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1. Introduction

Prospective studies, such as those carried out in many cancer centers

throughout the world, need to be carefully monitored and subjected to interim

analyses to satisfy important ethical considerations. Typically, the thera-

peutic efficacy and resulting survival distribution for an experimental treat-

ment regimen are compared to the efficacy and survival obtained from a currently

accepted standard regimen. These studies often give rise to the dual need to

terminate as soon as possible any trial in which it is sufficiently clear either

that (1) the experimental treatment yields better results than the standard

treatment or (2) the data strongly contradict the hypothesis of some minimally

acceptable treatment difference. In this paper, we examine the problem of con-

structing closed sequential experimental designs allowing for hypothesis tests

at multiple points in time when the data gathered are censored failure time

data. The tests we study are useful for examining various forms of dependence

of an underlying survival function S(x) on a random scalar covariate Z.
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2. Model and Notation

In this manuscript we will adopt the excellent notation proposed by

Tsiatis (this volume) for this problem. In particular, suppose that in a pro-

spective study the following variables are associated with the i
t h
 study sub-

ject in a sample of n such independent and identically distributed subjects:

Y.: the entry time (measured from the beginning of the study)

X.: the time from study entry to a specified endpoint

W.: the time from study entry until that subject is lost to

follow-up

Z.: random scalar valued covariate.

Since X,Y and W generally are stochastically dependent on Z (which may, for

instance, denote sample membership in a two sample comparative study), the

following notation will be used to denote the conditional distributions:

H(x|z) = P(Y<_x|z = z ) ,

S(x | z ) = P ( X > x | z = z ) ,

( ϊ(x |z) = P(W>x|z = z) .

We shall assume throughout that P(Y£y, X > x , W > w| Z = z) = H(y | z) S(x|z) G(w|z)

for all (y,x,w). Assume S(x|z) is continuous. Let λ(x|z) Ξ — in S(x|z).

If data of this sort are analyzed at calendar time t, that is, t units of

time after the beginning of the study, the available data for subject i would

include {X
±
(t), Δ

±
(t), Z ^ ί Y ^ t } } where

X
±
(t) Πmax{min(X., t-Y., W.), 0}

and

Δ
±
(t) Ξ l{X

i
£min(t-Y

i
, W,.)} .

Here I{E} is the indicator random variable for the event E. In many cases,

these data are used to test hypotheses about the dependence of S(x|z) on the
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covariate values z. In the next section we will review some hypotheses of

interest and appropriate test statistics when one is conducting only a single

test.

3. A Class of Single Stage Rank Statistics

3.1 Tests of H
Q
: S(x|z) = S(x). The G

P
 Family

The operating characteristics of nonparametric procedures used in sur-

vival theory are most clearly understood when hypotheses are tested only once.

Thus, in this section, we will temporarily assume that the data will be analy-

zed only at calendar time t. Without loss of generality then, we can assume in

Section 3 that H(t|z) Ξ 1.

The most common hypothesis in this situation is H~:S(x|z) = S(x), 0<^x<^t,

where S(x) is unspecified. The form of the statistic used here of course de-

pends on the way in which possible covariate dependence is modeled in the sur-

vivor function. If for the scalar covariate Z one assumes S(x|z) =

{S
π
(x)} , then the partial likelihood score statistic for testing the

equivalent hypothesis H :β = 0 yields the logrank test (Mantel 1966, Cox 1972,

Peto and Peto 1972). In our current notation, this statistic is

n

n
I τ

%
 i{x

£
(t)_> x.(t)}

I
 Δ
i

( t )
i n

y i{χ
o
(t)>

A number of authors (Tarone and Ware, 1977; Prentice and Marek, 1979; and

Harrington and Fleming, 1981) have proposed generalizing the above test of H
π

by incorporating weights into the terms in the above sum, yielding statistics

of the form

(1) S (t) = I Q{t, X,(t)} LΛt)S z. -
£=1

n
I l{X

p
(t)

£=1 ^
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The changes induced on the operating characteristics of the logrank test are

clearly understood when Q(t,x) ={S(t,x)} , p>_0, where S(t,x) is the value at

survival time x < t of the left continuous version of the Kaplan-Meier product

limit estimator computed from the pooled sample at calendar time t. This family

of tests has been called the G family, and was proposed and studied for the

k-sample problem in Harrington and Fleming (1981). Of course, when p = 0 the

test is the logrank, and when p=l, the test is essentially equivalent to the

generalized Wilcoxon statistic proposed by Peto and Peto (1972) and by Prentice

(1978).

For the two sample problem, where Z is 0 or 1, the following theorem in-

dicates the types of departures against which each G test procedure is fully

efficient. The proof relies on Corollary 5.3.1 in Gill (1980) and is given in

detail in Harrington and Fleming (1981).

THEOREM 1:

L e t S . ( x ) Ξ S ( x | z = j ) and λ . ( x ) Ξ - γ~ £n S. (x) f o r j = 0 , l . F i x p : > 0 .

The t e s t b a s e d on t h e s t a t i s t i c G P i s f u l l y e f f i c i e n t f o r t e s t i n g H : β = 0

a g a i n s t H A : 3 / 0 f o r t h e Lehmann (1953) f a m i l y of a l t e r n a t i v e s

(2) S χ ( x ) = S π ( x ) [ { S π ( x ) } p + [ l - { S π ( x ) } P ] e 3 ] ~ 1 / p , 0 < x < t

o r , e q u i v a l e n t l y ,

( 3 ) λ 1 ( x ) = λ o ( x ) e β [ { S o ( x ) } p + [ l - { S 0 ( x ) } P ] e β ] \ 0 < x < t

if and only if

H(t-x|z=l) G"(x|z=l) = H(t-x|z=0) G(x|z=0), x £ t
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Interestingly, for p =0 (resp. p =1 ) we simply recover the result that the

logrank test (resp. Peto and Peto - Wilcoxon test) is fully efficient for time

transformed location alternatives for the extreme value (resp. logistic) distri-

bution.

If Z is an arbitrary scalar covariate, the relationships (2) and (3) can

be recast, for p > 0, as

(4) S(x|z) = S0(x) [{SQ(x)}P + [ l-{S 0 (x)} P ]e β z Γ 1 / p ,

(5) λ(x|z) = λQ(x) e β z [{So(x)}p + [ l-{S 0 (x)} P ]e 6 z Γ 1 .

The G tests discussed above are applicable to testing H
n
:(3 = 0 in this setting

as well.

One may often be interested in testing H
Q
:|3=3 , 3

Q
 not necessarily zero.

This situation may arise, for instance, in cancer clinical trials when a more

toxic experimental treatment is being tested against a standard treatment, and

one wishes to assess whether data gathered contain significant evidence against

a minimally acceptable treatment difference, say a 25% decrease in the under-

lying hazard. In the next two sub-sections, we will examine statistics S (t)

appropriate for testing the more general hypothesis H^rβ-β-, at calendar time

t. We will begin by considering the specific case of testing H : 3 = (3 under

the proportional hazards model, which warrants special consideration due to its

wide applicability. This model, of course, is given in (5) when p = 0.

3.2 Tests of H
π
: 3 = $

n
 under Proportional Hazards

I 3z

The proper form for S (t) under the model λ(x|z) = λ (x) e can be

seen from both a heuristic and a formal point of view. Tsiatis (1981 and this

volume) has pointed out that expression (1) for S (t), useful in testing
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H
0
:λ(x|z) =λ (x), is equal to

(6)

n rt
Q(t,x)

I Z
p
l{X

p
(t) ̂

£=1

n

I l{X(t)>x}
£=1

 l
 ~

[dN
±
(t,x) >χ} λ

Q
(x)dx],

where N. (t,x) = l{X. (t) £ x , Δ.(t)=l}. For testing the general hypothesis

H :$=β under the model λ(x|z) = e λ (x) , one might set Q(t,x) = 1 and then

z R
replace λ (x) in (6) with e

 x
 λ (x) , where, in turn, λ (x) must be estimated

from the data. Under H : 3 = 3
n
, and at calendar time t, a natural estimator for

f
x

Λ (x) Ξ λ (u)du is
u j

0
 υ

I
3=1

-1

dN
i
(t,u)

The following lemma, which has a simple algebraic proof, demonstrates that this

heuristic approach yields a statistic which is easy to calculate.

LEMMA 1 :

n rt

V t ) Ξ z -
1

-

n

£=1

ζ £ ^

T-ΓΛ

• X £

T f

( t )

t ; ^

>

* >

[ R 7 *i

d N ^ x ) -l{Xi(t)>x}e ° i dΛQ(t,x)

(7)
n Γn Γt

0

l { X 0 ( t ) > x }
£=1

Z i n β Z
I e ° Z l{XΛt)>x}

£=1 l
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Although the above approach is only intuitively reasonable, the following

he

3z

lemma indicates that the statistic just derived to test H
π
:3~3

n
> under the

model λ(x|z) = λ (x) e , has a more formal justification.

LEMMA 2:

Let L(3,t) be the Cox (1975) partial likelihood constructed at calendar

time t from the proportional hazards model λ(x|z) = λ (x) e . That is,

L(β,t) = Π

Z
i

3

n Z

I e *

Then S (t) in expression (7) is simply the score test statistic

L(3,t)

In this sub-section, we have discussed testing the hypothesis that

(8) H
Q
: λ(x|z) = λ

Q
(x) e

It should be observed that the alternative of interest to H may not always

satisfy the proportional hazards assumption, i.e., may not be specified by (8)

with 3
Π
 replaced by 3. More generally, if data analysis occurs at calendar

time t, one may wish to test H :α = 0 vs H :α^0 where

U A

(9) λ(x|z) = λ
Q
(x) + otQ(t,x))}

for some function Q(t,x) continuous in x. We assume that Q(t,x) is independent

of α but may be a function of λ (x) . Clearly (9) reduces to (8) when α = 0.
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With analysis occurring at calendar time t, let Q(t,x) be a consistent

estimator of Q(t,x) under H
Q
. Forming Cox's partial likelihood L($

0
>α,t) based

upon the relationship (9), the resulting expression can be used to formulate a

score-type test statistic - — in L(3
n
,α,t)

σθί 0

yields

α=0
Replacing Q(t,x) by Q(t,x)

n rt
(10) Q(t,x) Z

i

ZQ e U * iίX.ίO^x}

i n 30Z^

£=1
l{Xλ(t)>_x} .

dN
i
(t,x) .

We propose S (t) as defined in (10) be employed to test H :α = 0 vs H :α^0 for

n u A

the hazard relationship specified by (9). Its distribution under H
β
 will be

derived in §4. Observe that expression (10) reduces to (7) when Q(t,x) Ξ 1 Ξ

Q(t,x) and it reduces to (1) when 3
Q
 = 0.

Setting Q(t,x) = {S(t,x)}
P
 in expression (10) would yield a generalized G

P

statistic for testing H :α = 0 in relationship (9) with

(11) Q(t,x) -p

fXfE{e ° G ( u | z ) H(t-u|z) {S n (u)} e x p ( Z β O } } l
2 λQ(u)du

° L E { G ( U | Z ) H(t-u|Z) { S n ( u ) } e X p ( Z V } J

When H(u|z) = H(u) and G(u|z) = G(u), equation (11) reduces to Q(t,x) =

[E{(S
0
(x))

e x p ( Z
^0

)
}]

P
. If instead one assumes 3

Q
= 0 , then (11) reduces to

Q(t,x) = {S (x)}
P
. It follows that the G

P
 test procedure, specified by (10)

when Q(t,x) = {S(t,x)} and 3 = 0 , has been derived as being appropriate for

testing H
Q
:α = 0 in hazard relationship (9) with 3

Q
 = 0 and Q(t,x) = {S (x) }

P
 or,

as noted earlier, for testing H :3=0 in hazard relationship (5). As would be

expected, these two hazard relationships are very similar.
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3.3 Tests Under More General Models

We observed in the previous sub-section that the statistic in (10)

arises as a score-type test statistic appropriate for testing H
n
:α=0 under the

model λ(x|z) = λ
Q
(x) exp{z(3

Q
+αQ(t,x))}.

More generally, one could be interested in a test of the hypothesis H_:α=0

vs H.:αφ 0 where
A

(12) λ(x|z) = λ
Q
(x) exp{z(Q

2
(t,x)

for continuous functions Q.(t,x) which are independent of α but may be functions

of λ
Q
(x).

For i = l,2, let Q.(t,x) be a consistent estimator under H of Q.(t,x),

where t continues to represent the calendar time of analysis. Forming Cox
τ
s

partial likelihood based upon the relationship (12), one can again obtain a

score-type statistic to test H
Q
:α=0. Replacing Q.(t,x) by Q.(t,x) yields

n rt

(13) i (t)= I QΛt,x)

n Z Q (t,x)
I Z

o
l{X

o
(t) >x} e

 A Z

£=1 * * ~

l{X
0
(t) > x} e

dN
i
(t,x) .

Motivated by the frequent need, described in the Introduction, to perform

interim analyses of the data, we will examine in the next section the distri-

butions of the statistics which we have just discussed and how they can be

employed when performing repeated significance testing in censored survival

data. Unfortunately, it appears that the techniques to be used are only appli-

cable when Q^(t,x) in (13) is non-random. As a result, we will restrict our

attention hereafter to statistics of the form appearing in expression (10).
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4. Repeated Significance Testing in Censored Survival Data

4.1 Critical Regions for Repeated Tests

The structure of our repeated testing critical regions will be essen-

tially that proposed by Slud and Wei (1982).

1. We will assume one will perform up to K tests based on up to n

individuals. The j ^ test will be performed at time t. using

S (t.) as defined in (10). S (t.) is a mean zero statistic under
n J n j

H
Q
 specified by (8).

2. For a fixed overall significance level α, we will choose

K

π
Ί
 , π ,..., π such that 0 < π. and V π. = α.
1 z

 *• J j=l J

3. Critical values {a ,...,a } will be recursively determined, i.e.,
JL is.

having chosen a_,...,a. , we will choose a. so that

P{S~
n
(t

1
)<a

1 )
...,i

n
(t._

1
)<a._

1 )
 S~

n
(t.)>a.|H

0
} = π. .

4. We will reject H if and only if one observes the event

which is the nuion of K mutually exclusive components.

Thus P ( R | H
Q
) =α.

To carry out this approach one needs to determine the joint distribution of

— 1 / 9 ~ ~

n ' {^(t^, S
n
(t

2
),...,S

n
(t.)} for any t

1
£ t

2
£ £ t . , j =1,...,K. We will

indicate how the asymptotic joint distribution is obtained in the special case

when Z. assumes finitely many levels. Specifically, we will assume P(Z.= c.) =

p, for k = 1, . . . ,m, where m is finite and p + p + +ρ = 1.
K. 1. Δ Til

The following, which is an alternative form for S (t) defined in (10) and

which is the direct analogue of (6) for 3
π
^ 0 , is easy to establish and will be

useful in what follows.
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n
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n ft
I Q(t,χ)

L-l Ό

7 _

i
n $nZcv 0 >Ί{x£(t)>x} _

Γ fx ¥ i 1
l N . ( t , x ) - e l {X.(t)>u} λ_(u)du
I 1 iθ i - 0 J

We note that S (t) is of the form h.(t,x) dM.(t,x). For fixed t,

M.(t,x) is a square integrable martingale with respect to the basis F =

{F ;0<x<t}, where F is the sigma sub-field generated by the random
t j x t jX

variables { i ί Y ^ t } , Z ^ ί Y ^ t } , Y
i
l{Y

±
£t}, iίX^^fminCu, t - Y

±
, W

1
>},

l{W. <min(u,t-Y., X.)}: 0 < u < x } . The martingale structure will be important

in the following two lemmas.

LEMMA 4:

n

For each n and each t, let M, (t,x) Ξ £ M. (t,x) l{Z. = c }; k = 1,...,m;

κ,π , - i iκ

and l e t B be a b a s i s c o n t a i n i n g { F 1 : ! = 1 , . . . , n } . L e t π ( t , x | z ) = H ( t - x | z )
n) t t

S ( x | z ) G ( x | z ) , where we assume π ( t , x | z ) > 0 f o r 0 < x < t . D e f i n e

y(t,x)

n β Z.
I e °

 X

and

μ ( t , x ) = E e Z 7Γ (t,x|z)

/•
B
Λ
Z

e U π(t,x|z)

where y(t,x) =0 if I l{X. (t) ̂>x} =0, and μ(t,t) = 0 if π(t,t|z) =0. Define

n
 Γ

1
- f ^ n

Z f

S (t) = J Q(t,x) {Z.-y(t,x)} d{N.(t,x)- e λ (u) l{X. (t)^u}du}
n
 i=l J

 X X J
0
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Assume that

p P

1) sup |Q(t,x) -Q(t,x)| ->• 0 for all τ<t, where -> means convergence

°l
x
l

τ

in probability,

2) Q is bounded over [0,t], left continuous with right hand limits, and

adapted to B

n,t

Then, under H~,

n
 i / Z

 {S (t) - S (t)} -> 0 .
n n
() (

n n

PROOF:

-1/2 r~
n {S (t) - S (t)}

n n

m

I n
 1 / Z

 {Q(t,x) - Q(t,x)} {c -μ(t,x)} dR (t,x)d
k=l

 J
0
 k k

'

I n Q(t,x) {μ(t,x) -μ(t,x)} dM^ (t,x)

k=l h
 k

'
n

r -1/2 _1 , , ,
 m
 -1/2 _2

/ n Ei \t) i / n ji

k=l '
n
 k=l

We will establish that the above expression converges to zero in pro-

bability under H by appealing to the central limit theorem (Gill 1980, §2.4)

for stochastic integrals with respect to counting process martingales.

Fix ε and t. Since M_ is a square integrable martingale with respect
K. , n

/\
to 8 (Fleming and Harrington, 1981) and (Q - Q) is bounded and predictable,

-1/2 1
n E

7
 is a square integrable martingale with zero expectation and pre-
K., n
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dictable covariation process

|{Q(t,x) -0(
t
,χ)}

2
 {c

k
-μ(t,x)}

2
 d < M

k n
(t,x), > =

Γ ? Λ ? Γ
x
 ^π

c
v -i

KQ(t,x) -Q(t,x)Γ {c -μ(t,x)}
Z
 d e

υ k
λ ( u ) n

I
 £ l{X.(t)>u}du

j k j
O
 U

 i:Z = r
 X

Since sup |Q-Q| is bounded, τ can be chosen such that

( e °
 k
 λ (u)du sup [{Q(t,x) - Q(t,x)}

2
 {c, - μ(t,x)}

2
] < ε/2

'τ
 U

 0<x<t
 k

Λ
 P

Further, since sup |Q(t,x) - Q(t,x)| •> 0, n.. can be chosen such that for

°<x£
τ

ε

P(e °
 k
 Λ (t) sup [{Q(t,x) - Q(t,x)}

2
 {c ~ί(t,x)}

2
] < ε/2) > l-ε .

0<x£τ
ε

 k

—1 /2 1 —1/? 1
Then P(< n E^ (t) , n ' E (t) >< ε) > l-ε for n > n . The martingale

central limit theorem (Gill, Theorem 2.4.1) then implies that

-1/2 1 P -1/2 2
 p

n E, (t) -> 0. We can show in a similar fashion that n E, (t) -> 0,
k,n k,n

-1 /? ~ ~ P
and thus n ' {S (t) - S (t)} •> 0.

n n

By Lemma 4 and an application of the Cramer-Wold device it is now sufficient

-1/2 ~ ~ ~
to find the asymptotic joint distribtuion of n {S (t ) , S (O,...,S (t.)}.

If we first define the stochastic processes M.(x), i=l,2,...,n

f
M.(x) = Δ.(x) - I{Y. < u < Y . +min(X.,W.)} λ(u-Y.|Z.)du ,
i l J-. i — — l l i i i

it then follows by a simple time transformation that

Λ
 n rt n

S (t) = I Q(t,x-Y.) {Z. -μ(t,x-Y )} dM (x) Ξ J A (t)
n
 i=l

 J
0
 X

 i=l
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a sum of independent and identically distributed random variables. That

-1/2 ~ ~ ~
n {S (t-), S (O.....S (t.)} converges to a multivariate normal distri-

n 1 n I n j

bution follows from the central limit theorem. As with M.(t,x), M.(x) is a

square integrable martingale, but with respect to the basis {F 0<^x<^°°}

where F is the sigma sub-field generated by the random variables {l{Y. <_u},
x x

Z.l{Y.<u}, l{X. <min(u -Y.,W.)}, l{W. < min(u - Y. ,X. ) } 0 < u < x } . Asymptotic

1 1— 1— 1 1 1— 1 1 — —

moments given in the lemma below follow from results of Meyer (1976) for sto-

chastic integrals with respect to martingales.

LEMMA 5:

Assume conditions given in Lemma 4 and let 0 < t < t
1
 < t.. Then

E S (t) = E A.(t) = 0, and cov{n~
1 / 2
 S (t), τΓ

1/2
 S (t

1
)} =

n l n n

it 3 Z

Q(t,x) Q(t
!
,x)E[{Z-μ(t,x)} e ° λ

Q
(x) π(t,x| Z)] dx

When (3=0, one obtains results presented by Tsiatis (this volume). However,

application of martingale stochastic integral results simplifies the covariance

calculation he made for this special case.

Since cov{A.(t),A.(t
f
)} depends upon t

f
 only through Q(t

f
,x), it follows

—1/2 ~
that {n S (t):t>0} converges to a limit process having independent incre-

n —

ments whenever Q(t,x) is independent of t. Such is the case for the generalized

G
P
 family when either S(x|z) or H(x|z) is independent of Z. This can be seen

by observing Q(t,x) = {S (t,x)}
P
 when Q(t,x) = {S(t,x)}

P
, where

S (t,x) Ξ exp[-
x

0

iii / m

I p π(t,u|z=c )λ(u|z=c ) / I p π(t,u|z=c )
<=1

 κ κ
 / k=l

du] .

-1/2 ~
Although the derivation of the asymptotic distribution of n {S (t ) , . . . ,

S (t,)} assumes independent, identically distributed covariates Z., it can be

extended to studies in which the covariate values are balanced through forced
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randomization. In particular, assume that in a study of n subjects, n, of

those will have covariate value c
7
 , k = l,...,m and that n. Ξ np . The term

n
 k

 k k

£ A.(t) may then be viewed as a sum of independent, but non-identically dis-

i = 1
 * -1/2 -

tributed terms. One may still show that n {S (t ),...,S (t )} is asymptoti-
n J- n K.

cally multivariate normal, with zero mean and with

lim Covίn
 1 / 2

 S(t), n
 1 / 2

 S (t
1
)}

m rt

1 p
k
 Q(t,

=̂i
 k
 h

2
 3

0°k
x) Q(t\x) ίc

k
-y(t,x)} e λ

Q
(x) π(t,x|c

k
)dx ,

where t < t
f
. Note that this expression agrees with the covariance formula in

Lemma 5.

Recall, by Lemma 5, that cov{n S (t), n S (t
f
)} converges to

ft 2 3
Ω
Z

σ(t,t
?
) Ξ J Q(t,x) Q(t\x) E[{Z-μ(t,x)} e

 u
 π(t,x|z) ]dΛ

Q
(x) .

If σ(t,t
f
) denotes a consistent estimator of σ(t,t

!
), then the actual test

statistics employed at t and t
f
 are n {σ(t,t)} S (t) and

n {σ(t
f
,t

f
)} S (t

1
), which are positively correlated. One consistent

n

estimator is given by σ(t,t
!
) =

Q(t,x) Q(t
f
,x) I

3
{Z

j
-y(t,x)}

Z
 e dΛ

Q
(t,x)

iεR(t)

Δ
±
(t) Q(t,X

i
(t)) Q(t',X

i
(t))

jεR(t,X
j
.(t))
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i?,εR(t,X
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(t))
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(t))
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where R(t) denotes the set of indices {j=l,...,n} such that Y.£t, and R(t,x)

denotes the set such that {X.(t)_>x}. That n~ {σ(t,t)}~ ^(t)
 d o e s n o t

require knowledge of n is important for applications.

4.2 Selection of π., i = l,...,K.

Several different approaches exist for choosing π.; i=l,...,K. One

approach of particular interest would be to select π , π , ...,τr small, with

1 Z K—1

TΓ ~ α, where α is the size of the procedure. Procedures discussed by HaybittLe
K.

(1971) and O'Brien and Fleming (1979) are conceptually related to this. The

resulting serial testing procedure would then allow early testing to detect

substantial departures from H , satisfying ethical considerations. In addition,

the critical value for the statistic employed at the K
t Ω
 and final stage of the

procedure would be nearly identical to the critical value which is appropriate

when a single procedure is based upon that statistic. Such a sequential pro-

cedure would have power nearly identical to that of the corresponding single

stage procedure. On the other hand, the serial testing procedure resulting

from repeated use of a statistic will have operating characteristics consider-

ably different from those of the corresponding single stage procedure if one

chooses π., i = l,...,K, such that π « α . In heavily censored data, the
i K

sequential procedure will give much ligher weight to "later" occurring depart-

ures from H~ than the corresponding single stage procedure. A careful theor-

etical consideration of the power and efficiencies of these types of serial

testing procedures seems to be difficult.
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