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1. Introduction

There have been only a few parametric models extensively examined for

application to reliability; these include the exponential distribution of

Epstein-Sobel (1953) and the Weibull distribution (1961). The one most widely

utilized for electronic components has been the exponential model, not only

because of its simple and intuitive properties but also because of the extent

of the estimation and sampling procedures which have been developed from the

theory. However, neither of these models is applicable to the study of screen

testing.

One of the early discoveries was that mixtures of exponentially distributed

random variables have a decreasing failure rate (Proschan, 1963). Thus any two

groups of components with constant, but different, failure rates would, if mixed

and sampled at random, exhibit a decreasing failure rate. As a consequence, the

family of life lengths with decreasing failure rate certainly arises in practice

and particular subsets of this family could be of great utility for specific

applications, see, e.g., Cozzolino (1968). We examine one such model with shape

and scale parameters α and (S, respectively, which is based upon a gamma mixture
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of exponential distributions. This family was introduced by Afanas'ev (1940)

and later by Lomax (1954) as a generalization of a Pareto distribution.

A very important property of this gamma-mixed exponential distribution is

that the conditional life remaining after a time τ is again distributed as a

gamma-mixed exponential. This is shown in Section 3 and its application to

screen testing is discussed.

Kulldorff and Vannman (1973) and VMnnman (1976) have studied a variant of

the gamma-mixed exponential model containing a location parameter. They ob-

tained a best linear unbiased estimate of the scale parameter assuming that the

shape parameter α was known and in a region restricted so that both the mean

and the variance exist, namely α > 2 . When this restriction of α >2 cannot be

met, an estimate based on a few order statistics, which are optimally spaced, is

given, and tables of the weights as functions of the number of spacings are pro-

vided. The estimate based on these order statistics for the α > 2 case is claim-

ed to be an asymptotically best linear unbiased estimate. In all cases, the

shape parameter was assumed known and the sample was either complete or Type II

censored. It is contended that BLUE estimates of the shape parameter are not

attainable.

Harris and Singpurwalla (1968) examined the method of moments as an estima-

tion procedure for this same model but again with the shape parameter restricted

to α > 2 and with a complete sample.

Harris and Singpurwalla (1969) also exhibited the maximum likelihood equa-

tions but only for complete samples and without resolving the question of exist-

ence of solutions. In Kulldorff and Vannman (1973) there is a brief biblio-

graphy of results on parametric estimation for this distribution under various

assumptions.

As a consequence of the widespread adoption of integrated circuitry, life

testing in electronic manufacturing virtually always provides incomplete samples.

This is because of censored tests, the expense and the paucity of failures owing

to the high reliability of integrated circuit devices. Such service life data

cannot be adequately treated by any of the presently known statistical tech-
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niques without employing Bayesian arguments, with their utilization of subjective

information. This would indicate the need for an objective estimation procedure

making use of the only type of data available and without the potential for bias

inherent in Bayesian priors.

In this paper the maximum likelihood estimates are obtained for both the

shape and scale parameters of the gamma-mixed exponential (Lomax distribution),

and sufficient conditions are given for their existence. These estimates are

derived for censored data and d ^OKtioKi for complete samples, even with a

paucity of failure observations.

The existence conditions obtained here for the maximum likelihood estimates

apply even to the case where the variance and possibly the mean do not exist:

0 < α ^ 2 . Moreover, the estimates of the shape parameter α which have been ob-

tained from actual data indicate that this region 0 < α ^ 2 is important because

all the estimates obtained of α have been less than unity.

2. The Model

We postulate that the underlying process which determines the length of

life of a component under consideration is the following: The quality of con-

struction determines a level of resistance to stress which the component csn tol-

erate. The service environment provides shocks of varying magnitude to the com-

ponent, and failure takes place when, for the first time, the stress from an

environmentally induced shock exceeds the strength of the component.

If the time between shocks of any magnitude is exponentially distributed

with a mean depending upon that magnitude, then the life length of each compon-

ent will be exponentially distributed with a failure rate which is determined by

the quality of assembly. It follows that each component has a constant failure

rate but that the variability in manufacture and inspection techniques forces

some components to be extremely good while a few others are bad and most are in-

between.

Let X, be the life length of a component in such a service environment, with

a constant failure rate λ which is unknown. The variability of manufacture
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determines various percentages of the λ-values and this variability can be des-

cribed by some distribution, say G.

Let T be the life length of one of the components which is selected at ran-

dom from the population of manufactured components. We denote the reliability

of this component by R and we have

R(t) = P[T> t] for t > 0 .

Let Λ be the random variable which has distribution G. We can write

r°° -λt

(1) R(t) = E P[X
Λ
 > t|Λ = λ] = e dG(λ) .

Λ J
o

Because of having a form which can fit a wide variety of practical situations

when both scale and shape parameters are disposable, it is assumed that G is a

gamma distribution, i.e., for some α > 0 , 3>0,

λ
α-l -λ/β

g(λ) = — for λ>0 .
Γ(α)3

α

That this assumption is robust, even when mixing as few as five equally weighted

λ
τ
s, has been shown by Sunjata (1974) in an unpublished thesis. It follows from

equation (1) that the reliability function is

(2) R(t) - - i —

(l + t3)

The failure rate, hazard rate, can be shown to be

(3) q(t) =

which is a decreasing function of t > 0 .

Maximum likelihood estimates for a , 3 and hence R(t) and q(t) are given in

Section 4.
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3 Residual Life Property of the Model

An important property of this model is that residual life on a component

is distributed as a gamma-mixed exponential. Thus a "burn-in" test of a com-

ponent will yield a residual life which is also in the same family. This prop-

erty also holds for mixed exponential distributions where the mixing distri-

bution is other than gamma.

The residual life T, of a component is defined to be the life remaining

after time h, given that the component is alive at time h. It can be shown

that: A burn-in for h units of time on a component with initial life determined

by a gamma-mixed exponential distribution with parameters α and $ will yield a

residual life T, and will be distributed as a gamma-mixed exponential with para-

n

meters α and 3,
 =

 Ί
 ,

 n
\ .

n 1 + ph

It follows that this life length model is "used better than new" or "new

worse than used" in the sense that T, is stochastically larger than T for all

h >0.

An important consequence of this property is that one can calculate the

value of the increased reliability attained by burn-in procedures as compared

with the cost of conducting them. It has long been the practice to burn-in

electronic components based on intuitive ideas of "infant mortality" in order

to provide reasonable assurance of having detected all defectively assembled

units. This model, whenever it is applicable, makes possible an economic

analysis. A variation of this result has been discussed by Bhaltacharya (1963).

Consider the following data from a screen test of flight control electronic

packages:

Failure times: 1, 8, 10

Alive times: 59, 72, 76, 113, 117, 124, 145, 149,

153, 182, 320 .

Each package has recorded, in minutes, either a failure time or an alive time.

An alive time is the time the test was terminated with the package still func-

tioning. In this example the reason for the censoring was that the test equip-

ment was needed elsewhere, that funds for' testing were depleted, etc. We define
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this censoring to be ϊuXYidom, that is, when a package is operating the time of

censoring depends on some censoring distribution which is independent of the

failure distribution. Type I censoring at a preassigned time is a special case

of random censoring. Random censoring differs, however, from Type II censoring,

where censor occurs at some preassigned number of failures. For this example

the censoring is random in that time on test equals minimum {failure time, ran-

dom censor time}.

The example data do not exhibit a constant failure rate. Even if we assume

a fourth failure rate at 59 minutes and Type II censoring at the fourth failure,

we reject the hypothesis of a constant or increasing failure rate in favor of a

decreasing failure rate (using F-criteria suggested by Gnedenko, et al. (1969)).

If we assume that the data are from a gamma-mixed exponential, we find (using

equations in Section 4) that α = 0.0453 and 3 = 1.03.

The question is: how long should packages of this type be subjected to a

screen test? Let 3-, denote the estimated scale parameter after a burn-in for

h units of time. For this package 96 hours of burn-in time has been used.

Figure 1 shows 3, as a function of h, with 3 as above. If it could be assumed

that burn-in tests were equivalent to actual use tests, then one could estimate

reliability at time t as a function of burn-in time h. For example

R(t) Ί
-α

0.000

0.200

0.000**00

100.
iββ.

280.
280.

JL

0.000Ct00

FIGURE 1. Graph of $, as a function of burn-in time h

in minutes.
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Figure 2 shows the change in estimated reliability at 20 minutes as a function

of burn-in time h, in minutes, for a and β as above.

0.O50

0.060

0.000 L. .< L »--J •_—.L~ι I ..
50.0 160. 280. 350.

0.000E*00 100. 200.

FIGURE 2. Graph of estimated burn-in reliability at

20 minutes as a function of previous burn-

in time h in minutes.

Since burn-in reliability is usually proportional to in-use reliability, one

must question accepted burn-in times of 96 hours for equipment which exhibit

burn-in data of the type given in the example.

4. Estimation of Parameters Using Incomplete Samples

When components having a decreasing failure rate are tested, the samples

are virtually always incomplete in the sense that testing is stopped before all

components have failed. A datum on a component that "failure has not yet

occurred after a specified life" is called an alive ti-me. Samples containing

such observations are censored. In our experience with electronic components,

Type I and Type II censoring occur less frequently than random censoring. How-

ever, until recently Type I and Type II censoring were the cases addressed in

the literature. The results which follow apply to Type I, Type II, or random

censoring, as defined above. Complete samples are a special case.

It is assumed in this section that we are given a sample J: = (t ,...,t ,...,

t ), where t , ...,t are ordered observations of times of failures while

t
k+l'*

#
*'

t a r e o r c
*

e r e
d observed alive times where censoring is one of the types
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described above. It is assumed that k>_l.

Some results will now be given on maximum likelihood estimation of the un-

known shape and scale parameters for the gamma-mixed exponential in the case of

censored samples.

Remark 1; When the scale parameter 3 is known, there exists a m.l.e. of α

given by

k

α =

n
V £n(l + 3t.)
1

This result is not new. If 3 is known then the values y. =£n(l+3t.) are

observations from an exponential distribution with unknown failure rate α.

THEOREM 2: For given α,t_ there exist a unique m.l.e. of 3, denoted by 3. It is

given implicitly as the positive root of the equation

(4) ± Σ
3t.

ί
 1 +

 ̂ i
= 0

PROOF: We have the vector t = (t
Ί
,...,t , ...,t ) corresponding to the observed

— I tc n

events [T. = t.] for i = 1,.. . ,k and [T. > t.] for i = k+l,. . . ,n, where k >_1. By

definition the log-likelihood is given by
I,

L
 n

e = Π q(t.) Π R(t.) .

i=l 1 ._
Ί

 Ί

Substituting, taking logarithms, and simplifying we have

k n

L(β|α,t)

Dividing by k we write

L(3|α,_t) = £nα

L
f
(3|α,O = i

ί,n(l + βt )
J

1 - f
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For k ^ l , the m.l.e. for $ is given as the positive root of

k βt. n βt.
(6) A(β) = x

 - k .1 TTBT. - T Γ .1 ττit

The root of equation (6) exists and is unique since A(0) = 1, A(°°) < 0 and A is

strictly decreasing over [0,°°].

When α and 3 are both unknown there are sets of n positive numbers (say

_t = (t
n
 ,. . . ,t, , . . . ,t ) with k < n designated as alive times) that cannot be used
x K. n

to estimate both unknown parameters. It is shown that both m.l.e.
f
s exist when-

ever the sample satisfies the condition

If the sample fails to satisfy this condition then the model may not be appro-

priate and a constant failure rate model or a convex failure rate model may be

indicated rather than a decreasing failure rate model.

One can check that a complete sample of failure times, i.e., with k = n will

satisfy (7) if the sample standard deviation exceeds the mean. For decreasing

failure rate distributions the standard deviation does exceed the mean, when

they both exist.

THEOREM 3: For a given sample _t, with k > l , both α,3 unknown, the m.l.e. of

3,β, exists as the smallest positive root of

n 3t.

St. / l + 3t.(8) i - I I
 ττ
x

Γ
 - -^—i = o ,
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if the sample satisfies

Given 3, the m.l.e. of α is given by

k
α =

PROOF: Consider the log-likelihood function defined in (5). Since α is un-

known, we write (5) as L(α,$|t). All stationary points, which are determined

by ΐ:, can be found by the simultaneous solution of 8L(θί,p|_t)/3 α= 0 and

3L(α,3|θ/3 3=0. This yields two equations in α and 3:

1 , n k 3t . n 3t.
(9) ~ = - I £n(l + 3 t . ) ; 1 - T- I j~τir = r ϊ TT7Γ

α k i = 1 ! k j = 1 ± + t5tj k i = 1 1 + ί̂ t.

Combining these into a single equation in 3, we seek 3 as the root of equation

(8), i.e., the root of

n 3t.
V i

1 + Bt
B ( 3 ) =

Note that limB(3) =0. We want to find a sufficient condition for the equation

3-K)
B(3) =0 to have a positive root. It is clear that 6(3)^0 as a negative

3 + °°

quantity. We will show that if the sample satisfies condition (7) then B(3) is

positive in a neighborhood of zero. Under these conditions there exists a 3

such that B(3) = 0 .
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To show that if condition (7) holds then B(3) is positive in a neighborhood

of zero consider the function

n t. , k
 Ί

 n &n(l + βt.)

y i _ i y i y i_
i=l i i=l i i=l

Repeated application of l'Hopital's rule shows that

lim -Q-

3+0
 P

II K. II

I t .
2
/ 2 - ± I t . I t .

n 2 k
 t

which is positive if 2, ί > 2 / j

i=l n 1=1 k"

The solution for α follows immediately from the first equation in (9).

Computationally equations (4) and (8) are not difficult to solve. In fact,

their solutions are obtainable using a simple programmable calculator.

5. Conclusion

If screen tests are effective we should be observing a decreasing fail-

ure rate as a function of time on test. In practice it is often assumed that as

the result of screen tests the surviving components are exponentially lived.

Of course, this is not always the case. The important question is how long

should a component be burned-in in order to make its residual life distribution

acceptable? The decreasing failure rate gamma-mixed exponential model, when

applicable, allows estimation of the improvement in reliability as a function

of screen test time.
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This study suggests that if a component has a life distribution with de-

creasing failure rate it is the alive times within the data which contribute

principally to the estimation of the parameters (and thereby to the deter-

mination of reliability) since only one failure observation is required even to

estimate two parameters, presuming the data of alive times are ample.

The usual justification for using maximum likelihood estimates is owing to

their asymptotically optimal properties and to their asymptotic normality. The

problem of obtaining exact sampling distributions of the maximum likelihood

estimators of the parameters for the model studied seems to be difficult because

the estimates are only implicitly defined. Myhre and Saunders (1981) have shown

that when they exist, the m.l.e.'s for α and 3 based on Type I or on random

sampling are consistent and are asymptotically normally distributed. In

addition, Lucke and Myhre (1980) have shown that the distribution function

estimated using the joint m.l.e.
f
s of the parameters is closer to the true

distribution function for regions of interest in reliability theory than is the

estimated distribution function using a known shape parameter and the BLUE

estimate of Vannman (1976) for the scale parameter.
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