
CHAPTER 2

Preliminaries on partitions

and homogeneous symmetric polynomials

In this chapter we establish appropriate notations for partitions and homo-

geneous symmetric polynomials and summarize basic facts about them. They

are needed for derivation of zonal polynomials in Chapter 3. It is important

to check the definitions and notational conventions given in this chapter since

various notational conventions on partitions and homogeneous symmetric poly-

nomials are found in the literature. A large part of the material in this chapter

is found in Macdonald (1979), Chapter 1.

§ 2.1 PARTITIONS

A set of positive integers p = (p\,... ,p(>) is called a partition of n if n=p\ +

* *# + Pi- To denote p uniquely we order the elements as p\ > p2 ^ ' " ^ P£

Plf jPt a r e called parts of p; I, p\, n are

ί = t{p) = length ofp — number of parts,

(1) pi = h{p) = height of p,

n = \p\ = weight of p.

respectively. The multiplicity m t of ί, (t = 1,2,...) in p is defined as

(2) m t = number of j such that pj = t.



Preliminaries

Using the m t 's p is often denoted as p = ( l m i 2 m 2 . . .). The set of all partitions

of n is denoted by Pn ( = { p : |p |=n }).

It is often convenient to look at p as having any number of additional zeros

p = (pi,... ,pι, 0,... ,0). In this case it is understood that pj. = 0 for k >

£(p). With this convention addition of two partitions is defined by (p + q){ =

Pi + Qi, t = l , 2 , . . . .

A nice way of visualizing partitions is to associate the following diagrams

to them. For p = (pi, ,Pi) we associate a diagram which has pf dots (or

squares) in i-th row. For example the diagram of (4,2,2,1) is given by

or

Figure 2.1.

We define the conjugate partition p1 of p by means of this diagram, namely

p9 is a partition whose diagram is the transpose of the diagram of p. From

Figure 2.1 we see (4,2,2,1/ = (4,3,1,1). Clearly p" = (p'/ = p. Furthermore

\P\ = \Pf\y ί(p) = = MP')> MP) = ^(PO More explicitly p9 is determined by

(3) m%ip) — Pi'

Therefore for example

(4)

= P! = Λ(p).

Let β > h(p), t > ί(p). We define

(5)

From Figure 2.2 we have (4,2,2,1)45 = (4,3,2,2,0). Note that

(6) \PΪ,t\ - «* - bl



§ 2.1 Partitions

x x

t x x

X X X

X X X X

Figure 2.2.

Now we introduce two orderings in Pn. The first one is called the lexico-

graphic ordering ( > ) . In this ordering p is said to be higher than q (p > q)

if

(7) pi = qlf... ,pk_x = qk-i,Pk > Qk for 8°™ k.

This is a total ordering. For example ?\ is ordered as (4)>(3,1)>(2,2)>

This ordering is preserved by addition.

Lemma 1. If pι > qι, p2 > q2 then pι + p2 > qι + q2 with equality iff

P1=11,P2 = <12.

Proof is easy and omitted.

Another ordering is the majorization ordering, p majorizeβ q (p >- q) if

and only if

(8) Pi > 91, P1+P2 > 91+92, ••• ,Pl +'•' +Pk > <ll +' ~ +9kf

Note that for k > max(t(p), t(q)) the equality holds because both sides are

equal to the weight n. Majorization is a partial ordering and it is stronger than

the lexicographic ordering:

Lemma 2. If p >- q then p > 9.

Proof. Suppose pi = 91,- , pk^ = 9ifc-i,PAr 7^ 9Jfc Then pi + + pk >

91 + + qjc implies pj. > 9̂ .. Hence p > 9. |
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Remark 1. The converse of Lemma 2 is false. For example (3,1,1,1) >

(2,2,2) but there is no majorization between these two.

Analogous to Lemma 1 we have

Lemma 3 If p1 >- qι, p2 >- q2, then p1 +p2 >- q1 + q2 with equality iff

Proof. For any k

with equality iff p\ + + p\ = q\ + + q\, % = 1,2. |

The last lemma in this section is the following:

Lemma 4. Let p,q £ Pn and let s,t be such that s > h(p), s > h{q), t >

%p),t > 4flf) Then p > q if and only if p*β t >- q*8t.

Proof. (8) holds if and only if p\— n > q\ — n, Pi+P2 — n > 9l + 92""w>

Noting that n = p\-\ +pt = q\ H +9t, these inequalities in the reversed

order imply p*et > q*t.

§ 2.2 HOMOGENEOUS SYMMETRIC POLYNOMIALS

Let f(x\,..., Xfc) be a polynomial in x\,..., xj.. / is homogeneous (of degree

n) if / has only n-th degree terms. / is symmetric if

(1) /(*1> .- . ,**) = f{xix, . . , X{k),

where ( ί j , . . . , i^) is any permutation of ( 1 , . . . , k). Let Vn denote the set of all

n-th degree homogeneous symmetric polynomials including the constant / = 0.

We look at Vn as a vector space where addition is the usual addition of polyno-

mials. Let / G Vn and suppose that / has a term αa^1 arjj* ( (pi , . . . ,p^) 6

Pn), then by symmetry it also has a term αa^1 x?1 where i\,..., ί̂  are dis-

tinct integers taken from ( 1 , . . . ,k). Counting all different terms we see that
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/ can be written as a linear combination of monomial symmetric functions

-Mp, p β Pn ,

(2) / = Σ apMp,
pEPn

where

(3) Hp(χι,...,χk)=

In (3) we count only distinguishable terms. For example

( 4) M(l,l) = Σ xixr
i

Sometimes it is more convenient to use augmented monomial symmetric func-

tion AMP for which the summation in (3) is over all permutations of ί different

integers from (1,. . . ,k). Therefore for example

(5) ^ ( M ) = Σ * . *y = 2 J Vi)

In general

(6) AMp = (J[ m t !)Mp.

where (p!,. . . ,p£) = ( l m i 2 m 2 . . . ) .

We note that in (2) the number of variables k does not play an explicit role.

Actually Mp can be defined for any number of variables by (3) and

Hence it suffices to consider Mp which is defined for sufficiently large number

of variables. Now suppose

(8)
pEP
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We look at terms of the form x\ι --x\l- Differentiating (8) p{ times with

respect to X{, ί = l , . . . ,1 we have (ΠPίOαp = 0 Hence ap = 0 for all p € Pn

and Mp,p € Λι are linearly independent in Vn. (Of course if k < £(p) then

Mp(xj t . . . , Xjt) = 0 which is linearly dependent in a trivial sense. But as above

we consider k to be sufficiently large. For more detail see Section 4.1.) From

(2) and (8) it follows that { Mp, p G Pn] forms a basis of Vn. This is a rather

obvious basis. We want to consider other bases. The following lemma is useful

for this purpose.

Lemma 1. // A is an upper triangular matrix with nonzero diagonal

elements, then A""1 has the same property. Furthermore if A has diagonal

elements 1 and integral offdiagonal elements, then A""1 has the same property.

Proof. The first statement is obvious. For the second statement note | A | = 1 .

Hence A"ι= (a13) = (Δyt) , where Δ y is a cofactor of A. But Δ y's are inte-

gers. I

Now we consider products of elementary symmetric functions. Let

(9) " r =
ti< <tV

be the r-th elementary symmetric function. For p E Pn w e define

(10) ^ p

The degree of Up is

(11) (pi -p2) + 2(p2 -

Hence Up 6 Vn. Up defined by (10) corresponds to Up/ in Macdonald's notation

(1979).

Lemma 2.

(12)
q<p
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where apq are integers.

Proof. Consider monomial terms of the form x\ιx^ z£*, q = (q\,...,

qk) € ?n Now

up = (Xί + γi-pHχiχ2 + r ~ p s -(*i *£ + fι

Hence the highest order term obtained by expanding Up is

which has coefficient 1. It is clear that other terms are lower in the lexicographic

ordering and have integral coefficients. |

Remark 1. For a stronger result see Lemma 4.1.1.

We order Mp,Up, p G Pn according to the lexicographic ordering and form

two vectors:

(13) Λl =

U
(ln)

Then Lemma 2 implies that

(14) U = AM, (apq),

where A is a matrix satisfying the condition of Lemma 1. Therefore considering

A " 1 = ( α ^ ) we obtain

(15)
q<p

where apq are integers. We see that {Up,p € Pn} forms another basis of Vn.

Product of U functions corresponds to the addition of partitions.
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Lemma 3.

(16) upuq = a p + g .

Proof is easy and omitted.

The third basis of Vn is given by product of power sums. Let

(17) ίr = £ * ΐ

For p 6 Pn we define

/1 o\ ηr *Pl -P2 fP2~PZ . . *Pt

7J> defined by (18) corresponds to 7J/ in Macdonald (1979) and in Saw (1977).

Here we prefer the above definition because of the simpler relation between Up

and Ύp.

Let

(19) U(s) = £[(1 + sxi) = 1 + tii* + u28
2 + .. .

be a generating function of u's. Then

(20) ^ _ ^ + r_ 1 ) Γ-if: 1

2 r

On the other hand

(21) log U(β) = («χβ + « 2 β 2 + •••)- o (" l β + ° 2 β 2 + * )2 + *

Comparing coeflBcients of βΓ in (20) and (21) we see

ί Γ - ( - l ) r - 1 r { o P + £ arqUq}

(22) Xi'UeP

( i r
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Actually

Tq 91 Vίl "92,92-93,- ~ ,<lt(q)J

(91 ~ 92)'

This follows from the fact that Uq being a product of q\ elementary symmetric

functions comes only from the q\-th power term in the expansion of log in (21).

Now

tip)

Π P

( 2 4 > * )- π
1

]Pr-pr+l

(-ir1r{a(r)+

By Lemma 2.1.1 and Lemma 3 the lowest order term in (24) is given by

Π [(- i r ' ^nf ~Pr+1

r = l

(25) = Π [(-l)r-M^

Hence

Lemma 4.

(26) Tp =

where

tip)
(27) app = (-

r = l
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Let

r=

r τ w Ϊ

Then Lemma 4 shows that

T ( 1 Λ )

(28)

where F is lower triangular with nonzero diagonal elements. Hence { Tp,p G

^ n } forms a basis of Vn.

Remark 2. To show that { 7j>,p G Ai } is a basis it is much easier to note

Tpt = AMp + Σ apqAMqy

q>p

where apq are integers. But we will use Lemma 4 in Section 4.6.

We study symmetric functions further in Section 4.1 and Section 5.3. How-

ever the material covered so far suffices to derive zonal polynomials which form

another basis of Vn.

Remark 3. For the coefficients of basis functions we generally use ap, bpj

'" 9apq>bpqy e ^ c Since there are many instances of this, it is impossible to use

different symbols for each case. For example apq in Lemma 2 and in Lemma 4

are different.




