U can be uniquely expressed as

(9) U=TH,

where T = {t%j) is lower triangular with positive diagonal elements and H is

unitary. Furthermore (i) T,H are independent, (it) H is uniform,(iii) tjj are

all independent and 21/2 ii{ ~ χ{2(k - ί + 1)), t{j-, i > j , ~ C)J{0,1).

Now we obtain the "splitting property" of complex zonal polynomials.

Theorem 2. (Theorem 3.2.1) Let A,B be k X k Hermitian matrices.

Then

(lo) εί[yp{λHBH*) = yp{λ)yp{B)/yp(ik),

where k X k unitary H has the uniform distribution.

Definition 2. A random Hermitian matrix Vis said to have a unitarily in-

variant distribution if for every unitary Γ, ΓVΓ has the same distribution as

V

As in the real case Theorem 1 generalizes to unitarily invariant distribu-

tions.
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Theorem 3. (Theorem 8.2.2) Suppose that Vhas a unitarily invariant

distribution, then for Hermitian A

(11) εΫy

where

(12) c p = Ϋ p p

Unitarily invariant distributions are characterized as follows.

Lemma 5 (Lemma 3.2.3) Let V = HDH where H is unitary and

D is diagonal. Let H and D be independently distributed such that H has

the uniform distribution. (Diagonal elements of D can have any distribution.)

Then Vhas a unitarily invariant distribution. Conversely all unitarily invariant

distributions can be obtained in this way.

We can replace H in Theorem 2 by U whose elements are independent

standard complex normal variables.

Theorem 4. (Theorem 3.2.3) Let U = (ό t y) be a k X k matrix such

that ύ{j are independent standard complex normal variables. Then for Hermi-

tian Λ,B

(is) εϋyp(λύBu*)^J^yp(λ)yp(JB).
y? \*k)

As in the real case this leads to the following observation.

Theorem 5. (Theorem 8.2.4) bp = ^kp /l/p(h) *s a constant inde-

pendent of k.

Unitarily biinvariant distributions are defined in an obvious way.

Definition 3. A random matrix X has a unitarily biinvariant distribution if

for every unitary Γ1JΓ2, the distribution of ΓγXΓ^ is the same as the distri-

bution of X.

Now Theorem 2 and Theorem 4 generalize as follows.
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Theorem β. (Theorem 3.2.5) If X has a unitarily biinvariant distri-

bution then for Hermitian AB

(14) £χyp(λxBx*) = Ίpyp(λ)yp(B),

where

(15) ΊΌ = £'" {y (XX*)}/{y (lk)}^

Characterization of unitarily biinvariant distributions can be given in an

obvious way.

Lemma β (Lemma 3.2.4) Let X = H\ DH<L where Hγ,H2 ^e uni-

tary and D is diagonal. Let H\,H2,D be independently distributed such that

H\, H<ι have the uniform distribution. (D can have any distribution.) Then

X has a unitarily biinvariant distribution. Conversely all unitarily biinvariant

distributions can be obtained in this way.

Remark 1. The notion of unitarily biinvariant distributions applies to

rectangular matrices as well.

Now we take a look at the integral representation of zonal polynomials in

the complex case.

Definition 4. A particular normalization of a zonal polynomial denoted by

Zp is defined by

(16) 2p(Ijt) = λjtp ,

or bp = 1 in Theorem 5.

Theorem 7. (Theorem 3.3.1) Let p = (p\,... }pι). For k X k Her-

mitian A

(17) Zp(A) = tjj{Aι Δ 2
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where Δ t = TJAV ( 1 , . . . , t) is the determinant of the i X $ upper left minor of

UAU* and U is a kXk random matrix whose entries are independent standard

complex normal variables.

(17) implies that Zp(A) is positive for positive definite A and increasing

in each root. Furthermore using the Gale-Ryser theorem (see Remark 4.1.1

and Remark 4.1.2) the coefficients of Mq in Zp are nonnegative and they are

positive iff p >- q.

As in the real case \bp denotes the leading coefficient of Zp,namely

(is) z p = ι ϊ p ϊ y
p.

Theorem 8. (Theorem 4.2.2)

UP) i

1*P = Π Π ( - i + 1 + Pj ~ Pi)p(-Pi+i

(19) ' - ^ Γ 1

Other than mentioning Theorem 4.2.2 we will not follow the development

of Chapter 4. Of course all the results of Chapter 4 can be translated into

the complex case as has been done so far. However, it is pointless to go into

numerical aspects of complex zonal polynomials because, as mentioned above,

complex zonal polynomials are the Schur functions and the Schur functions

are already well studied. Although the translation of the results in Chapter

4 presents an alternative "probabilistic" derivation of properties of the Schur

functions, it is hardly more advantageous than a well developed standard ap-

proach to the subject. See Chapter 1 of Macdonald (1979) for example. The

link between complex zonal polynomials and the Schur functions is given by

Saw's generating function.

Saw's generating function in the complex case was introduced by Far-

rell (1980). Let ύ t y be a standard complex normal variable. Then 2|ύ t y|2 =
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2 ti{j u*j ~ χ 2(2) (i.e. |ώ ty|2 has the standard exponential distribution). There-

fore by considering £^{exp(θtr AXJBU )} where A= diag(αi, , «jfc), B =

diag(^j, . . . , βk), and U is composed of independent standard complex normal

variables, we obtain

Theorem 9. (Theorem 3.4.1)

k oo

(20) Π ί 1 " toiβjΓ1 " Σ O O Σ P̂ ̂ P (λ) Zp («).

where dp is determined by

(21) (tr A)"

Coefficients of Zp can be obtained as in the real case, namely (i) compare the co-

efficients of θn in both sides of (20), (ii) express the left hand side as a quadratic

form in Mp or Up, (iii) do the triangular decomposition to the resulting positive

definite symmetric matrix of coefficients. Now it will be shown in the next sec-

tion that the Schur functions Sp satisfy the same generating function(20) and

Sp is a linear combination of lower order M^'s (Sp = Σq<p QpqMq). Therefore

the Schur functions agree with the complex zonal polynomials by the unique-

ness of the triangular decomposition of a positive definite symmetric matrix.

§ 5.3 SCHUR FUNCTIONS

In this section we give a definition of the Schur functions and show that they

coincide with complex zonal polynomials by using Saw's generating function.

In terms of the Schur functions Saw's generating function is given in Section

1.4 of Macdonald (1979) or in Section 7.6 of Weyl (1946).

Let p = (pi, . . . ,Pf) 6 Pn- The Schur function Sp(x\,...,Xfc) (k > t)
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is defined by

(1)
Jb-1

1

J b - 1

If /: < I we define Sp(&i,..., xk) = 0. See formula (3.1), Section 1.3 of Mac-

donald (1979). It is given in formula (35) of James (1964). In Weyl (1946) it

is introduced as the primitive character of the unitary group and as the poly-

nomial character of the general linear group (see Sections 7.5 and 7.6 of Weyl

(1946)).

Note that the denominator of (1) is the Vandermonde determinant

(2)
t < y

Clearly the numerator has (x t — Xj) as a factor because if z t = Xj then

det(xyι ι ) = 0. Running (i,j) over all pairs we see that the numerator

has the Vandermonde determinant as a factor. Furthermore if x t and Xj are

interchanged then both the numerator and the denominator change the sign

and the ratio remains the same. Therefore Sp(x\,..., xjς) is a symmetric poly-

nomial in x^s. It is easy to see that it is homogeneous of degree \p\. Now we

want to show that

(3) Sp(xι,..., xk, 0) = Sp(xχ,..., xk).

The last column of (xζ% ~t)i<t,y<ib+l ιs

r A?+l /•

If xJb+l = 0 it reduces to (0,... ,0,1/. (Note that pk+\ = 0 by definition.)

Hence if xk+x = 0 then det(^ί+*+1~"1*) = ( Π y = 1 xy)det(x^+*- t), the right



§ 5.3 Schur functions 93

hand side being the determinant of the kX k principal minor of the matrix on

the left hand side. Similarly det(&y+1~*) = (Πy=i ary)det(xy""1). Therefore we

have (3) and in general by induction

(4) Sp(xι,...,xk,0...,0)=Sp(xι,...,xk).

This shows that Sp € Vn. Now let us look at the highest monomial in Sp of

the form axf x\k ({qu . . . , % ) G Pn). In det(^ ί + *"~ t ) and det(zjΓ f') the

similar terms are obtained by the products of the diagonal elements. They are

respectively. From Sp(x\,..., xk) det(a:y *) = det(a^ f + ""*) we obtain

Therefore a = 1 and q = (q\,...,qk) = (p\, .. ,Pk) = P- We summarize these

results in a lemma.

Lemma l

(5) SP = MP+
q<p

and { Sp,p £ Pn } forms a basis ofVn.

Now we prove the following.

Lemma 2.

k oo

(6) Πίl-feίiryΓ1 - Σ °n Σ ^
P

Proof. Replacing X{ by θx^ we can assume ^ = 1 without loss of generality.

We prove (6) in the following form:
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We recognize the left hand side of (7) as Cauchy's determinant, i.e.

See Lemma 2 of Anderson and Mentz (1977) for example. To prove this directly

consider the matrix on the right hand side. Now subtract appropriate multiples

of the first row from other rows so that each element in the first column is

converted to 0, except for that in the first row. Then the rest of the right hand

matrix becomes

1 - Xiyj 1 - xiyj 1 - x{yχ 1 - x{yι 1 - xiyj 1 - x{yj

The first two factors of the right hand side come out of the determinant as

common factors and (8) is now proved by induction on dimensionality. Now to

derive the right hand side of (7) from the Cauchy's determinant, expand (1 —
xi\lj)~l as 1 + Xitjj + x?y*j + . . . for every element of the matrix and then expand

the determinant. Consider the term of the form cxγ x£, ί\ > > t^.

This term arises as follows. Take tfth power term in each element of the i-th

row, i = 1,...,A\ Then x * comes out as a common factor and we obtain
P P I P P

Xj1 x£ det(y '). Collecting permuted terms in x's we have det(x .')det(y -').

Therefore Cauchy's determinant can be expanded as

(10) ^ φ

Now if ί{ = ί{+ι for some t, then det(x •') = 0. Hence this summation is

actually over the set {(C\,..., t^) : ί\ > > l^}. Now letting ί{ = p t +

k — i, i = 1,..., k the summation becomes over all partitions p = (pj,..., PΛ?)

This proves the lemma. |

This proof has been adapted from p.202, Section 7.6 of Weyl (1946).

Comparing (5.2.20) and (6) we have

(11) Σ (~dp /n!) Zp (A) Zp (B) = £ SP(A)SP(B)
p£P z€Pn



§ 5.4 Relation to real zonal polynomials 95

Now when expressed with respect to the basis { Mq}, both Zp and Sp are

linear combinations of Mq with q < p. Therefore if (11) is expressed in terms

of Mg's, then two sides of (11) give the same triangular (: lower times upper)

decomposition of a positive definite coefficient matrix. By the uniqueness of the

triangular decomposition of a symmetric positive definite matrix we have Sp =

cp i yp for some cp. Comparing the leading coefficient (see (5)) we obtain cp =
~2

1. Furthermore considering the leading coefficient of Zp we obtain dp \bp = n\,

n = \p\. This was mentioned at the end of Section 4.2.

We have proved

Theorem 1.

~2
(12) Sp = iy p and dp \bp = w! where n = \p\.

There are three more determinantal expressions stated in James (1964).

One involving elementary symmetric functions (formula(37) in James (1964)) is

found in (2.9') of Macdonald. One involving "complete symmetric functions"

(formula(36) of James (1964)) is given in (3.4) of Macdonald. Formula (38) in

James (1964) is not given in Macdonald.

Elementary symmetric functions and complete symmetric functions of the
roots of a matrix are relatively easy to calculate. Determinants can be evaluated
easily by computer as well. Hence from the viewpoint of numerical computation
these determinantal expressions seem to be all we have to know. Namely we
do not need to know the coefficients of Mp or Up etc. to evaluate the Schur
function. It might be worthwhile to look for an analogue of this for the real
zonal polynomial. Another possibility is to express the real zonal polynomials
in terms of the Schur functions.

§ 5.4 RELATION BETWEEN THE REAL AND THE COMPLEX

ZONAL POLYNOMIALS

We finish this chapter by discussing some results which we were unable to

derive by our elementary approach. James (1964) gives the following formula
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relating the complex and the real zonal polynomials:

(.) \

where the k X k H has the uniform distribution of orthogonal matrices, p =

{Plf'tPi) € Pn> and 2p = (2pι,...,2p£) e Pin* (Formula (34) in James

(1964).) Furthermore he states

if one or more parts of p is odd. (Formula (40)). See also Theorem 12.11.6 and

Remark 12.11.11 in Farrell (1976).

Given these results we can evaluate dp in (3.4.1) as follows. First note

that by replacing H by U where U is composed of independent standard (real)

normal variables we obtain

£T,H$2p(XTH)

(3) = ετZp(xτrtx>)/zp(ik)

By (5.2.21) and (5.3.12)

(trA) 2 "= £ ~dp~Zp(A)
PEP2n

u) = Σ dpllplyp(A)

Now let A = diag(<*i,..., a^.) and replace A by AU. In this case

t—1

Hence

S^T
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On the other hand by (3) and (2)

(6) iυ Σ (*»)' lip1 iVp iAU) = Σ (2»)! ihp ZP(AA').

Hence comparing (4), (5), and (β) we obtain

; ) n = Σ lh?
pEPn

or

(7)

Now (5.2.19) gives (3.4.12).




