
CHAPTER 4

More properties of zonal polynomials

This chapter is a collection of results which are for the most part general-

izations and refinements of the basic results given in Chapter 3. A particular

emphasis is placed on the coefficients of zonal polynomials. In this respect this

chapter contains new results and presumably covers almost all known results.

On the other hand we do not survey various known identities involving zonal

polynomials. For this purpose the reader is referred to an excellent survey pa-

per by Subrahmaniam (1976). Actually in the discussion of the orthogonally

invariant distributions we saw that zonal polynomials satisfy an infinite number

of identities. It is a rather frustrating fact that although many identities for

zonal polynomials are already known, explicit forms of zonal polynomials are

not known.

§ 4.1 MAJORIZATION ORDERING

The proof of Theorem 3.2.1 which played an essential role for the subse-

quent development in Chapter 3 is not complete as it is. In (3.2.11) we argued

that

(1) 0 = Q λ ^ - \»oq)cqq,yq(Σ)yq,(B),

for all symmetric B and all positive semidefinite Σ implies [\UoP — λμoq)cqqt

= 0. One objection may be that Σ is restricted to be positive semidefinite.
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But this causes no trouble since (1) is a polynomial and a polynomial which is

identically zero for nonnegative arguments has to be zero everywhere. A more

serious question is that the dimensionality of Σ and B is fixed to be A: X A: which

is the dimensionality of the uniform orthogonal matrix H. The same objection

applies to the proof of Lemma 3.4.1.

What we have to consider is the space of n-th degree homogeneous sym-

metric polynomials in k variables, where k is fixed. We denote this space by

VΛfk. Let m<k. If / ( x b . . . , ^ ) 6 ^ t h e n / ( x b . . . , x m > 0 , . . , 0 ) e F n , m .

In this sense Vnjtn can be considered as a subspace of Vn j.. Now from the argu-

ment in Section 2.2 it follows that if k > n then { Mp,p € Λι} forms a basis of

Vn jt Therefore if k > n, Vn ^ are all isomorphic to Vn. However if k < n then

for p such that ί(p) > k Mp is identically 0. Therefore dim Vn j. < dim Vn. In

order to proceed further we have to identify bases of Vn & for k < n.

For this purpose we now study homogeneous symmetric polynomials again

from the viewpoint of majorization ordering. The following is a refinement of

Lemma 2.2.2.

Lemma 1.

(2) UP = M P + £ apqMq,

(3)

Proof. For 1 < r < k let a = x\ = = arr. Then the degree of α in Mq

is q\ H + qr. The degree of a in Up is p\ H + pr because

(4) (αΓ
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where c is a term not containing α. Let Qr = { q \ q < p and q\-\ Vqr >

p\ + + Pr}- Now since the degree of a in (2) is p\ + + p Γ we have

(5) Σ apqMq(a,...,a,xr+ι,...) = 0.

Now Mq(a,..., α, z Γ + i , . . . , a:̂ ) are linearly independent if A: is sufficiently large.

Therefore apq = 0 for q 6 Qr Repeating this argument for r = 1,2,... we

have

(6) apq = 0 if g € Q i U Q 2 U .

But if ςf is not majorized by p there exists an r such that q € Qr Therefore
αί>? === ^ ^OΓ e v e r y 9 which is not majorized by p. This proves (2). (3) can be

proved similarly. |

Lemma 2. { Mp,p 6 Pn,f(p) < k},{Up,p 6 Pn,((p) < k) are bases of

Vn,k

Proof. Note that Mp(z\,..., xjς) = 0, Up(x\,..., xjς) = 0 for p such that

f(p) > k. Let / E Vn}k. Then from (2.2.2)

f{xχ,...yxk)= Σ apMp{xι,...,Xk)

(7)

Therefore any / £ VJjjj. can be written as a linear combination of Λίp's for

which p 6 Λi,^(p) < k. Now suppose

(8) X] aqMq{xι,...,xk)=*0.

Then differentiating (8) p t times with respect to X{, i = 1,. . . , £(p), (note ί(p) <

k) we obtain ap = 0. Therefore { Mp, p 6 /n,ί(p) < k } is linearly independent
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in Vn /ς. This shows that { Mp,p G Pn, ί(p) < k} is a basis of V^ j . . To show

that {Up,p ζ. Pn,t{p) < k} is a basis it suffices to observe

(9) q<P

This and (7) with / replaced by i/p shows that { Up,p £ Pnj £(p) < k } is another

basis of Vntk. |

Remark 1. It is known that apq in (2) is nonzero and positive if and

only if q -< p. This is called the Gale-Ryser theorem. (See Macdonald (1979),

Marshall and Olkin (1979).)

Now we prove the following.

T h e o r e m 1.

yP = Σ °PA - Σ am^
q-<p

for some real numbers apq, af

pq and {yp,p G Pn,({p) < k) forms a basis of

Vn,k

Proof. We first note that majorization is transitive, i.e. if p 1 >- p2

yp
2 >- p 3

then p1 >^ p^. Therefore in view of Lemma 1 the equalities involving Ws and

ΛCs are equivalent. Hence we prove one involving Ws. Now as in the proof of

(2), the right hand side of (3.1.10)

(11) M Σ « ή ^ l ) Γ " ' 2 ( Σ a{la{2W[ilyi2))P2"PS'"
h n<i2

has only those monomial terms Mq(A) for which q -< p. Therefore we can

write

(12)
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Substituting (3) into (12) and using the transitivity of majorization we obtain

(13)

Now let

(H) yP = Σ aP!Ur
Q<P

We want to show that Qp = { q \ apq j£ 0, q not majorized by p } is empty. We

argue by contradiction. Suppose that Qp is nonempty. Let q* be the highest

partition in Qp. Then apq =fi 0 and q > q* imply q < p* For any such q

Now </ -< q , q -< p imply cf -< p. Hence the right hand side does not have

Uq* term. It follows that Uq* does not appear in

(16)

Obviously

(17)

does not involve Uq* term either. Therefore the coefficient of Uq in

(18)

is Opg λ^g*. On the other hand

(19)



§ 4.1 Majorization ordering 47

Therefore the coefficient of Uq* on the right hand side of (19) is \Up<ipq*. Taking

v = ι/o we have a contradiction (see the proof of Lemma 3.1.4 for i/o). Therefore

Qp is empty. This proves (10).

To prove the second assertion we note that q -< p implies ί(q) > £(p).

Otherwise p\ + + p ^ < p i + + p^p) = n = gi + + g^j and this

contradicts g -< p. Therefore in (10) we have only those Uq's for which £(g) >

ί(p). Now suppose that A is k X k and A; < £(p). Then every Uq{A) in (10)

vanishes. Hence

(20) y p { A ) = 0 if A is k X k and k < £ ( p ) .

Now write

(21) Up - £ «P ?]/ g

Then

- Σ «pqyq{*χ,...,*k).

Similarly

(23) yp(zι,...,xk)=

In view of Lemma 2, (22) and (23) imply that {j/p ,p€ Λ»,4P) < k} forms a

basis of Vn fc. I

In the proofs of Theorem 3.2.1 and Lemma 3.4.1 we replace all the sum-

mations by

(24)

Then those proofs are complete. We do not repeat the steps of those proofs.

But in later proofs we will be careful.
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Remark 2. Using the Gale-Ryser theorem (Remark 1), (3.3.2), and (3.3.8)

it can be shown that apq in (10) is positive if and only if q •< p. This is stronger

than Theorem 1.

For future references we record (20) as a corollary.

Corollary 1. IfAiskXk and t(p) > k then yp{A) = 0.

With Theorem 1 we can strengthen the converse part of Theorem 3.1.1.

Theorem 2. Let integers n, k and a partition p £ Pn be given with t(p) <

k. Suppose that f satisfies the following conditions:

(0 / e vΛfk.
(ii) The leading term in f is the partition p, i.e.

for some real numbers apq with app 7^ 0.

(iii) For some constants cVy

for all k X k symmetric A and for all sufficiently large degrees of

freedom v.

Then f = app \yp and cu = λ^p.

Proof. Prom (ii)

(25) £wf(AW)= Σ a

On the other hand by (iii)

(26)

Hence

(27) 0= y; βpJc-X,
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for all k X k symmetric matrix A. Therefore by Theorem 1 we have apq(cμ —

λ ^ ) = 0 for all q. Considering q = p we obtain eμ = λ ^ . Then for all q < p

we have apq(\μp — \μq) = 0. Taking v = I/Q we have α p ? = 0 for all q < p.

Therefore / = opp i l/p. This completes the proof. |

§ 4.2 EVALUATION OF

In the sequel we often work with a normalization denoted by \l/p which

has the leading coefficient 1, namely

a) iyP = uP+
q<p

Advantages of this normalization will become clear soon.

Remark 1. In several places we already have used the expressions "leading

term" or "leading coefficient". Here and in the sequel "leading" refers to the

highest partition when a homogeneous symmetric polynomial is expressed in

terms of bases { Up }, { Mp }, or { yp }.

We shall evaluate i!/p(/jfe). From Theorem 3.2.4 we know that \bp =

λjfy/ iyp{lk) is a constant independent of k. Therefore our goal is to obtain

\bp. Now

(2) 1 6 M l / p ( I j b ) = λibp = Z p(/ i t).

Therefore \bp is the leading coefficient of Zp. This was needed for the unique

decomposition of the left hand side of (3.4.11). We use the following recursive

relation.

T h e o r e m 1. If A is a k X k symmetric matrix, then

(3)

where p + (1*) = (pi + l , p 2 + 1, ι P* + l.P*+l> ) 6 K+k, « = \P\
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Proof. If ί(p) > k then 1 ]/p(A) = 0 by Corollary 4.1.1. In this case l{p +

(1*)) = t[p) > k. Hence i l/p+μ*)(A) = 0. (3) holds trivially in this case. Now

let ί(p) < k. We can use Theorem 4.1.2. Let /(A) denote the left hand side of

(3). Clearly / E Vn+kjk and (i) of Theorem 4.1.2 is verified. With respect to

the basis {Up} the leading term in \yp is Up. Since |A|ί/p(A) =

the leading term in / is &p+(i*) and this implies (ii). Now consider

(4) %/(AW) = £W{\AW\ MAW)) = \A\£W{\W\ MAW)}.

Note that we can absorb |W| into the Wishart density which is proportional to

jW|(ι/-p-l)/2 e x p ( _ 1 t r ly). τhi s changes the degrees of freedom of the Wishart

density, but in any case we have £jy{|Wi iJ/p(AW)}= cu ij/p(A) for some cu.

(Explicit evaluation of cv is straightforward, but we do not need it.) Hence

(5) Swf{ΛW) - \A\ cυ i yp{A) =

and (iii) is verified. Therefore by Theorem 4.1.2 |A|il/p(A) = c

for some c. Comparing the leading term with respect to the basis { Uq } we

obtain c = l . This completes the proof. I

Corollary 1. (Formxιla(129) i n J a m e s (1964)) L e t p = ( p i , . . . , pe)

a n d p - ( p e

e ) = ( p x - p £ , P 2 - P £ , . . , P £ - i - P i ) Then f o r a n ί X ί s y m m e t r i c

A

Proof. \A\Pt ιypHptt)(A) =

Applying Corollary 1 to the identity matrices of appropriate dimensional-

ities we can evaluate \bp in (2).

Theorem 2.

(7) ifty 2|P|Π Π φ -sίί-D + py-wWfi.
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where (α)j. = a(a + 1) (a + k — 1).

Proof. We prove this by induction on the length of p. Let £(p) = 1, namely

p = ( P l ) . Then

(8)

Therefore

- 1 3 . ( 2 P 1 - 1 )

which is of the form (7). Now suppose that (7) is true for t{p) = k — 1.

We want to show that then (7) holds for £(p) = k. Let p=(p i , . . . ,Pk) and

P - ( P £ ) = ( P I - Pk> P2 - Pk> f Pife-1 - P*) Note that t{p - (pj)) = k - 1.

Putting Ifc in (6) we obtain

or
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Using the induction hypothesis

(12)
k-ί i j j

\h= Π

Π Π (g ' - 2(jΓ - P,P,+i

JLi Γ[py +1(* +1 - j)l/Γ|j(* + 1 - j))

2\P-(PΪ)\ π*-\ r|py - P A + ! ( * +1 - y)]/rg(ib +1 -

* Π φ - ίϋ -
i=iy=i

4 |J 4 | Λ

Π Π φ - ̂  -1)+Pi - w)w-
1 = 1 ^ = 1

Therefore (7) holds for A: = ί(p) and the theorem is proved. |

There is a curious fact about \bp. Let A;!! denote l 3 A o r 2 4 Λ

depending on whether k is odd or even. Then as above it can be shown by

induction that

Now (trA)n = ΣdpZp{A) = ΣdP i&P \])P(A). From (3.4.12)

dplbp = 2nn\
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This is very similar to \bp^ if we ignore the constant 2nn\. In Section 5.3 we

will see that in the complex case the corresponding quantities dp, \ bp satisfy

an exact relation dp (\ bp)
2 = n!.

§ 4.3 MORE ON INTEGRAL IDENTITIES

In this section we evaluate the constant cp in Theorem 3.2.2 for several

distributions. The first one is the inverted Wishart distribution. See Khatri

(1966), Constantine (1963).

Lemma 1. Let W be distributed according to 1^(1^,1/), v > 2h(p) + k — 1.
Then for symmetric A

(i)

where

Proof. Let A = diag(αχ,..., αj.) without loss of generality. We look at the

monomial term a^ - α ^ {ί = £(p)). Then as in (3.1.12) its coefficient in

( l ) i s

(3) εw{w~\iγι-**w~\i,2y*-**- vr\i,...,iγt},

which has to be equal to cp. Let W= T9T where T is lower triangular with

positive diagonal elements. Then analogous to Lemma 3.1.3 t t t , = 1,..., k,

are independently distributed according to χ(i/ — k + •). Then W~ι=T~ιTt~1

and T""1 is lower triangular with diagonal elements reciprocal to the diagonal

elements of Γ. Therefore W ^ l , . . . , r ) = ( t π trr)~2. Hence

= { H (ί/ - k + i - 2pi){v - k + ί - 2Pi + 2) •(*/ - k + t - 2)}" 1
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Related to Lemma 1 we have the following interesting identity which is

briefly mentioned in Constantine (1966). Let p*β t be defined by (2.1.5).

Lemma 2. Let Abe at X t positive definite matrix. Then

(4) μr

where 8 > h{p), t > l{p).

Proof. Without loss of generality let A = d i a g ( α i , . . . ,c*f). let / ( A ) = | A | β

yp(A~ι). We use Theorem 4.1.2. In terms of the basis { Mq } we can write

(5) yp(A-ι)= £ apqMq(ί/aι,...,l/at).

Note that q -< p implies h(q) < h(p). Now the degree of l / α t in M9(l/c*i,...,

l/αj) is h(q). Hence the degree of l / α t in yp(A~ι) is h(p). Now | A | β ^

(αi at)8 and β > h(p). We see that l/α, is canceled by |A|β and /(A) = \A\*

yp(A~i) is a polynomial in (aχ,...,at). Clearly it is symmetric and homoge-

neous of degree st — \p\. Therefore / € ^βt-lpl,t This verifies (i) of Theorem

4.1.2. Now

= Mq* t(A),

where 1 < j \ , . . . ,jt-t ^ t are indices not included in ( ι ' i , . . . , i() and g* t =

(β,..., β, β — qt,..., β — 92»« — 9i) Hence by Lemma 2.1.4 the leading term in

/ is appMp* . This verifies (ii). Now consider

As in the proof of Theorem 4.2.1 | W|β can be absorbed into the Wishart density

and we have ίvy{|W|βl/p(A-1lΓ-1)}=c I /I/p(A"1) for some cυ. Therefore

£Wf(AW) = \A\*cuyp(A-1) = Cι/f(A).

This verifies (iii) and by Theorem 4.1.2 we have f(A)=\A\8yp{A"1)=cl/p*

(A) for some c. Putting A = It we obtain c = yp{It)/yp* (It)- I
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The second distribution is a "multivariate Fw distribution. There are many

ways to generalize the univariate F distribution to the multivariate case. Here

we work with the following version. For other generalizations see Johnson and

Kotz (1972).

Lemma 3. Let the columns of X\ : k X v\, X2 : k X 1/2 (1/2 >2Λ(p)+ k —

1) be independently distributed according to M(O,Σ). Let W=X*1(X2X?2)~lχl

Then

Proof. Premultiplying X\,X2 by Σ~τ we can take Σ=Iιe without loss of

generality. Then

= εXl£χ2yp(xlAx'ι(x2x
t

2r
ι)

(7)

Remark 1. It is more or less obvious to prove Lemma 3 for other defini-

tions of multivariate F distribution.

Our last distribution is multivariate beta distribution (Constantine (1963)).

The following derivation is essentially the same as in Constantine (1963), but

more probabilistic. Let W\,W2 be independently distributed according to

W(i;,ι/l),W(Σ?,ι/2) (Σ : k X k) respectively. Note that W=Wχ + W2 ~

IV(Σ, v\ + 1/2)' Now the conditional density of W\ given Wis

f(W1 I W)

_
(8) IWl^^"*"1 exp(-|tr Σ~ιW)
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where

(9)
πk[k-l)lA Πf= i

_ , + 1 ) 1 Γ [ 1 {U2 _ ,

Note that terms involving Σ cancel out in (8) . Therefore the conditional dis-

tribution does not depend on Σ. When W=I, f(W\ \ I) is called multivariate

beta density:

(10) f{Wι I /)

Since this density is orthogonally invariant the conditional distribution of W\

given W= /is orthogonally invariant. Now we want to evaluate cp in

( l i ) e{yp{Awx) i w= i) = cpyp(A).

For a positive definite A let A? =ΓD?Γf where Γ*is orthogonal and D is diagonal

in A=ΓDΓf. Now the conditional distribution of A2W\A2 given W— /is the

same as the conditional distribution of W\ given W = A. This follows from

the above mentioned fact that the conditional distribution does not depend on

Σ. Therefore

(12) SUpiAWό I W= 1} = ^ ( W Ί ) I W= A}.

Letting A = W\ + W2 we obtain from (11) and (12)

(13) ε{yP(wi) I Wi + w2) = cpyv{wx + w2).

Now taking unconditional expectation we obtain

Hence cp = ^vιpl^ι>ι+v2,p Now we have proved
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Lemma 4. Let W\ have the density (10). Then

(is) εwy' Xι

Variations of the above three lemmas can be found in Khatri (1966), Subrah-

maniam (1976).

§ 4.4 COEFFICIENTS OF Uq IN yp

In this section we study coefficients of ί/ '̂s when zonal polynomials are

expressed as linear combinations of i/^'s. For definiteness we work with \apq

in \yp=Up +Σ l<*pqU>q. If rank A = l , 2 all the relevant coefficients are known

and we can compute yp{A) explicitly. We review this first. After that we study

several recurrence relations between the coefficients. When rank A > 2 these

recurrence relations are not enough to compute the values of zonal polynomials

yp(A) for all p. Nonetheless they seem to be very useful. Coefficients of λtg's

will be discussed in the next section and Tg's in Section 4.6. We discuss relative

advantages of various bases on the way.

4.4.1 Rank 1 and rank 2 cases

If A is symmetric and rank A = l then A has only one nonzero root. Let A

= diag(c*i, 0, . . . , 0) without loss of generality. By Corollary 4.1.1 yp{A) = 0

if f(p) ^ 2. Therefore only onepart partitions p = (p\) count. Obviously

(1)

Therefore in this case zonal polynomials reduce to powers of a\.

Now suppose rank A = 2 . Let A=diag(c*i, c*2,0,..., 0) and A=diag(a j , α?2)

: 2 X 2 . We have to consider only partitions with two parts p = (pi,f>2) Now

we use Corollary 4.2.1:
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where (p\ — p2) is a onepart partition. Therefore it suffices to know the value of

a zonal polynomial of onepart partition evaluated at 2 X 2 matrix A. Actually

zonal polynomials of onepart partitions are known explicitly and can be derived

as follows. If we let β\ = 1,̂ 2 = ' ' = βk=® i n (3.4.6) we obtain

k oo

(3) Π (1 " 2»«iΓ* " Σ (θn/n\)d(n)Z(n)(A) !6 ( n ),

where i6(n) = Zίn\(I\) is the leading coefficient of Ztn\ (see (4.2.2)). Note that

(trC)n = U/n\(C) and with respect to the basis { Up } only Z(n\(C) contains

U{n). Therefore in (3.4.1) (tr C ) " = t J/(n)(C) + = (1/ i&(n)) Z{n){C) + .

Hence </(n)
=: l ^ v ^ e n a v e

Jb 00

(4) Π (1 " ί fe iΠ = Σ (#"/»!)2(.

The left hand side can be expanded as follows.

(5)

n-0 p?P n Pl ! 2 2 2 VPl-P2,P2-P3, •••>Pe(p)

This follows from the fact that Up being a product of pi terms comes only from

Pl-th power term in the expansion of (1 — 2θu\ H ) - 1 / 2 . Comparing (4) and

(5) we obtain

(6) Zln) = 2"n! Σ ( - l ) ( f ί " Λ ) + l ' r " ) + " 7 % Up.
p (pi-P2V Pe(γ

Note that i6 ( n ) = 1 3 (2n - 1), 2"n!=2 4 (2n), \λ^U(quq2) (λ)=
U(qi+P2,q2+P2) ( ^ ) = Z/(?i+P2,?2+p2)(

A) Therefore combining these equalities
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we obtain

2-4- - ( 2 p 1 - 2 p 2 )

l 3 ( 2 P l - 2 p 2 - l )
(7)

if rank A = 2. See formula (130) in James (1964).

If rank Λ = 3 what we have to know are the values of zonal polynomials

of twopart partitions evaluated at a rank 3 matrix A. Obviously things be-

come more and more complicated as rank A increases. However several useful

recurrence relations on the coefficients can be obtained.

4.4.2 Recurrence relations on the coefficients

We present here three recurrence relations. The first one has been already

used in deriving (7).

Lemma 1. If k > t{p\k > t{q), then

Proof. Let A be k X k. Then

\A\ MA) = \A\{Up(A) + £ iapqUq(A)}

q<vA<i)<k

By Theorem 4.2.1

\A\ιyp(A)=

Comparing (9) and (10) we obtain by Lemma 4.1.2 lapg— l a

p +(i*) ; g + ( i*)
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Remark 1. Theorem 4.2.1 has been known and Lemma 1 is almost an

immediate consequence. However it does not seem to have been explicitly

stated.

The next one is in a sense conjugate to Lemma 1. Let p = (pi , . . . ,p^)

€ Pn and m > p\=h(p). We denote by {m,p) the partition (m,pi,p2, . *,Pe)

E Pn+m

Theorem 1. Let m > h(p). Then

QTΠ

Proof. With respect to the basis { Up } let

la(τn,p),qUq(al> ι α

We differentiate (12) m times with respect to α&+i Now the degree of αj.+i in

(is) M«i-

is gj = (ςri — ̂ 2) + (̂ 2 ~~ 93) + " # + ^(σ)- Therefore the terms in the sec-

ond summation on the right hand side of (12) drop out. Now Uίm ^/)(«i, . . . ,
αJfe+l) ' s a product of m=(m — cfχ)+ +9^^) elementary symmetric functions

tι Γ (αi, . . . ,Λjfc+i) which are linear in α ^ + | . Therefore differentiating ^(mjg/) *π

times we are left with the term where each ur is differentiated exactly once.

Furthermore

( 1 4 ) 5 - «r(«l» 1 <*k+l) = «r-l(«l , , «Jfc)
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Therefore by the chain rule of differentiation

(15) = ^

= m\Uqi(aι,...,ak).

Let / ( α i , . . . , ak) = (dm/da1

k\ί) 13/(m,p)(αi,..., α^+i). Then we have

f(aι,...,ak)=
(16) Q<P

We replaced ς/ by q and (rn, g) < (myp) by g < p since (m,g) < (m,p) if and

only if q < p. We have shown that conditions (i) and (ii) of Theorem 4.1.2 are

satisfied. We are going to show that condition (iii) of Theorem 4.1.2 is satisfied

as well.

Let Λ = diag(αi,..., α&+l) and A\ = diag(αi,..., αj.). Then exactly as

above we obtain

(17) - ™! Σ

( Σ
»i <•••<*<(,)

Let IV be partitioned as
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where wic+l,k+l = M ^ + 1) is a scalar. Let

(19) Wll-jfe+l = Wn -

Then by the well known identity on the determinant of partitioned matrices

we have

(20) Wt Ί , . . . , r , k + 1) = Wjb+i^+iWπ-ib+iί i, , «V).

Therefore in (17) wf+ίk+ι = ^k+ϊ,k+l c o m e s o u t M a c o m m o n

factor and we obtain

dm

Now if Wis distributed according to )f(ljk+i,ί/) then w^.+i jt+i and WJ

are independently distributed according to χ 2(^), (̂/jfe,ί/ — 1) respectively.

(See Srivastava and Khatri (1979), Theorem 3.3.5 or Mardia, Kent, and Bibby

(1979), Theorem 3.4.6.) Therefore taking expectation with respect to W

βfΠ

= K,(m,p)

(22)

Letting Ct/_i = K,(m^)/^(wl+lM^ w e h a v e

(23)

for all A; X A symmetric Ai and for all sufficiently large v. This verifies condition

(ίii) of Theorem 4.1.2 and we conclude

(24) f = cιVP

for some c. Comparing the leading coefficient with respect to the bases { Up }

we obtain c = m\ . I
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Corollary 1. If m > h(p) then

( 2 5 ) lβP? = la(m,pUm,qy

Proof. From (11) and (15)

™ P r + Σ, lOpqUq)
Q<P

βin

(26) - m I ^ - 5 y

Therefore (25) holds. |

In terms of the diagram of p Lemma 1 corresponds to adding a column

to the left of the diagram and Corollary 1 corresponds to adding a row to the

top. In this sense they are "conjugate". It might be interesting to interpret

this result from group representation theory.

x x x x x x
x . . . .

x

x

x

Figure 4.1.

Our third recurrence relation follows from Lemma 4.3.2.

Lemma 2. If s > h(p), a > h{q), t > t(p), t > t{q), then

(27) l*pq = l % e < Γ

Proof. Let A be a t X t positive definite matrix. Prom Lemma 4.3.2

(28) \A\'1yp{A-l) = cίyp
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or

\A\%(A-l) +

(29) - c ( a . ( A , +

*<p*A*)<t

where p* = p* t and c = i]/p(/t)/il/p (/t). Now let Λ=diag(oi, . . . , at).

Then

(30)
=

h<-<it-τ

βΛ-°Λ-f

Note that (30) is true for r = 0, t if we define « 0 = 1. Therefore

(31)

because ς* t = («, . . . , β, θ — g ^ j , . . . , 8 — q2,s — q\) and f(qlft) = ί. Substituting

(31) into (29) we obtain

Therefore by Lemma 4.1.2 χα p 9 = lαpje,gje>
 c = l I

Remark 2. Again this lemma is much easier to grasp in terms of the

diagram. See Figure 2.2.
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Looking at Table 2 in Parkhurst and James (1974) we find that the above

three recurrence relations give a large number of coefficients without any cal-

culation (except that the table is for Zp rather than for i]/p). However it is

not clear whether this kind of approach can be further carried out to give all

coefficients of zonal polynomials.

§ 4.5 COEFFICIENTS OF Mq

So far we have been mainly working with i/p's. But in view of Lemma

2.2.2, Lemma 4.1.1 etc. we could have worked with Λtp's as well. We defined

zonal polynomials in connection with the Wishart distribution and it was more

straightforward to define zonal polynomials in terms of l/p's in that setting.

But when it comes to obtaining coefficients it seems easier to work with Λlp's.

In this section we translate every result in Section 4.4 into the coefficients of

Mp's. Another big advantage of working with monomial symmetric functions is

a partial differential equation by James (1968), from which he derived a recur-

rence relation on the coefficients of monomial symmetric functions in a zonal

polynomial. (Note that the recurrence relations of Section 4.4.2 were on the

coefficients of Uq's in different zonal polynomials. Here the recurrence relation

is on the coefficients in one zonal polynomial.) Actually it is possible to de-

velop a whole theory of zonal polynomials from the partial differential equation.

This is done in a recent book by Muirhead (1982) explicitly and illustratively

following James (1968). We discuss the partial differential equation and the

recurrence relation in Section 4.5.4.

Furthermore Jacob Towber (personal communication) has recently devel-

oped a combinatorial method for determining the coefficients. His method

involves several steps of counting related to the diagram of a partition. At the

moment the combinatorics involved seems to be too complicated to obtain an

explicit formula for the coefficients, but it might be carried out.

From the above discussion we see that we have much more information on

the coefficients of Mp's than on the coefficients of fy/s. Therefore in a sense it

is pointless to work with Upys any more. However from a computational point

of view it is easier to compute UqS once we obtain the characteristic roots and
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the characteristic equation of a matrix A. We simply multiply the elementary

symmetric functions. In the case of Λίp's we have to multiply the roots in all

possible ways and sum them up. The relative advantages of Λtp's and Up's

should be judged from this viewpoint too.

4.5.1 Rank 1 and rank 2 cases

Let p = (n) be a onepart partition. To express Zίn\ in monomial symmetric

functions we can use the integral representation by Kates. This was done by

Kates (1980). Letting r = 1 in (3.3.8) we obtain

(1) UAU'(1) =

where A = diag(αj,..., αj.) and un, ί = 1,..., ky are independent standard

normal variables. Therefore by (3.3.2)

i ) n
(2) «?(„) = £ ( Σ « » « i ) n

t—1

Now the coefficient of α^1 - α ^ on the right hand side is

( )
\Pl,P2,--,Pe)

- - i M fc)-
Therefore

(4) «?(„) =

This looks nicer than (4.4.6). \yp has the leading coefficient 1, so

(5) iJ/ίnϊ
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Now let A = diag(αi, α2). Then for q=(qι,q2) (qi 7^ 92)

\A\kMq(A) - (aιa2)
k(aγaf + afaf)

(6)

(The equality of the extreme left and the extreme right hand sides holds for

<7l=(72 too). Therefore from (4.4.2) we obtain

This takes care of rank 1 and rank 2 cases.

4.5.2 Again on the generating function of zonal polynomials

To express Tp in terms of Mq's we can simply expand Tp and count various

monomial terms. Therefore it seems easier to express the right hand side of

(3.4.9) in Λtg's than in ίig's. Then we decompose the resulting positive definite

coefficient matrix as LLr where L is lower triangular with positive diagonal

elements. The elements of L give the desired coefficients of zonal polynomials.

The development on Section 3.4 goes through in exactly the same way except

that we order { Tp,p £ Pn } according to the lexicographic ordering of the

conjugate partition pf (see Remark 2.2.2). We do not repeat it here.

Rather we notice here the similarity between two generating functions

(3.4.6) and (4.4.4). Let 71, . . . , 7^2 denote the k2 numbers a{βj, i = 1,..., k,

j = 1,..., Λ. Let C=diag(7i, . . . , 7^2). Then from (3.4.6) and (4.4.4) we have

00 00

(8) £ ( # > ! ) Σ dpZp{A)2P{B) = Σ (OnMZ(n)(C).
n=0 P 0

Hence

(9)
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Now we can substitute (4) into the right hand side. Then it reduces to express-

ing Mp(C) as a sum of products Mq(A)Mqf(B). This seems nicer than directly

expanding the right hand side of (3.4.9).

Finally we prove that the coefficient of M^Λ\ in Zp , p 6 Pjc is k\. This is

stated in James (1968).

Lemma 1. Let p 6 Pk βnrf A= diag(αχ,... ,<*&). Then

Hence the coefficient of M/^j in Zp is k\.

Proof.

k

(11) Πί1 - M"iβiΓ* - Σ 0 0 Σ

Dififerentiating this by αi,ct2v > αifc w e obtain

*P>Jij(12)

Now Θβj/{1 - ΊθoLiβj) = θβj + Attfλer orrfer in θ. Hence

igher order in $.

Comparing the coeflBcients of θ we obtain
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But by (3.4.1)

k
k(15) ( £ * / ) * - ( t o B)

Comparing (14) and (15) we obtain

4.5.3 Recurrence relations of Section 4.4.2

Here we work again with the normalization i yp. Let

(16) iyP = Mp+ £ ιbpqMq.
q<p

Lemma 2. If k > t[p),k > ί(q), then

Proof. Let A = diag(αi, . . . , α^) where k > ί(p). Then

(is)

Note that this equality does not hold for augmented monomial symmetric

functions. The equality above holds because the summation is over distin-

guishable terms and α?1 α?* is distinguishable from α^1 α ^ if and only

if (αi otk)aγ - - ofi1 is distinguishable from {a\ ttjb)^1 otγ. For aug-

mented monomial functions refer to (2.2.6). Now the lemma can be proved just

as Lemma 4.4.1 if we replace UpyUq, \apq in (4.4.9) by Mp,Mq, \bpq respectively.
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Lemma 3. Let h(p) < m. Then

Proof. The degree of αfc+i in Mq(a\,..., ctfc+l) is Λ(g). Hence if h{q) < m,

then

(20) 5 - ^ Γ - Xg(αi,..., 0*+!) = 0.

If h(q)=m let ςr=(m, ςr'). Then clearly

(21) m M f f(αi,..., θjb+1) = m!Mg/(αi,..., ak).
aθLk+\

(Again this equality does not hold for AMq.) Now (4.4.26) holds with Mp,Mq,

\bpq replacing Up,Uq, \apq respectively. This proves the lemma. |

Lemma 4. If h(p) < e,h(q) < 8,t{p) < t,t{q) < t, then

Proof. Let A = diag(c*i,..., at), q = {q\,...,qe)> q\ < 8, ί < t. Then

(23) \A\°Mq(A-ι)=Mq*jA).

See the proof of Lemma 4.3.2. (Again (23) dos not hold for A Mq). Now (4.4.29),

(4.4.31), (4.4.32) hold with Mp,Mq, \bpq replacing Up,Uq, \apq respectively. This

proves the lemma. |

We have shown that the recurrence relations of Section 4.4.2 hold in exactly

the same way for the coefficients of Uq

Js as for the coefficients of Λtg's.

In the next section we discuss James' partial differential equation and a

recurrence relation derived from it. The mathematical development will be

somewhat sketchy.
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4.5.4 James' partial differential equation and recurrence relation

James (1968) derived a partial differential equation satisfied by a zonal

polynomial from the fact that a zonal polynomial is an "eigenfunction of

the Laplace-Beltrami operator." Let A = d i a g ( α j , . . . , α ^ ) , p=(p\, . . . , pe) £

Pn .Then his partial differential equation is

(24) Σ «?^3/p(A)+ Σ ^T^-yM) - ( Σ P <Pi-ί + *-l))WA).

This might seem a little bit strange because it depends on the number of vari-

ables (k appears in the summation on the right hand side). Let

i
(25) αi(p) — Σ PiiPi ~ 0

Then the right hand side of (24) can be written as

(26) αi(p)l/p(A) + »(* - 1)&(A), n = \p\.

To get rid of n(k - l)yp(A) we notice the fact that for any / € Vn, £ i = i o t

(d/dai)f=nf. Therefore

k a(27) (k - l)nyp(A) = (k - 1) £ of ̂ -

k d

But we can write

(28) (k-l)Y,αiΊ^yp(A)= Σ Σ « i f ί

Now subtracting (28) from both sides of (24) and using the relation α?/(αt —αy)

—α t = α t αy/(αt — αy) we obtain
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which does not involve k as a coefficient and is valid for any number of variables.

(29) was derived by Sugiura (1973) in an elementary way. Because his expo-

sition is clear and readable (except that there are complications like a higher

order partial differential equation and differential equations for complex zonal

polynomials) we do not derive it here. Let

(30) 3p

Substituting this into (29) we obtain

(31)

= «1(P
9<P

Now

can be expressed as sums of monomial symmetric functions. Then comparing

both sides of (31) we can determine the coefficients bPq. It is hard to visualize

what is going on here unless one works out some examples. Muirhead (1982)

does that very carefully using (24) rather than (29) following James (1968).

Therefore we only sketch the procedure here.

Let q = (gi,.. ., q^). It is fairly straightforward to verify that

k a2 ί

(33) Σ <*ϊ ^ 2 M* = Σ Φi -

(34) 2 ^ — J - — Mq = — Σ 9ι'(f — l) Mtf + lower order terms.
. / . ft-* — Oί ή UθL2 . ^
xψ2 3 t = = l
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Adding (33) and (34) we obtain

(35) DMq = a\(q)Mq + lower order termβ,

where

It is fortunate to get only lower order terms by the differential operation. It is

this triangular nature of the differential operation that enables one to determine

bpq recursively starting from the (arbitrary) leading coefficient bpp. If one works

out "lower order terms" (which is not hard) one arrives at the following rule

by James (1968):

(3Q) b -

where ς/ is an unordered partition of the form </=(gi,... ,q{ + r, ...,qry —

r,... ,q£(qλ), (1 < r < qj). The summation is over all (i,j,r) where t < j ,

r > 1 such that when the unordered partition q* is ordered we have q < qf < p.

Actually in view of Theorem 4.1.1 we have to consider only partitions q, </

which are majorized by p.

The advantage of this method is that it is self-contained. It gives all coef-

ficients of a single zonal polynomial without computing others. Therefore it is

by far the best method if one is interested in computing few zonal polynomi-

als. On the other hand if one wants to compute many zonal polynomials then

relying exclusively on this method seems to involve a great deal of redundant

computations in view of recurrence relations of Section 4.5.3.

Remark 1. Logically the recurrence relation (36) is not complete until

one shows that the denominator αi(p)~ a\{q) is never zero. James (1968) states

that (36) gives rise to positive 6p '̂s. Since the numerator (gt*+r)— (ςry—r)=(gt —

qj) + 2r is positive he seems to claim that a\(p) — a\(q) > 0 for all relevant

pairs p,q. By Theorem 4.1.1 it is enough to prove

(37) <*l{p)-ai(q)>0 for p >• q.
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Then this ensures that (36) works for all cases and nonzero bpq's are positive.

(36) can be easily proved using techniques from the theory of majorization. See

Marshall and Olkin (1979). We do not go into this here.

§ 4.6 COEFFICIENTS OF Tq IN Zp

In this section we study the coefficients of Tp. The normalization Zp seems

to be most advantageous. An important fact about the coefficients of Tp is

their orthogonality. We derive this first. See formulas (117) and (118) in James

(1964), and Problem 13.3.9 in Farrell (1976).

For p £ Pn let

(1) Z

P

Let Z=(Z<n\, 2(n-i,i)> > Z(ιn\YyG=(gPq). Then (1) can be expressed in a

matrix form as

(2) 2=GT.

Now we recall that the transition matrix F in T=FU is lower triangular (see

(2.2.28)). Substituting this into (2) we obtain

(3)

But

(4)

Now

(5)

2 =

(3.4.

BU

11)

. Hence

shows

2=GFU.

G = BF~l

Ξ'DB = F'CF,

where C = dίag(cp,p € Pn) is obtained in (3.4.8) and Z>=diag(rfp, p £ Pn) is

known as (3.4.12). From (4) and (5) we obtain

(6) GΪDG = C.



§ 4.6 Coefficients of Tq 75

Inverting this

(7)

Coordinatewise

(8) Σ dpgpqgpqt = 6qqtcq, (column orthogonality),
p

(9) ] Γ gpqgpfq/cq = 6ppf/dpj {row orthogonality),

where 6pp/ is Kronecker's delta.

Actually cq,q G Pn coincide with the elements of the first row of G. To see

this let βι = 1, β2 = = βk=O in (3.4.7). Then clearly 7^(/i)=l for every

p and we have

oo

= Σ ($nM Σ

Comparing this to (4.4.4) we obtain Z(n)(A)=53 cp TP(A) and hence cp = gu)fP

Therefore (9) can be written alternatively as

ί 1 1 ) Ί2Spq9p'q/9(n)Jq = 6ppΊdp
Q

One obvious advantage of working with 7J>'s is that the coefficient matrix is

readily invertible. Prom (6)

(12) G"1 = CrιG?D.

Therefore once we express zonal polynomials in terms of 7j/s then it is easy to

express 7 '̂s (and their linear combinations) in zonal polynomials.

(11) was used to compute zonal polynomials in Parkhurst and James (1974)

as follows, (i) Zip's are expressed in 7J>'s. (ii) They are Gram-Schmidt orthog-

onalized relative to the orthogonality relation (11) starting from the lowest
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partition ( l n ) upwards. Because of the triangularity of B this clearly results in

zonal polynomials.

Some gPq'$ can be explicitly obtained using the fact -?p(/^)=λjtp. We

regard λj p as a function in ft. Then by (3.1.15) it is a polynomial in ft of

degree |p| = n. Now since fΓ(Ij.)=ft for any r we obtain Tp(l/c)=kpi'~P2

tf>2-pz... =ftPi = khW. Therefore putting Ik in (1) we obtain

(13) ,
qEPft

This uniquely determines jpg for q = (n), q = (n — 1,1), q = ( l n ) because

these are the only partitions in Pn with A(g) = n,n —1,1 respectively. Now the

coefficient of kn in Xfy is 1, hence

(14) was originally used by James to determine the normalization Zp. Now let

us look at the coefficient of kn~1 in X^. It is

t = l

= Σ p*(p» ~ 0
t = l

αi(p) already appeared in (4.5.25). Therefore

This is mentioned in the introductory part of Parkhurst and James (1964) in a

somewhat different form

(17) ίp,(n-l,l) = Σ P» (P* - !) ~ « Σ Py(P/ - 1)»
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where pf = (pj,... ,Pfup\) is the conjugate partition of p. Using (2.1.4) it is

easy to check that (16) and (17) are equivalent.

Now the coefficient of k in λfc« is

(18)

Hence

(19) ^(l») = 2 n - 1 ( P l - l ) ( V )

This does not seem to have been noticed.

Now from (4)

(20) B=GFy B = (ξpq), F=(fpq).

Fis lower triangular. Therefore the last column of B is /(inujn) times the last

column of G. By (2.2.22)

(21) T ( 1 « ) = < n = ( - l Γ - 1 n ( ΰ { 1 « ) + •••)•

Hence /(inj^n) = (—l)n~ ιn. Therefore

(22) e Λ ( 1 . } = /(,.Mi.)fΛ(i.) = MΓ-'-ίPl - 1)'
i=2

Making use of (12) gives another set of identities.

(23) T= G~ιZ = CΓxdΌZ.

Now DIΓ = (rf(n)-̂ (n)? >^(1Λ)^(1Λ))/ a n ( ^ ̂ p-̂ p *s denoted by Cp (3.4.13).

Therefore

(24) τ
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Comparing the second element we obtain

(25) C(n~l,l)t

= n(n_ n Σ °
where C(n_j j\ = n(n — 1) is given by (3.4.8). (25) was given by Sugiura and

Fujikoshi (1959) by a different method. They derive more identities of this

kind. See Sugiura (1971) too. Now looking at the last element we obtain

m

What are advantages and disadvantages of working with 7J>'s? One advan-

tage is that we do not have to compute characteristic roots of A to compute

Tp(A). (One only needs traces of powers of A.) Another advantage is the

orthogonality discussed above. A serious drawback of Tp is that we have to

compute Tp(A) for all p G Pn even if the rank of A is small. In usual statisti-

cal computations rank A is fixed and not too large. It is a covariance matrix

for example. Since the number of partitions grows very fast as n increases if

one wants to compute Zp(A) for \p\ large it seems better to use Uq's or Mg's.

The growth of the number of partitions p with ί(p) < k (k : fixed) is much

smaller than the growth of the number of all partitions. See Table 4.1 in David,

Kendall, and Barton (1966).

§ 4.7 VARIATIONS OF THE INTEGRAL REPRESENTATION OF ZONAL

POLYNOMIALS

In this section we explore various variations of the integral representation

(Theorem 3.3.1) discussed in Section 3.3. We first replace U by the k X k

uniform orthogonal matrix H.
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Theorem 1. (James, 1973) For k X k symmetric A

I

(1)

where p = (p\,... >pι) £ Pn, k > I, and the k X k orthogonal H is uniformly

distributed.

Proof. As in Lemma 3.1.2 it is easy to check that

€ Vn^. Therefore we can write

(2)

Replacing A by UAUf where k X k U is as in Theorem 3.3.1 and taking

expectation with respect to U we obtain

(3) Zp(A)= £ aq\kqZq(A).
qePn,i(q)<k

This being true for any symmetric k X k A we conclude from Theorem 4.1.1

Since (1) is independent of normalization we can have yp instead of Zp in (1).|

Corollary 1. (Kates) Let X: kX k have an orthogonally biinvariant

distribution then

(4)(4)

where Δ t = XAX*(1,..., ί) and A is symmetric.



80 More properties of zonal polynomials 4

Proof. We replace X by H1XH2 where Hi and H2 are independently uni-

formly distributed. The distribution of X is unchanged. Now taking expecta-

tion with respect to Hi (Theorem 1) and H2 (Theorem 3.2.1) successively we

obtain

(5)
t

Remark 1. As in Remark 3.2.5 X can be rectangular. If X is m X k,

then {]/p(/fc)}2 on the right hand side of (4) is replaced by yp{Ik) yp{Im)-

An easy modification of the above formulas produces another set of iden-

tities.

Theorem 2. Let U\,U2 be k X k matrices whose entries are independent

standard normal variables. Then for k X k A

(6) ibpZp(AA') = £UuU2{ Π [UιAU2(l,...,•)]*<"*« },

where \bp is given by (4.2.7).

Proof. Let the singular value decomposition of A be A=Γ\DΓ2 where

ΓΊ,Γ*2 a r e orthogonal, «D=diag(#i,... ,#j.) a n d ^p •••> ^ a re the character-

istic roots of AA*. Since the order of 6\, . . . , 6^ and the sign of each 6{ can

be arbitrary in the singular value decomposition we see that (6) is a homoge-

neous symmetric polynomial in j j , . . . , ί | . Denote the right hand side of (6)

by f{AAl). We use the converse part of Theorem 3.1.1. We want to show that

if W~ IV {Ihv) then

(7) £Wf(AA'W) = \l/pf(AA')

for all sufficiently large v. Now fix v and let A, U\, U2 be augmented to v X v

as in the proofs of Theorem 3.2.4 or Theorem 3.3.1. (Here we do not place ~
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for notationai simplicity.) Note that f(ΛΛf) does not change by this change of

dimensionality. Also in (7) W can be augmented to be v X v by considering

W as k X k upper left submatrix of a Wishart matrix ΊV(Iμ,ι/). Now let U$

(j/ X v) be distributed independently of U\ and E/2. Then

= foi ,U2,U& {

(8) ί = J
= iϋi ,U2,T,H{ Π [Tffl/lA172(1,

t = l

= \upf(AAr),

where T,H are as in Lemma 3.2.2. Therefore by Theorem 3.1.1 / = cZp for

some c. To obtain c we put A=Iμ. Then

cλ,P - εUιJUt {Π [ t f i W , . . )]2 ί"-2 p < + 1}

(9) - STJUΛ Π

Hence c = £(/{ΠLl ^ - -, 0 2 p ' " 2 p ' + 1 }• N o w consider (3.3.2) and (3.3.8).

Then we see that the coefficient of αξ1 •••α̂ * is given just by £t/{Πi β i ^U>

...,t) 2 ί > t '"" 2 ί > f*+ 1}. Therefore it is the leading coefficient of Zp and is equal to

lbp given in (4.2.7). I

Corollary 2.

(10) A
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Π

Proof. (10) and (11) can be proved successively as in the proof of Theorem

2. I

Corollary 3. Let X\,X2 be independent and have orthogonally biinvari-

ant distributions. Then

y t A A,λ ibp£Xl{Zp(XlX
f

l)}£x2{Zp(X2X'2)}

= *Xι A { Π 1*1^2(1, , •)]*'-*« }•

Proof. Replace X\ by H\X\Hz and X2 by H4X2H2. Then taking expec-

tation with respect to H\,H2, H$,H\ successively we obtain (12). |

Remark 2. Generalization to rectangular matrices is straightforward.




